Modulating the Electronic Structures of Dual‐Atom Catalysts via Coordination Environment Engineering for Boosting CO2 Electroreduction
Dual‐atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites. However, rationally modulating the electronic structure of DACs to optimize the catalytic performance remains a great challenge. Herein, we report t...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 51; pp. e202215187 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
19.12.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dual‐atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites. However, rationally modulating the electronic structure of DACs to optimize the catalytic performance remains a great challenge. Herein, we report the electronic structure modulation of three Ni2 DACs (namely, Ni2−N7, Ni2−N5C2 and Ni2−N3C4) by the regulation of the coordination environments around the dual‐atom Ni2 centres. As a result, Ni2−N3C4 exhibits significantly improved electrocatalytic activity for CO2 reduction, not only better than the corresponding single‐atom Ni catalyst (Ni−N2C2), but also higher than Ni2−N7 and Ni2−N5C2 DACs. Density functional theory (DFT) calculations revealed that the high electrocatalytic activity of Ni2−N3C4 for CO2 reduction could be attributed to the electronic structure modulation to the Ni centre and the resulted proper binding energies to COOH* and CO* intermediates.
Three Ni2 dual‐atom catalysts (DACs) with electronic structures tailored by the regulation of the coordination environment of Ni atoms, have been prepared for electrocatalytic CO2 reduction. The optimal Ni2−N3C4 exhibits the highest performance for the reduction of CO2 to CO, highlighting the significance of the electronic structure for electrocatalytic CO2 reduction in DACs. |
---|---|
AbstractList | Dual‐atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites. However, rationally modulating the electronic structure of DACs to optimize the catalytic performance remains a great challenge. Herein, we report the electronic structure modulation of three Ni2 DACs (namely, Ni2−N7, Ni2−N5C2 and Ni2−N3C4) by the regulation of the coordination environments around the dual‐atom Ni2 centres. As a result, Ni2−N3C4 exhibits significantly improved electrocatalytic activity for CO2 reduction, not only better than the corresponding single‐atom Ni catalyst (Ni−N2C2), but also higher than Ni2−N7 and Ni2−N5C2 DACs. Density functional theory (DFT) calculations revealed that the high electrocatalytic activity of Ni2−N3C4 for CO2 reduction could be attributed to the electronic structure modulation to the Ni centre and the resulted proper binding energies to COOH* and CO* intermediates. Dual-atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites. However, rationally modulating the electronic structure of DACs to optimize the catalytic performance remains a great challenge. Herein, we report the electronic structure modulation of three Ni2 DACs (namely, Ni2 -N7 , Ni2 -N5 C2 and Ni2 -N3 C4 ) by the regulation of the coordination environments around the dual-atom Ni2 centres. As a result, Ni2 -N3 C4 exhibits significantly improved electrocatalytic activity for CO2 reduction, not only better than the corresponding single-atom Ni catalyst (Ni-N2 C2 ), but also higher than Ni2 -N7 and Ni2 -N5 C2 DACs. Density functional theory (DFT) calculations revealed that the high electrocatalytic activity of Ni2 -N3 C4 for CO2 reduction could be attributed to the electronic structure modulation to the Ni centre and the resulted proper binding energies to COOH* and CO* intermediates.Dual-atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites. However, rationally modulating the electronic structure of DACs to optimize the catalytic performance remains a great challenge. Herein, we report the electronic structure modulation of three Ni2 DACs (namely, Ni2 -N7 , Ni2 -N5 C2 and Ni2 -N3 C4 ) by the regulation of the coordination environments around the dual-atom Ni2 centres. As a result, Ni2 -N3 C4 exhibits significantly improved electrocatalytic activity for CO2 reduction, not only better than the corresponding single-atom Ni catalyst (Ni-N2 C2 ), but also higher than Ni2 -N7 and Ni2 -N5 C2 DACs. Density functional theory (DFT) calculations revealed that the high electrocatalytic activity of Ni2 -N3 C4 for CO2 reduction could be attributed to the electronic structure modulation to the Ni centre and the resulted proper binding energies to COOH* and CO* intermediates. Dual‐atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites. However, rationally modulating the electronic structure of DACs to optimize the catalytic performance remains a great challenge. Herein, we report the electronic structure modulation of three Ni2 DACs (namely, Ni2−N7, Ni2−N5C2 and Ni2−N3C4) by the regulation of the coordination environments around the dual‐atom Ni2 centres. As a result, Ni2−N3C4 exhibits significantly improved electrocatalytic activity for CO2 reduction, not only better than the corresponding single‐atom Ni catalyst (Ni−N2C2), but also higher than Ni2−N7 and Ni2−N5C2 DACs. Density functional theory (DFT) calculations revealed that the high electrocatalytic activity of Ni2−N3C4 for CO2 reduction could be attributed to the electronic structure modulation to the Ni centre and the resulted proper binding energies to COOH* and CO* intermediates. Three Ni2 dual‐atom catalysts (DACs) with electronic structures tailored by the regulation of the coordination environment of Ni atoms, have been prepared for electrocatalytic CO2 reduction. The optimal Ni2−N3C4 exhibits the highest performance for the reduction of CO2 to CO, highlighting the significance of the electronic structure for electrocatalytic CO2 reduction in DACs. |
Author | Gong, Yun‐Nan Zhang, Ji‐Hong Lu, Tong‐Bu Zhong, Di‐Chang Shi, Wen‐Jie Deng, Ji‐Hua Cao, Chang‐Yu |
Author_xml | – sequence: 1 givenname: Yun‐Nan surname: Gong fullname: Gong, Yun‐Nan organization: Tianjin University of Technology – sequence: 2 givenname: Chang‐Yu surname: Cao fullname: Cao, Chang‐Yu organization: Tianjin University of Technology – sequence: 3 givenname: Wen‐Jie surname: Shi fullname: Shi, Wen‐Jie organization: Tianjin University of Technology – sequence: 4 givenname: Ji‐Hong surname: Zhang fullname: Zhang, Ji‐Hong organization: Tianjin University of Technology – sequence: 5 givenname: Ji‐Hua surname: Deng fullname: Deng, Ji‐Hua organization: Tianjin University of Technology – sequence: 6 givenname: Tong‐Bu surname: Lu fullname: Lu, Tong‐Bu organization: Tianjin University of Technology – sequence: 7 givenname: Di‐Chang orcidid: 0000-0002-5504-249X surname: Zhong fullname: Zhong, Di‐Chang email: dczhong@email.tjut.edu.cn, zhong_dichang@hotmail.com organization: Tianjin University of Technology |
BookMark | eNpdkT9PHDEQxa2ISOEgbWpLaWgW_Ge93i2P5QJIwBWQeuWzZ4lPe_Zhe0HXpaTkM_JJ8EG4ItW8kX7z3khvgvacd4DQD0qOKSHsRDkLx4wwRgWt5Re0TwWjBZeS72Vdcl7IWtBvaBLjMvN1Tap99HztzTioZN09Tn8AzwbQKXhnNb5NYdRpDBCx7_HZqIbXvy_T5Fe4VUkNm5gifrQKt94HY1328A7P3KPN5ytwKet76wDC1rv3AZ96H9-D2jn7DApgcki-PERfezVE-P5vHqDfv2Z37UVxNT-_bKdXxZpVlSyYgYWWtGZlBVo2C6WFUY2WbEHMQipRMqK1McyUdd_wqtIMuFGCy4rURvc1P0BHH77r4B9GiKlb2ahhGJQDP8aOSU6JEI0UGf35H7r0Y3D5u0wJzkRJqq1h80E92QE23TrYlQqbjpJu20q3baXbtdJNby5nu42_ATYkiNA |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202215187 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | ANIE202215187 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22071182 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 7X8 |
ID | FETCH-LOGICAL-p2667-2debc718246ec79bac5da9c72b0db7a5420ccdd2d48f9366c2e3da537608dcf83 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 07:46:45 EDT 2025 Sun Jul 13 04:07:24 EDT 2025 Wed Jan 22 16:22:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2667-2debc718246ec79bac5da9c72b0db7a5420ccdd2d48f9366c2e3da537608dcf83 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5504-249X |
PQID | 2753254068 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2731055975 proquest_journals_2753254068 wiley_primary_10_1002_anie_202215187_ANIE202215187 |
PublicationCentury | 2000 |
PublicationDate | December 19, 2022 |
PublicationDateYYYYMMDD | 2022-12-19 |
PublicationDate_xml | – month: 12 year: 2022 text: December 19, 2022 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 7 2019; 4 2021; 3 2017; 3 2021; 66 2019; 31 2019; 52 2019; 11 2022; 51 2019; 12 2020 2020; 59 132 2009 2020; 13 2020; 422 2020; 268 2020; 32 2021; 143 2021; 50 2019 2019; 58 131 2017; 139 2022; 144 2021; 14 2022 2022; 61 134 2021; 54 2018; 3 2021; 12 2021; 33 2021; 11 2022 2013; 117 2021 2021; 60 133 2021; 291 2019; 119 2018; 30 2016; 138 2022; 428 2018; 11 2021; 290 |
References_xml | – volume: 12 start-page: 3522 year: 2019 end-page: 3529 publication-title: Energy Environ. Sci. – volume: 428 year: 2022 publication-title: Chem. Eng. J. – volume: 11 start-page: 222 year: 2019 end-page: 228 publication-title: Nat. Chem. – volume: 60 133 start-page: 7382 7458 year: 2021 2021 end-page: 7388 7464 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2022 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 812 year: 2017 end-page: 821 publication-title: Chem – volume: 119 start-page: 7610 year: 2019 end-page: 7672 publication-title: Chem. Rev. – volume: 51 start-page: 1234 year: 2022 end-page: 1252 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 1729 year: 2021 end-page: 1737 publication-title: ACS Mater. Lett. – volume: 290 year: 2021 publication-title: Appl. Catal. B – volume: 291 year: 2021 publication-title: Appl. Catal. B – volume: 11 start-page: 1204 year: 2018 end-page: 1210 publication-title: Energy Environ. Sci. – volume: 422 year: 2020 publication-title: Coord. Chem. Rev. – volume: 14 start-page: 3019 year: 2021 end-page: 3028 publication-title: Energy Environ. Sci. – volume: 59 132 start-page: 3033 3057 year: 2020 2020 end-page: 3037 3061 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 732 year: 2019 end-page: 745 publication-title: Nat. Energy – volume: 13 start-page: 3206 year: 2020 end-page: 3211 publication-title: Nano Res. – volume: 11 start-page: 12673 year: 2021 end-page: 12681 publication-title: ACS Catal. – volume: 59 132 start-page: 2313 2333 year: 2020 2020 end-page: 2317 2337 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 3889 year: 2009 end-page: 3899 publication-title: Eur. J. Inorg. Chem. – volume: 66 start-page: 1533 year: 2021 end-page: 1541 publication-title: Sci. Bull. – volume: 12 start-page: 1734 year: 2021 publication-title: Nat. Commun. – volume: 58 131 start-page: 7445 7523 year: 2019 2019 end-page: 7449 7527 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 8078 year: 2017 end-page: 8081 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 4993 year: 2021 end-page: 5061 publication-title: Chem. Soc. Rev. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 60 133 start-page: 23342 23530 year: 2021 2021 end-page: 23348 23536 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 1961 1977 year: 2020 2020 end-page: 1965 1981 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 268 year: 2020 publication-title: Appl. Catal. B – volume: 139 start-page: 8320 year: 2017 end-page: 8328 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 2705 2727 year: 2020 2020 end-page: 2709 2731 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 4727 year: 2013 end-page: 4733 publication-title: J. Phys. Chem. C – volume: 143 start-page: 3808 year: 2021 end-page: 3816 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 656 year: 2019 end-page: 664 publication-title: Acc. Chem. Res. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 60 133 start-page: 7607 7685 year: 2021 2021 end-page: 7611 7689 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 144 start-page: 9661 year: 2022 end-page: 9671 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 11317 year: 2021 end-page: 11324 publication-title: J. Am. Chem. Soc. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 10790 year: 2017 end-page: 10798 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 13177 13285 year: 2021 2021 end-page: 13196 13304 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 14546 year: 2016 end-page: 14549 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 3149 year: 2021 end-page: 3159 publication-title: Acc. Chem. Res. – volume: 3 start-page: 140 year: 2018 end-page: 147 publication-title: Nat. Energy – volume: 143 start-page: 19417 year: 2021 end-page: 19424 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 47 year: 2019 end-page: 68 publication-title: Mater. Today |
SSID | ssj0028806 |
Score | 2.6604803 |
Snippet | Dual‐atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites.... Dual-atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites.... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e202215187 |
SubjectTerms | Carbon dioxide Catalysts CO2 Electroreduction Coordination Coordination Environment Density functional theory Dual-Atom Catalyst Electrocatalysts Electronic Structure Intermediates Modulation Synergistic Effect |
Title | Modulating the Electronic Structures of Dual‐Atom Catalysts via Coordination Environment Engineering for Boosting CO2 Electroreduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202215187 https://www.proquest.com/docview/2753254068 https://www.proquest.com/docview/2731055975 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqLvTCqyCWAjJSrwFnnOdxCYsACZBokbhFfqVCQIKaXaT2xJEjv5FfwkyyCUuPcEuUWLYztuebycw3jP2QfuhCZwPPDwvhISKWnja-9aBAeOw7EDh6irY4i44ug5Or8Gomi7_lh-gdbrQzmvOaNrjS9d4baShlYKN9B6SzEkonp4AtQkUXPX8U4OJs04uk9KgKfcfaKGDvffN3-HIWpTZq5nCRqW6AbXTJze5krHfNv_-4Gz8zgyW2MMWgfNgummX2xZUrbD7rSr99Y0-nlW3KepW_OQJEPupr5fCfDd_sBI10XhX8YKJuXx6fh-PqjmfkCPpbj2v-cK14VqFVe926GvnoLZuOzxAgcgTMfL-q6qaj7By6jv4Qnyy1XGWXh6Nf2ZE3Ldng3aOmjz2wThtUdxBEzsSpVia0KjUxaGF1rMIAhDHWgg2SIpVRZMBJq4hSRiTWFIlcY3NlVbp1xuNQQWB9YYXDU0anWhapKLQD30qd-jBgm53I8um-q3NA6wtNXhElA7bTP8avR79BVOmqCb0jqSpoGocDBo188vuW2SNvOZwhJ8nkvWTy4dnxqL_b-Eij7-wrXVMcjJ9usjmUldtCNDPW282KfQVAwvFZ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9RADLZKOZQLb8RCgUGCY9rEk-eBw5Ldape2iwSt1FvIPIIq2qRqdkHlxJEjf4W_wk_gl2Anm7TliNQDxzwmmXhsj-3YnwFeSC-wgTW-4wWF65BFLB2lPeNgQeaxZ9Gl2XO2xSyc7PtvDoKDFfjZ1cK0-BB9wI0lo9HXLOAckN48Rw3lEmxy8JA3rTha5lVu27Mv5LXVr6YjWuKXiFvjvXTiLBsLOCe0H0UOGqs0KWX0Q6ujROU6MHmiI1SuUVEe-OhqbQwaPy4SGYYarTQ5A5-4sdFFLOm51-A6txFnuP7Rux6xCkkc2oImKR3ue9_hRLq4eXm-lyzai3Zxs7Ft3YJfHUnafJZPG4u52tBf_0KL_K9odhtuLs1sMWzl4g6s2PIurKVdd7t78H23Mk3nsvKjIBtYjPt2QOJ9A6m7OLW1qAoxWuRHv7_9GM6rY5FyrOusntfi82Eu0oo-57CNporxecGguIDxKMgnEK-rqm5elL7F7kWnDJnLI-_D_pUQ4gGsllVpH4KIghx947nGtaRIVaJkkbiFsugZqRIPB7De8Ui2VC11huRgklfvhvEAnveXiXr8pycvbbXgeyQ3Pk2iYADYMER20oKXZC1MNWbMCVnPCdlwNh33R4_-ZdAzWJvs7e5kO9PZ9mO4wec57cdL1mGV1s0-IeNtrp424iLgw1Xz2h-Sb1Gu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIkEvvBELBYwEx7TOOC8fOCzZXXUpLAio1FuIH0FVIVk1u6By4siRn8Jf4S_wSxgnm7TliNQDxzwcO-OZ8Yw98w3AY-GHNrQm8Pyw4B5ZxMJT2jceFmQe-xY5jd5FW8yinb3g-X64vwY_u1yYFh-i33BzktHoayfgc1Nsn4CGugxs8u_QrVlJvAqr3LXHX8hpq59ORzTDTxAn43fpjreqK-DNaTmKPTRWadLJGERWx1LlOjS51DEqblSchwFyrY1BEySFFFGk0QqTO9wTnhhdJIK-ewEuBhGXrljE6E0PWIUkDW0-kxCeK3vfwURy3D473jMG7WmzuFnXJlfhV0eRNpzlcGu5UFv6619gkf8Tya7BlZWRzYatVFyHNVvegMtpV9vuJnx_WZmmbln5gZEFzMZ9MSD2tgHUXR7ZmlUFGy3zj7-__Rguqk8sdTtdx_WiZp8PcpZW9DsH7V4qG5-kC7JTCI-MPAL2rKrqpqP0FXYdHTnAXNfyFuydCyFuw3pZlfYOsDjMMTA-N9ySGlVSiULyQln0jVDSxwFsdiySrRRLnSG5l-TT8ygZwKP-MVHPnfPkpa2W7h3hyp7KOBwANvyQzVvokqwFqcbMcULWc0I2nE3H_dXdf2n0EC69Hk2yF9PZ7j3YcLddzI8vN2Gdps3eJ8ttoR40wsLg_Xmz2h89LVBd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+the+Electronic+Structures+of+Dual-Atom+Catalysts+via+Coordination+Environment+Engineering+for+Boosting+CO2+Electroreduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gong%2C+Yun-Nan&rft.au=Cao%2C+Chang-Yu&rft.au=Shi%2C+Wen-Jie&rft.au=Zhang%2C+Ji-Hong&rft.date=2022-12-19&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=51&rft.spage=e202215187&rft_id=info:doi/10.1002%2Fanie.202215187&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |