Low‐coordination Nanocrystalline Copper‐based Catalysts through Theory‐guided Electrochemical Restructuring for Selective CO2 Reduction to Ethylene

Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed de...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 16; pp. e202319936 - n/a
Main Authors Fang, Wensheng, Lu, Ruihu, Li, Fu‐Min, He, Chaohui, Wu, Dan, Yue, Kaihang, Mao, Yu, Guo, Wei, You, Bo, Song, Fei, Yao, Tao, Wang, Ziyun, Xia, Bao Yu
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 15.04.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low‐coordination copper‐based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm−2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full‐cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application. Based on the electrochemical restructuring calculation of Cu catalysts, a customized, low‐coordination Cu catalyst was prepared for the efficient electrocatalytic reduction of CO2 to ethylene. Benefiting from this excellent catalyst, the selectivity of CO2 conversion to ethylene reached 72% at a current density of 800 mA cm−2, with a durable stability of 230 hours in an electrolyzer.
AbstractList Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low‐coordination copper‐based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm−2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full‐cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application. Based on the electrochemical restructuring calculation of Cu catalysts, a customized, low‐coordination Cu catalyst was prepared for the efficient electrocatalytic reduction of CO2 to ethylene. Benefiting from this excellent catalyst, the selectivity of CO2 conversion to ethylene reached 72% at a current density of 800 mA cm−2, with a durable stability of 230 hours in an electrolyzer.
Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low-coordination copper-based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm-2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full-cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application.Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low-coordination copper-based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm-2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full-cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application.
Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low‐coordination copper‐based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm−2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full‐cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application.
Author He, Chaohui
Wang, Ziyun
Yao, Tao
Li, Fu‐Min
Lu, Ruihu
Yue, Kaihang
Guo, Wei
Fang, Wensheng
You, Bo
Mao, Yu
Wu, Dan
Song, Fei
Xia, Bao Yu
Author_xml – sequence: 1
  givenname: Wensheng
  surname: Fang
  fullname: Fang, Wensheng
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 2
  givenname: Ruihu
  surname: Lu
  fullname: Lu, Ruihu
  organization: University of Auckland
– sequence: 3
  givenname: Fu‐Min
  surname: Li
  fullname: Li, Fu‐Min
  email: lifuminxs@gmail.com
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 4
  givenname: Chaohui
  surname: He
  fullname: He, Chaohui
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 5
  givenname: Dan
  surname: Wu
  fullname: Wu, Dan
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Kaihang
  surname: Yue
  fullname: Yue, Kaihang
  organization: Chinese Academy of Sciences (SICCAS)
– sequence: 7
  givenname: Yu
  surname: Mao
  fullname: Mao, Yu
  organization: University of Auckland
– sequence: 8
  givenname: Wei
  surname: Guo
  fullname: Guo, Wei
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 9
  givenname: Bo
  surname: You
  fullname: You, Bo
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 10
  givenname: Fei
  surname: Song
  fullname: Song, Fei
  organization: Chinese Academy of Sciences
– sequence: 11
  givenname: Tao
  surname: Yao
  fullname: Yao, Tao
  organization: University of Science and Technology of China
– sequence: 12
  givenname: Ziyun
  surname: Wang
  fullname: Wang, Ziyun
  email: ziyun.wang@auckland.ac.nz
  organization: University of Auckland
– sequence: 13
  givenname: Bao Yu
  orcidid: 0000-0002-2054-908X
  surname: Xia
  fullname: Xia, Bao Yu
  email: byxia@hust.edu.cn
  organization: Huazhong University of Science and Technology (HUST)
BookMark eNpd0U9r2zAYBnAxOljS9tqzYJdd3OmPLdvHELK1EFJYu7OQ5dexgiJ5kr3i2z5Cr_16_SRT6MhhJ0k8P1698CzRhfMOELqh5JYSwr4qZ-CWEcZpXXPxAS1owWjGy5JfpHvOeVZWBf2EljEekq8qIhbodeuf3_68aO9Da5wajXd4p5zXYY6jstY4wGs_DBCSalSEFq9VClIa8dgHP-17_NSDD3MC-8m0SWws6DF43cPRaGXxD4hjmPQ4BeP2uPMBP8KJmN9p-ANLeZvS09ejx5uxny04uEIfO2UjXP87L9HPb5un9V22ffh-v15ts4EJIbKmEawpeCNAgAJWCEKrqixpLfKONB0HmiuRl7rLtVZ1RzgrgdKCty0HaInml-jL-9wh-F9T2lQeTdRgrXLgpyhZzaqiKuqcJPr5P3rwU3BpO8kJzwWvKWVJ1e_q2ViY5RDMUYVZUiJPNclTTfJck1zt7jfnF_8LTLORRA
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202319936
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202319936
Genre article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
K9.
7X8
ID FETCH-LOGICAL-p2666-bb62b53b6e6eae2560188771964f0bf3e14a647cf4cca9f0327e1153dd3eed0c3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 11:07:39 EDT 2025
Fri Jul 25 11:48:00 EDT 2025
Wed Jun 11 08:25:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2666-bb62b53b6e6eae2560188771964f0bf3e14a647cf4cca9f0327e1153dd3eed0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2054-908X
PQID 3034639112
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2928585940
proquest_journals_3034639112
wiley_primary_10_1002_anie_202319936_ANIE202319936
PublicationCentury 2000
PublicationDate April 15, 2024
PublicationDateYYYYMMDD 2024-04-15
PublicationDate_xml – month: 04
  year: 2024
  text: April 15, 2024
  day: 15
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 9
2021; 5
2019; 3
2021; 4
2015; 5
2018; 360
2018; 140
2019; 2
2023; 6
2020; 142
2020; 120
2020; 59
2020; 367
2021; 143
2020; 10
2019; 141
2024; 15
2014; 136
2017; 139
2022; 144
2020; 8
2018; 9
2020; 3
2021; 31
2021; 12
2021; 11
2023
2022; 61
2022; 7
2022; 8
2013; 52
2020; 577
2018; 96
2023; 614
2020; 22
2022; 10
2021; 60
2023; 617
2018; 57
References_xml – volume: 6
  start-page: 837
  year: 2023
  end-page: 846
  publication-title: Nat. Catal.
– volume: 11
  start-page: 2473
  year: 2021
  end-page: 2482
  publication-title: ACS Catal.
– volume: 367
  start-page: 661
  year: 2020
  end-page: 666
  publication-title: Science
– year: 2023
  publication-title: Adv. Mater.
– volume: 2
  start-page: 198
  year: 2019
  end-page: 210
  publication-title: Nat. Catal.
– volume: 8
  start-page: 15223
  year: 2020
  end-page: 15229
  publication-title: ACS Sustainable Chem. Eng.
– volume: 577
  start-page: 509
  year: 2020
  end-page: 513
  publication-title: Nature
– volume: 140
  start-page: 11378
  year: 2018
  end-page: 11386
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 2165
  year: 2018
  end-page: 2177
  publication-title: Ind. Eng. Chem. Res.
– volume: 96
  start-page: 111
  year: 2018
  end-page: 173
  publication-title: Pro. Mater. Sci.
– volume: 22
  start-page: 6340
  year: 2020
  end-page: 6344
  publication-title: Green Chem.
– volume: 9
  start-page: 8592
  year: 2019
  end-page: 8621
  publication-title: ACS Catal.
– volume: 141
  start-page: 6986
  year: 2019
  end-page: 6994
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 6878
  year: 2020
  end-page: 6883
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 706
  year: 2021
  end-page: 719
  publication-title: Joule
– volume: 60
  start-page: 19107
  year: 2021
  end-page: 19112
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 5745
  year: 2021
  publication-title: Nat. Commun.
– volume: 3
  start-page: 804
  year: 2020
  end-page: 812
  publication-title: Nat. Catal.
– volume: 617
  start-page: 724
  year: 2023
  end-page: 729
  publication-title: Nature
– volume: 10
  start-page: 4677
  year: 2022
  end-page: 4682
  publication-title: ACS Sustainable Chem. Eng.
– volume: 60
  start-page: 4879
  year: 2021
  end-page: 4885
  publication-title: Angew. Chem. Int. Ed.
– volume: 141
  start-page: 4624
  year: 2019
  end-page: 4633
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 479
  year: 2021
  end-page: 487
  publication-title: Nat. Catal.
– volume: 120
  start-page: 4056
  year: 2020
  end-page: 4110
  publication-title: Chem. Rev.
– volume: 144
  start-page: 14005
  year: 2022
  end-page: 14011
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 911
  year: 2021
  end-page: 919
  publication-title: Nat. Sustain.
– volume: 136
  start-page: 1734
  year: 2014
  end-page: 1737
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 2932
  year: 2021
  publication-title: Nat. Commun.
– volume: 9
  start-page: 3117
  year: 2018
  publication-title: Nat. Commun.
– volume: 360
  start-page: 783
  year: 2018
  end-page: 787
  publication-title: Science
– volume: 143
  start-page: 7242
  year: 2021
  end-page: 7246
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 7282
  year: 2013
  end-page: 5
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 478
  year: 2020
  end-page: 487
  publication-title: Nat. Catal.
– volume: 10
  start-page: 4103
  year: 2020
  end-page: 4111
  publication-title: ACS Catal.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed..
– volume: 15
  start-page: 616
  year: 2024
  publication-title: Nat. Commun.
– volume: 7
  start-page: 170
  year: 2022
  end-page: 176
  publication-title: Nat. Energy
– volume: 614
  start-page: 262
  year: 2023
  end-page: 269
  publication-title: Nature
– volume: 143
  start-page: 588
  year: 2021
  end-page: 592
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 15664
  year: 2017
  end-page: 15667
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 2148
  year: 2022
  end-page: 2162
  publication-title: Chem
– volume: 5
  start-page: 2814
  year: 2015
  end-page: 2821
  publication-title: ACS Catal.
– volume: 144
  start-page: 2079
  year: 2022
  end-page: 2084
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 98
  year: 2019
  end-page: 106
  publication-title: Nat. Catal.
– volume: 2
  start-page: 251
  year: 2019
  end-page: 258
  publication-title: Nat. Catal.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 144
  start-page: 8927
  year: 2022
  end-page: 8931
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 259
  year: 2022
  end-page: 269
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 10807
  year: 2020
  end-page: 10813
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 3765
  year: 2021
  publication-title: Nat. Commun.
SSID ssj0028806
Score 2.6354454
Snippet Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e202319936
SubjectTerms Carbon dioxide
Carbon dioxide reduction
Catalysts
Chemical reduction
Chemical synthesis
Coordination
Copper
Copper converters
Cu catalyst
Density functional theory
Electrochemistry
Electrolysis
Energy storage
Ethylene
Industrial applications
Low coordination number
Molecular dynamics
Neutralization
Renewable energy
Restructuring behavior
Title Low‐coordination Nanocrystalline Copper‐based Catalysts through Theory‐guided Electrochemical Restructuring for Selective CO2 Reduction to Ethylene
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202319936
https://www.proquest.com/docview/3034639112
https://www.proquest.com/docview/2928585940
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFA_iRS_-F6dTInjt1iVtQo-jdEzRCdPBbqVJUxnCOvYH0ZMfwatfz0_ie01XN496a0kCbd7Le7-X5P0eIVetQAnAyb6jhA8BijSBk0jFHeFm2gf33ZIZ5jvf9UR34N0M_eFKFr_lh6g23HBlFPYaF3iiZs0f0lDMwG5g8W-8goac23hhC1FRv-KPYqCcNr2Icwer0C9ZG13WXB--hi9XUWrhZjq7JFl-oL1d8txYzFVDv_3ibvzPH-yRnRKD0rZVmn2yYcYHZCtcln47JJ-3-cvX-4fOITId2e1CCmY419NXAJPI4m1omE8mZgq90A-mNMRtIGid0bLyD7VZ_9DhaTFKoUdkC-7okqGA9o3lri3yJClgZ_pQ1OQB80vDewbtqWW2pfOcRqBP4B_NERl0osew65Q1HJwJuH7hKCWY8rkSRpjEFPEfmDWJNGCZqzJuWl4iPKkzD1QpyFzOpAGQytOUg_d2NT8mm-N8bE4IlcZTfhDIjGXKg8BOcW1SwVOVJly6ga6R-lKGcbkQZzF4aA9AGKDKGrmsmmE68VwkGZt8MYtZwPB0NPDcGmGFwOKJpfqILakzi1FUcSWquN27jqq3078MOiPb8FzcAWr5dbIJE27OAd7M1UWhwt-wJ_nl
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ReqAX2tJW3Za2rkSPWbJ2YisHDigs2oVlkfiRuLmxM6kQ0mbF7grRE4_Alcfoq_QR-iQdx0laekTi0GNiJ3ImM55vbM83ABu9xEjCyXFgZEwBisIkyJQRgQwLG5P77qnC5TsfjOXgNNo7i8-W4EeTC-P5IdoFN2cZ1XztDNwtSG_-YQ11KdhdV_3bnUGT9bnKfby-oqhttjXcoV_8hfPd_kk6COrCAsGU_JEMjJHcxMJIlJhhFZSQrSnHTVWEphDYizIZKVtE9H1JEQqukJCTyHNBLiW0gt77BJ66MuKOrn_nqGWs4mQOPqFJiMDVvW94IkO-eX-89xDt37i4cmy7z-FnIxJ_nuWiu5ibrv3-D1vkfyWzF7Baw2y27e3iJSzhZA1W0qa63Su4G5VXv25ubUlDOvcroow8TWkvrwkvO6JyZGk5neIl9XKuPmepW-mi1hmrixsxT2xAHb4tznPq0fc1hWxNwsCO0NPzVqmgjMIDdlyVHSIPw9JDTu25J-9l85L1yWQIAuBrOH0UybyB5Uk5wbfAFEYmThJV8MJEFLsaYTGXIjd5JlSY2A6sN0qj67lmpgmERIQzCTh34HPbTOJ0Wz_ZBMvFTPOEuw3gJAo7wCsN0VPPZqI9bzXXTjV0qxp6ezzst1fvHvLQJ1gZnByM9Gg43n8Pz-h-deSpF6_DMgkfPxCam5uPlf0w-PrYyvcbiN5YZg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_isWChgJjtlmbceRDxyq7K66tCyoUKk3E_-hCmkTdXdVlROPwJW34FV4BZ6EcZwEyhGpB46JnciZzHi-sT3fADwfSS0QJ2eJFhkGKLmTSZlrlojUmwzd9yj3Id_59VzsHfFXx9nxBnzvcmEiP0S_4BYso5mvg4HX1u_8Jg0NGdjDUPw7HEET7bHKfXd-hkHb8uVsjH_4BaXTyftiL2nrCiQ1uiORaC2ozpgWTrjSNTEJmloeqKl8qj1zI14KnhvP8fOkTxnNHQInZi1Dj5Iahu-9Ale5SGUoFjE-7AmrKFpDzGdiLAll7zuayJTuXBzvBUD7Jyxu_Nr0FvzoJBKPs3warld6aD7_RRb5P4nsNtxsQTbZjVZxBzbc4i5cL7radvfg20F19vPLV1PhkE7ieihBP1OZ03NEy4Gm3JGiqmt3ir2Co7ekCOtc2LokbWkjEmkNsMPH9YnFHpNYUci0FAzk0EVy3iYRlGBwQN41RYfQv5DiDcV2G6l7yaoiEzQYBADuPhxdimS2YHNRLdwDILnjOpMy99RrjpGrZsZZway2JctTaQaw3emMameapUIIwhFlImwewLO-GcUZNn7KhavWS0UlDdu_kqcDoI2CqDpymajIWk1VUA3Vq4banc8m_dXDf3noKVx7O56qg9l8_xHcwNvNeadRtg2bKHv3GKHcSj9prIfAh8vWvV8djlcV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low%E2%80%90coordination+Nanocrystalline+Copper%E2%80%90based+Catalysts+through+Theory%E2%80%90guided+Electrochemical+Restructuring+for+Selective+CO2+Reduction+to+Ethylene&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Fang%2C+Wensheng&rft.au=Lu%2C+Ruihu&rft.au=Fu%E2%80%90Min+Li&rft.au=He%2C+Chaohui&rft.date=2024-04-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=16&rft_id=info:doi/10.1002%2Fanie.202319936&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon