Modulating the Electronic Structures of Dual‐Atom Catalysts via Coordination Environment Engineering for Boosting CO2 Electroreduction

Dual‐atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites. However, rationally modulating the electronic structure of DACs to optimize the catalytic performance remains a great challenge. Herein, we report t...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 51; pp. e202215187 - n/a
Main Authors Gong, Yun‐Nan, Cao, Chang‐Yu, Shi, Wen‐Jie, Zhang, Ji‐Hong, Deng, Ji‐Hua, Lu, Tong‐Bu, Zhong, Di‐Chang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 19.12.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dual‐atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites. However, rationally modulating the electronic structure of DACs to optimize the catalytic performance remains a great challenge. Herein, we report the electronic structure modulation of three Ni2 DACs (namely, Ni2−N7, Ni2−N5C2 and Ni2−N3C4) by the regulation of the coordination environments around the dual‐atom Ni2 centres. As a result, Ni2−N3C4 exhibits significantly improved electrocatalytic activity for CO2 reduction, not only better than the corresponding single‐atom Ni catalyst (Ni−N2C2), but also higher than Ni2−N7 and Ni2−N5C2 DACs. Density functional theory (DFT) calculations revealed that the high electrocatalytic activity of Ni2−N3C4 for CO2 reduction could be attributed to the electronic structure modulation to the Ni centre and the resulted proper binding energies to COOH* and CO* intermediates. Three Ni2 dual‐atom catalysts (DACs) with electronic structures tailored by the regulation of the coordination environment of Ni atoms, have been prepared for electrocatalytic CO2 reduction. The optimal Ni2−N3C4 exhibits the highest performance for the reduction of CO2 to CO, highlighting the significance of the electronic structure for electrocatalytic CO2 reduction in DACs.
AbstractList Dual‐atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites. However, rationally modulating the electronic structure of DACs to optimize the catalytic performance remains a great challenge. Herein, we report the electronic structure modulation of three Ni2 DACs (namely, Ni2−N7, Ni2−N5C2 and Ni2−N3C4) by the regulation of the coordination environments around the dual‐atom Ni2 centres. As a result, Ni2−N3C4 exhibits significantly improved electrocatalytic activity for CO2 reduction, not only better than the corresponding single‐atom Ni catalyst (Ni−N2C2), but also higher than Ni2−N7 and Ni2−N5C2 DACs. Density functional theory (DFT) calculations revealed that the high electrocatalytic activity of Ni2−N3C4 for CO2 reduction could be attributed to the electronic structure modulation to the Ni centre and the resulted proper binding energies to COOH* and CO* intermediates.
Dual-atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites. However, rationally modulating the electronic structure of DACs to optimize the catalytic performance remains a great challenge. Herein, we report the electronic structure modulation of three Ni2 DACs (namely, Ni2 -N7 , Ni2 -N5 C2 and Ni2 -N3 C4 ) by the regulation of the coordination environments around the dual-atom Ni2 centres. As a result, Ni2 -N3 C4 exhibits significantly improved electrocatalytic activity for CO2 reduction, not only better than the corresponding single-atom Ni catalyst (Ni-N2 C2 ), but also higher than Ni2 -N7 and Ni2 -N5 C2 DACs. Density functional theory (DFT) calculations revealed that the high electrocatalytic activity of Ni2 -N3 C4 for CO2 reduction could be attributed to the electronic structure modulation to the Ni centre and the resulted proper binding energies to COOH* and CO* intermediates.Dual-atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites. However, rationally modulating the electronic structure of DACs to optimize the catalytic performance remains a great challenge. Herein, we report the electronic structure modulation of three Ni2 DACs (namely, Ni2 -N7 , Ni2 -N5 C2 and Ni2 -N3 C4 ) by the regulation of the coordination environments around the dual-atom Ni2 centres. As a result, Ni2 -N3 C4 exhibits significantly improved electrocatalytic activity for CO2 reduction, not only better than the corresponding single-atom Ni catalyst (Ni-N2 C2 ), but also higher than Ni2 -N7 and Ni2 -N5 C2 DACs. Density functional theory (DFT) calculations revealed that the high electrocatalytic activity of Ni2 -N3 C4 for CO2 reduction could be attributed to the electronic structure modulation to the Ni centre and the resulted proper binding energies to COOH* and CO* intermediates.
Dual‐atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites. However, rationally modulating the electronic structure of DACs to optimize the catalytic performance remains a great challenge. Herein, we report the electronic structure modulation of three Ni2 DACs (namely, Ni2−N7, Ni2−N5C2 and Ni2−N3C4) by the regulation of the coordination environments around the dual‐atom Ni2 centres. As a result, Ni2−N3C4 exhibits significantly improved electrocatalytic activity for CO2 reduction, not only better than the corresponding single‐atom Ni catalyst (Ni−N2C2), but also higher than Ni2−N7 and Ni2−N5C2 DACs. Density functional theory (DFT) calculations revealed that the high electrocatalytic activity of Ni2−N3C4 for CO2 reduction could be attributed to the electronic structure modulation to the Ni centre and the resulted proper binding energies to COOH* and CO* intermediates. Three Ni2 dual‐atom catalysts (DACs) with electronic structures tailored by the regulation of the coordination environment of Ni atoms, have been prepared for electrocatalytic CO2 reduction. The optimal Ni2−N3C4 exhibits the highest performance for the reduction of CO2 to CO, highlighting the significance of the electronic structure for electrocatalytic CO2 reduction in DACs.
Author Gong, Yun‐Nan
Zhang, Ji‐Hong
Lu, Tong‐Bu
Zhong, Di‐Chang
Shi, Wen‐Jie
Deng, Ji‐Hua
Cao, Chang‐Yu
Author_xml – sequence: 1
  givenname: Yun‐Nan
  surname: Gong
  fullname: Gong, Yun‐Nan
  organization: Tianjin University of Technology
– sequence: 2
  givenname: Chang‐Yu
  surname: Cao
  fullname: Cao, Chang‐Yu
  organization: Tianjin University of Technology
– sequence: 3
  givenname: Wen‐Jie
  surname: Shi
  fullname: Shi, Wen‐Jie
  organization: Tianjin University of Technology
– sequence: 4
  givenname: Ji‐Hong
  surname: Zhang
  fullname: Zhang, Ji‐Hong
  organization: Tianjin University of Technology
– sequence: 5
  givenname: Ji‐Hua
  surname: Deng
  fullname: Deng, Ji‐Hua
  organization: Tianjin University of Technology
– sequence: 6
  givenname: Tong‐Bu
  surname: Lu
  fullname: Lu, Tong‐Bu
  organization: Tianjin University of Technology
– sequence: 7
  givenname: Di‐Chang
  orcidid: 0000-0002-5504-249X
  surname: Zhong
  fullname: Zhong, Di‐Chang
  email: dczhong@email.tjut.edu.cn, zhong_dichang@hotmail.com
  organization: Tianjin University of Technology
BookMark eNpdkT9PHDEQxa2ISOEgbWpLaWgW_Ge93i2P5QJIwBWQeuWzZ4lPe_Zhe0HXpaTkM_JJ8EG4ItW8kX7z3khvgvacd4DQD0qOKSHsRDkLx4wwRgWt5Re0TwWjBZeS72Vdcl7IWtBvaBLjMvN1Tap99HztzTioZN09Tn8AzwbQKXhnNb5NYdRpDBCx7_HZqIbXvy_T5Fe4VUkNm5gifrQKt94HY1328A7P3KPN5ytwKet76wDC1rv3AZ96H9-D2jn7DApgcki-PERfezVE-P5vHqDfv2Z37UVxNT-_bKdXxZpVlSyYgYWWtGZlBVo2C6WFUY2WbEHMQipRMqK1McyUdd_wqtIMuFGCy4rURvc1P0BHH77r4B9GiKlb2ahhGJQDP8aOSU6JEI0UGf35H7r0Y3D5u0wJzkRJqq1h80E92QE23TrYlQqbjpJu20q3baXbtdJNby5nu42_ATYkiNA
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202215187
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202215187
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22071182
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-p2667-2debc718246ec79bac5da9c72b0db7a5420ccdd2d48f9366c2e3da537608dcf83
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 07:46:45 EDT 2025
Sun Jul 13 04:07:24 EDT 2025
Wed Jan 22 16:22:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2667-2debc718246ec79bac5da9c72b0db7a5420ccdd2d48f9366c2e3da537608dcf83
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5504-249X
PQID 2753254068
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2731055975
proquest_journals_2753254068
wiley_primary_10_1002_anie_202215187_ANIE202215187
PublicationCentury 2000
PublicationDate December 19, 2022
PublicationDateYYYYMMDD 2022-12-19
PublicationDate_xml – month: 12
  year: 2022
  text: December 19, 2022
  day: 19
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 7
2019; 4
2021; 3
2017; 3
2021; 66
2019; 31
2019; 52
2019; 11
2022; 51
2019; 12
2020 2020; 59 132
2009
2020; 13
2020; 422
2020; 268
2020; 32
2021; 143
2021; 50
2019 2019; 58 131
2017; 139
2022; 144
2021; 14
2022 2022; 61 134
2021; 54
2018; 3
2021; 12
2021; 33
2021; 11
2022
2013; 117
2021 2021; 60 133
2021; 291
2019; 119
2018; 30
2016; 138
2022; 428
2018; 11
2021; 290
References_xml – volume: 12
  start-page: 3522
  year: 2019
  end-page: 3529
  publication-title: Energy Environ. Sci.
– volume: 428
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 222
  year: 2019
  end-page: 228
  publication-title: Nat. Chem.
– volume: 60 133
  start-page: 7382 7458
  year: 2021 2021
  end-page: 7388 7464
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 812
  year: 2017
  end-page: 821
  publication-title: Chem
– volume: 119
  start-page: 7610
  year: 2019
  end-page: 7672
  publication-title: Chem. Rev.
– volume: 51
  start-page: 1234
  year: 2022
  end-page: 1252
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 1729
  year: 2021
  end-page: 1737
  publication-title: ACS Mater. Lett.
– volume: 290
  year: 2021
  publication-title: Appl. Catal. B
– volume: 291
  year: 2021
  publication-title: Appl. Catal. B
– volume: 11
  start-page: 1204
  year: 2018
  end-page: 1210
  publication-title: Energy Environ. Sci.
– volume: 422
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 14
  start-page: 3019
  year: 2021
  end-page: 3028
  publication-title: Energy Environ. Sci.
– volume: 59 132
  start-page: 3033 3057
  year: 2020 2020
  end-page: 3037 3061
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 732
  year: 2019
  end-page: 745
  publication-title: Nat. Energy
– volume: 13
  start-page: 3206
  year: 2020
  end-page: 3211
  publication-title: Nano Res.
– volume: 11
  start-page: 12673
  year: 2021
  end-page: 12681
  publication-title: ACS Catal.
– volume: 59 132
  start-page: 2313 2333
  year: 2020 2020
  end-page: 2317 2337
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 3889
  year: 2009
  end-page: 3899
  publication-title: Eur. J. Inorg. Chem.
– volume: 66
  start-page: 1533
  year: 2021
  end-page: 1541
  publication-title: Sci. Bull.
– volume: 12
  start-page: 1734
  year: 2021
  publication-title: Nat. Commun.
– volume: 58 131
  start-page: 7445 7523
  year: 2019 2019
  end-page: 7449 7527
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 8078
  year: 2017
  end-page: 8081
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 4993
  year: 2021
  end-page: 5061
  publication-title: Chem. Soc. Rev.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 60 133
  start-page: 23342 23530
  year: 2021 2021
  end-page: 23348 23536
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 1961 1977
  year: 2020 2020
  end-page: 1965 1981
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 268
  year: 2020
  publication-title: Appl. Catal. B
– volume: 139
  start-page: 8320
  year: 2017
  end-page: 8328
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 2705 2727
  year: 2020 2020
  end-page: 2709 2731
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 117
  start-page: 4727
  year: 2013
  end-page: 4733
  publication-title: J. Phys. Chem. C
– volume: 143
  start-page: 3808
  year: 2021
  end-page: 3816
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 656
  year: 2019
  end-page: 664
  publication-title: Acc. Chem. Res.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 60 133
  start-page: 7607 7685
  year: 2021 2021
  end-page: 7611 7689
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 144
  start-page: 9661
  year: 2022
  end-page: 9671
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 11317
  year: 2021
  end-page: 11324
  publication-title: J. Am. Chem. Soc.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 10790
  year: 2017
  end-page: 10798
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 13177 13285
  year: 2021 2021
  end-page: 13196 13304
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 14546
  year: 2016
  end-page: 14549
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 3149
  year: 2021
  end-page: 3159
  publication-title: Acc. Chem. Res.
– volume: 3
  start-page: 140
  year: 2018
  end-page: 147
  publication-title: Nat. Energy
– volume: 143
  start-page: 19417
  year: 2021
  end-page: 19424
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 47
  year: 2019
  end-page: 68
  publication-title: Mater. Today
SSID ssj0028806
Score 2.6604803
Snippet Dual‐atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites....
Dual-atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites....
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e202215187
SubjectTerms Carbon dioxide
Catalysts
CO2 Electroreduction
Coordination
Coordination Environment
Density functional theory
Dual-Atom Catalyst
Electrocatalysts
Electronic Structure
Intermediates
Modulation
Synergistic Effect
Title Modulating the Electronic Structures of Dual‐Atom Catalysts via Coordination Environment Engineering for Boosting CO2 Electroreduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202215187
https://www.proquest.com/docview/2753254068
https://www.proquest.com/docview/2731055975
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqLvTCqyCWAjJSrwFnnOdxCYsACZBokbhFfqVCQIKaXaT2xJEjv5FfwkyyCUuPcEuUWLYztuebycw3jP2QfuhCZwPPDwvhISKWnja-9aBAeOw7EDh6irY4i44ug5Or8Gomi7_lh-gdbrQzmvOaNrjS9d4baShlYKN9B6SzEkonp4AtQkUXPX8U4OJs04uk9KgKfcfaKGDvffN3-HIWpTZq5nCRqW6AbXTJze5krHfNv_-4Gz8zgyW2MMWgfNgummX2xZUrbD7rSr99Y0-nlW3KepW_OQJEPupr5fCfDd_sBI10XhX8YKJuXx6fh-PqjmfkCPpbj2v-cK14VqFVe926GvnoLZuOzxAgcgTMfL-q6qaj7By6jv4Qnyy1XGWXh6Nf2ZE3Ldng3aOmjz2wThtUdxBEzsSpVia0KjUxaGF1rMIAhDHWgg2SIpVRZMBJq4hSRiTWFIlcY3NlVbp1xuNQQWB9YYXDU0anWhapKLQD30qd-jBgm53I8um-q3NA6wtNXhElA7bTP8avR79BVOmqCb0jqSpoGocDBo188vuW2SNvOZwhJ8nkvWTy4dnxqL_b-Eij7-wrXVMcjJ9usjmUldtCNDPW282KfQVAwvFZ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9RADLZKOZQLb8RCgUGCY9rEk-eBw5Ldape2iwSt1FvIPIIq2qRqdkHlxJEjf4W_wk_gl2Anm7TliNQDxzwmmXhsj-3YnwFeSC-wgTW-4wWF65BFLB2lPeNgQeaxZ9Gl2XO2xSyc7PtvDoKDFfjZ1cK0-BB9wI0lo9HXLOAckN48Rw3lEmxy8JA3rTha5lVu27Mv5LXVr6YjWuKXiFvjvXTiLBsLOCe0H0UOGqs0KWX0Q6ujROU6MHmiI1SuUVEe-OhqbQwaPy4SGYYarTQ5A5-4sdFFLOm51-A6txFnuP7Rux6xCkkc2oImKR3ue9_hRLq4eXm-lyzai3Zxs7Ft3YJfHUnafJZPG4u52tBf_0KL_K9odhtuLs1sMWzl4g6s2PIurKVdd7t78H23Mk3nsvKjIBtYjPt2QOJ9A6m7OLW1qAoxWuRHv7_9GM6rY5FyrOusntfi82Eu0oo-57CNporxecGguIDxKMgnEK-rqm5elL7F7kWnDJnLI-_D_pUQ4gGsllVpH4KIghx947nGtaRIVaJkkbiFsugZqRIPB7De8Ui2VC11huRgklfvhvEAnveXiXr8pycvbbXgeyQ3Pk2iYADYMER20oKXZC1MNWbMCVnPCdlwNh33R4_-ZdAzWJvs7e5kO9PZ9mO4wec57cdL1mGV1s0-IeNtrp424iLgw1Xz2h-Sb1Gu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIkEvvBELBYwEx7TOOC8fOCzZXXUpLAio1FuIH0FVIVk1u6By4siRn8Jf4S_wSxgnm7TliNQDxzwcO-OZ8Yw98w3AY-GHNrQm8Pyw4B5ZxMJT2jceFmQe-xY5jd5FW8yinb3g-X64vwY_u1yYFh-i33BzktHoayfgc1Nsn4CGugxs8u_QrVlJvAqr3LXHX8hpq59ORzTDTxAn43fpjreqK-DNaTmKPTRWadLJGERWx1LlOjS51DEqblSchwFyrY1BEySFFFGk0QqTO9wTnhhdJIK-ewEuBhGXrljE6E0PWIUkDW0-kxCeK3vfwURy3D473jMG7WmzuFnXJlfhV0eRNpzlcGu5UFv6619gkf8Tya7BlZWRzYatVFyHNVvegMtpV9vuJnx_WZmmbln5gZEFzMZ9MSD2tgHUXR7ZmlUFGy3zj7-__Rguqk8sdTtdx_WiZp8PcpZW9DsH7V4qG5-kC7JTCI-MPAL2rKrqpqP0FXYdHTnAXNfyFuydCyFuw3pZlfYOsDjMMTA-N9ySGlVSiULyQln0jVDSxwFsdiySrRRLnSG5l-TT8ygZwKP-MVHPnfPkpa2W7h3hyp7KOBwANvyQzVvokqwFqcbMcULWc0I2nE3H_dXdf2n0EC69Hk2yF9PZ7j3YcLddzI8vN2Gdps3eJ8ttoR40wsLg_Xmz2h89LVBd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+the+Electronic+Structures+of+Dual-Atom+Catalysts+via+Coordination+Environment+Engineering+for+Boosting+CO2+Electroreduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gong%2C+Yun-Nan&rft.au=Cao%2C+Chang-Yu&rft.au=Shi%2C+Wen-Jie&rft.au=Zhang%2C+Ji-Hong&rft.date=2022-12-19&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=51&rft.spage=e202215187&rft_id=info:doi/10.1002%2Fanie.202215187&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon