Low‐coordination Nanocrystalline Copper‐based Catalysts through Theory‐guided Electrochemical Restructuring for Selective CO2 Reduction to Ethylene
Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed de...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 16; pp. e202319936 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
15.04.2024
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low‐coordination copper‐based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm−2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full‐cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application.
Based on the electrochemical restructuring calculation of Cu catalysts, a customized, low‐coordination Cu catalyst was prepared for the efficient electrocatalytic reduction of CO2 to ethylene. Benefiting from this excellent catalyst, the selectivity of CO2 conversion to ethylene reached 72% at a current density of 800 mA cm−2, with a durable stability of 230 hours in an electrolyzer. |
---|---|
AbstractList | Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low‐coordination copper‐based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm−2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full‐cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application.
Based on the electrochemical restructuring calculation of Cu catalysts, a customized, low‐coordination Cu catalyst was prepared for the efficient electrocatalytic reduction of CO2 to ethylene. Benefiting from this excellent catalyst, the selectivity of CO2 conversion to ethylene reached 72% at a current density of 800 mA cm−2, with a durable stability of 230 hours in an electrolyzer. Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low-coordination copper-based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm-2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full-cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application.Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low-coordination copper-based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm-2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full-cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application. Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low‐coordination copper‐based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm−2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full‐cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application. |
Author | He, Chaohui Wang, Ziyun Yao, Tao Li, Fu‐Min Lu, Ruihu Yue, Kaihang Guo, Wei Fang, Wensheng You, Bo Mao, Yu Wu, Dan Song, Fei Xia, Bao Yu |
Author_xml | – sequence: 1 givenname: Wensheng surname: Fang fullname: Fang, Wensheng organization: Huazhong University of Science and Technology (HUST) – sequence: 2 givenname: Ruihu surname: Lu fullname: Lu, Ruihu organization: University of Auckland – sequence: 3 givenname: Fu‐Min surname: Li fullname: Li, Fu‐Min email: lifuminxs@gmail.com organization: Huazhong University of Science and Technology (HUST) – sequence: 4 givenname: Chaohui surname: He fullname: He, Chaohui organization: Huazhong University of Science and Technology (HUST) – sequence: 5 givenname: Dan surname: Wu fullname: Wu, Dan organization: University of Science and Technology of China – sequence: 6 givenname: Kaihang surname: Yue fullname: Yue, Kaihang organization: Chinese Academy of Sciences (SICCAS) – sequence: 7 givenname: Yu surname: Mao fullname: Mao, Yu organization: University of Auckland – sequence: 8 givenname: Wei surname: Guo fullname: Guo, Wei organization: Huazhong University of Science and Technology (HUST) – sequence: 9 givenname: Bo surname: You fullname: You, Bo organization: Huazhong University of Science and Technology (HUST) – sequence: 10 givenname: Fei surname: Song fullname: Song, Fei organization: Chinese Academy of Sciences – sequence: 11 givenname: Tao surname: Yao fullname: Yao, Tao organization: University of Science and Technology of China – sequence: 12 givenname: Ziyun surname: Wang fullname: Wang, Ziyun email: ziyun.wang@auckland.ac.nz organization: University of Auckland – sequence: 13 givenname: Bao Yu orcidid: 0000-0002-2054-908X surname: Xia fullname: Xia, Bao Yu email: byxia@hust.edu.cn organization: Huazhong University of Science and Technology (HUST) |
BookMark | eNpd0U9r2zAYBnAxOljS9tqzYJdd3OmPLdvHELK1EFJYu7OQ5dexgiJ5kr3i2z5Cr_16_SRT6MhhJ0k8P1698CzRhfMOELqh5JYSwr4qZ-CWEcZpXXPxAS1owWjGy5JfpHvOeVZWBf2EljEekq8qIhbodeuf3_68aO9Da5wajXd4p5zXYY6jstY4wGs_DBCSalSEFq9VClIa8dgHP-17_NSDD3MC-8m0SWws6DF43cPRaGXxD4hjmPQ4BeP2uPMBP8KJmN9p-ANLeZvS09ejx5uxny04uEIfO2UjXP87L9HPb5un9V22ffh-v15ts4EJIbKmEawpeCNAgAJWCEKrqixpLfKONB0HmiuRl7rLtVZ1RzgrgdKCty0HaInml-jL-9wh-F9T2lQeTdRgrXLgpyhZzaqiKuqcJPr5P3rwU3BpO8kJzwWvKWVJ1e_q2ViY5RDMUYVZUiJPNclTTfJck1zt7jfnF_8LTLORRA |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202319936 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | ANIE202319936 |
Genre | article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM K9. 7X8 |
ID | FETCH-LOGICAL-p2666-bb62b53b6e6eae2560188771964f0bf3e14a647cf4cca9f0327e1153dd3eed0c3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 11:07:39 EDT 2025 Fri Jul 25 11:48:00 EDT 2025 Wed Jun 11 08:25:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2666-bb62b53b6e6eae2560188771964f0bf3e14a647cf4cca9f0327e1153dd3eed0c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2054-908X |
PQID | 3034639112 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2928585940 proquest_journals_3034639112 wiley_primary_10_1002_anie_202319936_ANIE202319936 |
PublicationCentury | 2000 |
PublicationDate | April 15, 2024 |
PublicationDateYYYYMMDD | 2024-04-15 |
PublicationDate_xml | – month: 04 year: 2024 text: April 15, 2024 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 9 2021; 5 2019; 3 2021; 4 2015; 5 2018; 360 2018; 140 2019; 2 2023; 6 2020; 142 2020; 120 2020; 59 2020; 367 2021; 143 2020; 10 2019; 141 2024; 15 2014; 136 2017; 139 2022; 144 2020; 8 2018; 9 2020; 3 2021; 31 2021; 12 2021; 11 2023 2022; 61 2022; 7 2022; 8 2013; 52 2020; 577 2018; 96 2023; 614 2020; 22 2022; 10 2021; 60 2023; 617 2018; 57 |
References_xml | – volume: 6 start-page: 837 year: 2023 end-page: 846 publication-title: Nat. Catal. – volume: 11 start-page: 2473 year: 2021 end-page: 2482 publication-title: ACS Catal. – volume: 367 start-page: 661 year: 2020 end-page: 666 publication-title: Science – year: 2023 publication-title: Adv. Mater. – volume: 2 start-page: 198 year: 2019 end-page: 210 publication-title: Nat. Catal. – volume: 8 start-page: 15223 year: 2020 end-page: 15229 publication-title: ACS Sustainable Chem. Eng. – volume: 577 start-page: 509 year: 2020 end-page: 513 publication-title: Nature – volume: 140 start-page: 11378 year: 2018 end-page: 11386 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 2165 year: 2018 end-page: 2177 publication-title: Ind. Eng. Chem. Res. – volume: 96 start-page: 111 year: 2018 end-page: 173 publication-title: Pro. Mater. Sci. – volume: 22 start-page: 6340 year: 2020 end-page: 6344 publication-title: Green Chem. – volume: 9 start-page: 8592 year: 2019 end-page: 8621 publication-title: ACS Catal. – volume: 141 start-page: 6986 year: 2019 end-page: 6994 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 6878 year: 2020 end-page: 6883 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 706 year: 2021 end-page: 719 publication-title: Joule – volume: 60 start-page: 19107 year: 2021 end-page: 19112 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 5745 year: 2021 publication-title: Nat. Commun. – volume: 3 start-page: 804 year: 2020 end-page: 812 publication-title: Nat. Catal. – volume: 617 start-page: 724 year: 2023 end-page: 729 publication-title: Nature – volume: 10 start-page: 4677 year: 2022 end-page: 4682 publication-title: ACS Sustainable Chem. Eng. – volume: 60 start-page: 4879 year: 2021 end-page: 4885 publication-title: Angew. Chem. Int. Ed. – volume: 141 start-page: 4624 year: 2019 end-page: 4633 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 479 year: 2021 end-page: 487 publication-title: Nat. Catal. – volume: 120 start-page: 4056 year: 2020 end-page: 4110 publication-title: Chem. Rev. – volume: 144 start-page: 14005 year: 2022 end-page: 14011 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 911 year: 2021 end-page: 919 publication-title: Nat. Sustain. – volume: 136 start-page: 1734 year: 2014 end-page: 1737 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 2932 year: 2021 publication-title: Nat. Commun. – volume: 9 start-page: 3117 year: 2018 publication-title: Nat. Commun. – volume: 360 start-page: 783 year: 2018 end-page: 787 publication-title: Science – volume: 143 start-page: 7242 year: 2021 end-page: 7246 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 7282 year: 2013 end-page: 5 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 478 year: 2020 end-page: 487 publication-title: Nat. Catal. – volume: 10 start-page: 4103 year: 2020 end-page: 4111 publication-title: ACS Catal. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed.. – volume: 15 start-page: 616 year: 2024 publication-title: Nat. Commun. – volume: 7 start-page: 170 year: 2022 end-page: 176 publication-title: Nat. Energy – volume: 614 start-page: 262 year: 2023 end-page: 269 publication-title: Nature – volume: 143 start-page: 588 year: 2021 end-page: 592 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 15664 year: 2017 end-page: 15667 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 2148 year: 2022 end-page: 2162 publication-title: Chem – volume: 5 start-page: 2814 year: 2015 end-page: 2821 publication-title: ACS Catal. – volume: 144 start-page: 2079 year: 2022 end-page: 2084 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 98 year: 2019 end-page: 106 publication-title: Nat. Catal. – volume: 2 start-page: 251 year: 2019 end-page: 258 publication-title: Nat. Catal. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 144 start-page: 8927 year: 2022 end-page: 8931 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 259 year: 2022 end-page: 269 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 10807 year: 2020 end-page: 10813 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 3765 year: 2021 publication-title: Nat. Commun. |
SSID | ssj0028806 |
Score | 2.6354454 |
Snippet | Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e202319936 |
SubjectTerms | Carbon dioxide Carbon dioxide reduction Catalysts Chemical reduction Chemical synthesis Coordination Copper Copper converters Cu catalyst Density functional theory Electrochemistry Electrolysis Energy storage Ethylene Industrial applications Low coordination number Molecular dynamics Neutralization Renewable energy Restructuring behavior |
Title | Low‐coordination Nanocrystalline Copper‐based Catalysts through Theory‐guided Electrochemical Restructuring for Selective CO2 Reduction to Ethylene |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202319936 https://www.proquest.com/docview/3034639112 https://www.proquest.com/docview/2928585940 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFA_iRS_-F6dTInjt1iVtQo-jdEzRCdPBbqVJUxnCOvYH0ZMfwatfz0_ie01XN496a0kCbd7Le7-X5P0eIVetQAnAyb6jhA8BijSBk0jFHeFm2gf33ZIZ5jvf9UR34N0M_eFKFr_lh6g23HBlFPYaF3iiZs0f0lDMwG5g8W-8goac23hhC1FRv-KPYqCcNr2Icwer0C9ZG13WXB--hi9XUWrhZjq7JFl-oL1d8txYzFVDv_3ibvzPH-yRnRKD0rZVmn2yYcYHZCtcln47JJ-3-cvX-4fOITId2e1CCmY419NXAJPI4m1omE8mZgq90A-mNMRtIGid0bLyD7VZ_9DhaTFKoUdkC-7okqGA9o3lri3yJClgZ_pQ1OQB80vDewbtqWW2pfOcRqBP4B_NERl0osew65Q1HJwJuH7hKCWY8rkSRpjEFPEfmDWJNGCZqzJuWl4iPKkzD1QpyFzOpAGQytOUg_d2NT8mm-N8bE4IlcZTfhDIjGXKg8BOcW1SwVOVJly6ga6R-lKGcbkQZzF4aA9AGKDKGrmsmmE68VwkGZt8MYtZwPB0NPDcGmGFwOKJpfqILakzi1FUcSWquN27jqq3078MOiPb8FzcAWr5dbIJE27OAd7M1UWhwt-wJ_nl |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ReqAX2tJW3Za2rkSPWbJ2YisHDigs2oVlkfiRuLmxM6kQ0mbF7grRE4_Alcfoq_QR-iQdx0laekTi0GNiJ3ImM55vbM83ABu9xEjCyXFgZEwBisIkyJQRgQwLG5P77qnC5TsfjOXgNNo7i8-W4EeTC-P5IdoFN2cZ1XztDNwtSG_-YQ11KdhdV_3bnUGT9bnKfby-oqhttjXcoV_8hfPd_kk6COrCAsGU_JEMjJHcxMJIlJhhFZSQrSnHTVWEphDYizIZKVtE9H1JEQqukJCTyHNBLiW0gt77BJ66MuKOrn_nqGWs4mQOPqFJiMDVvW94IkO-eX-89xDt37i4cmy7z-FnIxJ_nuWiu5ibrv3-D1vkfyWzF7Baw2y27e3iJSzhZA1W0qa63Su4G5VXv25ubUlDOvcroow8TWkvrwkvO6JyZGk5neIl9XKuPmepW-mi1hmrixsxT2xAHb4tznPq0fc1hWxNwsCO0NPzVqmgjMIDdlyVHSIPw9JDTu25J-9l85L1yWQIAuBrOH0UybyB5Uk5wbfAFEYmThJV8MJEFLsaYTGXIjd5JlSY2A6sN0qj67lmpgmERIQzCTh34HPbTOJ0Wz_ZBMvFTPOEuw3gJAo7wCsN0VPPZqI9bzXXTjV0qxp6ezzst1fvHvLQJ1gZnByM9Gg43n8Pz-h-deSpF6_DMgkfPxCam5uPlf0w-PrYyvcbiN5YZg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_isWChgJjtlmbceRDxyq7K66tCyoUKk3E_-hCmkTdXdVlROPwJW34FV4BZ6EcZwEyhGpB46JnciZzHi-sT3fADwfSS0QJ2eJFhkGKLmTSZlrlojUmwzd9yj3Id_59VzsHfFXx9nxBnzvcmEiP0S_4BYso5mvg4HX1u_8Jg0NGdjDUPw7HEET7bHKfXd-hkHb8uVsjH_4BaXTyftiL2nrCiQ1uiORaC2ozpgWTrjSNTEJmloeqKl8qj1zI14KnhvP8fOkTxnNHQInZi1Dj5Iahu-9Ale5SGUoFjE-7AmrKFpDzGdiLAll7zuayJTuXBzvBUD7Jyxu_Nr0FvzoJBKPs3warld6aD7_RRb5P4nsNtxsQTbZjVZxBzbc4i5cL7radvfg20F19vPLV1PhkE7ieihBP1OZ03NEy4Gm3JGiqmt3ir2Co7ekCOtc2LokbWkjEmkNsMPH9YnFHpNYUci0FAzk0EVy3iYRlGBwQN41RYfQv5DiDcV2G6l7yaoiEzQYBADuPhxdimS2YHNRLdwDILnjOpMy99RrjpGrZsZZway2JctTaQaw3emMameapUIIwhFlImwewLO-GcUZNn7KhavWS0UlDdu_kqcDoI2CqDpymajIWk1VUA3Vq4banc8m_dXDf3noKVx7O56qg9l8_xHcwNvNeadRtg2bKHv3GKHcSj9prIfAh8vWvV8djlcV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low%E2%80%90coordination+Nanocrystalline+Copper%E2%80%90based+Catalysts+through+Theory%E2%80%90guided+Electrochemical+Restructuring+for+Selective+CO2+Reduction+to+Ethylene&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Fang%2C+Wensheng&rft.au=Lu%2C+Ruihu&rft.au=Fu%E2%80%90Min+Li&rft.au=He%2C+Chaohui&rft.date=2024-04-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=16&rft_id=info:doi/10.1002%2Fanie.202319936&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |