Quasi‐Solid‐State All‐V2O5 Battery
Solid‐state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of high‐performance bipolar electrodes and compatible solid electrolytes. Herein, a quasi‐solid‐state all‐V2O5 battery constructed by a binder‐free ca...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 22; pp. e2304786 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solid‐state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of high‐performance bipolar electrodes and compatible solid electrolytes. Herein, a quasi‐solid‐state all‐V2O5 battery constructed by a binder‐free carbon fabric‐V2O5 nanowires@graphene (CVOG) bipolar electrode and a softly cross‐linked polyethylene oxide‐based solid polymer electrolyte (SPE) is reported. The synergetic effect of nano‐structuring of V2O5, hierarchical conductive network, and graphene wrapping endows the CVOG electrode with boosted reaction kinetics and suppressed vanadium dissolution. The cathodic and anodic reactions of CVOG are decoupled by electrochemical analysis, conceiving the feasibility of constructing all‐V2O5 full battery. In manifesting the solid‐state all‐V2O5 battery, the robust and elastic SPE exhibits high ionic conductivity, tight/self‐adaptable electrolyte‐electrode contact, and a low charge‐transfer barrier. The resultant solid‐state full battery exhibits a high reversible capacity of 158 mAh g−1 at 0.1 C, good capacity retention of over 61% from 0.1 C to 2 C, and remarkable cycling stability of 77% capacity retention after 1000 cycles at 1 C, which surpass other solid‐state symmetrical batteries. Hence, this work provides a practice of high‐performance solid‐state batteries with symmetrical configuration and is constructive for next‐generation battery technology.
A quasi‐solid‐state all‐V2O5 battery is demonstrated by using a binder‐free graphene‐wrapped V2O5 nanowires‐carbon fabric bipolar electrode and a cross‐linked polyethylene oxide‐based electrolyte. This battery shows a well‐defined discharge voltage plateau and excellent electrochemical performance in capacity, rate property, and cycling stability over other reported solid‐state symmetrical batteries. |
---|---|
AbstractList | Solid‐state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of high‐performance bipolar electrodes and compatible solid electrolytes. Herein, a quasi‐solid‐state all‐V2O5 battery constructed by a binder‐free carbon fabric‐V2O5 nanowires@graphene (CVOG) bipolar electrode and a softly cross‐linked polyethylene oxide‐based solid polymer electrolyte (SPE) is reported. The synergetic effect of nano‐structuring of V2O5, hierarchical conductive network, and graphene wrapping endows the CVOG electrode with boosted reaction kinetics and suppressed vanadium dissolution. The cathodic and anodic reactions of CVOG are decoupled by electrochemical analysis, conceiving the feasibility of constructing all‐V2O5 full battery. In manifesting the solid‐state all‐V2O5 battery, the robust and elastic SPE exhibits high ionic conductivity, tight/self‐adaptable electrolyte‐electrode contact, and a low charge‐transfer barrier. The resultant solid‐state full battery exhibits a high reversible capacity of 158 mAh g−1 at 0.1 C, good capacity retention of over 61% from 0.1 C to 2 C, and remarkable cycling stability of 77% capacity retention after 1000 cycles at 1 C, which surpass other solid‐state symmetrical batteries. Hence, this work provides a practice of high‐performance solid‐state batteries with symmetrical configuration and is constructive for next‐generation battery technology.
A quasi‐solid‐state all‐V2O5 battery is demonstrated by using a binder‐free graphene‐wrapped V2O5 nanowires‐carbon fabric bipolar electrode and a cross‐linked polyethylene oxide‐based electrolyte. This battery shows a well‐defined discharge voltage plateau and excellent electrochemical performance in capacity, rate property, and cycling stability over other reported solid‐state symmetrical batteries. Solid-state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of high-performance bipolar electrodes and compatible solid electrolytes. Herein, a quasi-solid-state all-V2O5 battery constructed by a binder-free carbon fabric-V2O5 nanowires@graphene (CVOG) bipolar electrode and a softly cross-linked polyethylene oxide-based solid polymer electrolyte (SPE) is reported. The synergetic effect of nano-structuring of V2O5, hierarchical conductive network, and graphene wrapping endows the CVOG electrode with boosted reaction kinetics and suppressed vanadium dissolution. The cathodic and anodic reactions of CVOG are decoupled by electrochemical analysis, conceiving the feasibility of constructing all-V2O5 full battery. In manifesting the solid-state all-V2O5 battery, the robust and elastic SPE exhibits high ionic conductivity, tight/self-adaptable electrolyte-electrode contact, and a low charge-transfer barrier. The resultant solid-state full battery exhibits a high reversible capacity of 158 mAh g-1 at 0.1 C, good capacity retention of over 61% from 0.1 C to 2 C, and remarkable cycling stability of 77% capacity retention after 1000 cycles at 1 C, which surpass other solid-state symmetrical batteries. Hence, this work provides a practice of high-performance solid-state batteries with symmetrical configuration and is constructive for next-generation battery technology.Solid-state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of high-performance bipolar electrodes and compatible solid electrolytes. Herein, a quasi-solid-state all-V2O5 battery constructed by a binder-free carbon fabric-V2O5 nanowires@graphene (CVOG) bipolar electrode and a softly cross-linked polyethylene oxide-based solid polymer electrolyte (SPE) is reported. The synergetic effect of nano-structuring of V2O5, hierarchical conductive network, and graphene wrapping endows the CVOG electrode with boosted reaction kinetics and suppressed vanadium dissolution. The cathodic and anodic reactions of CVOG are decoupled by electrochemical analysis, conceiving the feasibility of constructing all-V2O5 full battery. In manifesting the solid-state all-V2O5 battery, the robust and elastic SPE exhibits high ionic conductivity, tight/self-adaptable electrolyte-electrode contact, and a low charge-transfer barrier. The resultant solid-state full battery exhibits a high reversible capacity of 158 mAh g-1 at 0.1 C, good capacity retention of over 61% from 0.1 C to 2 C, and remarkable cycling stability of 77% capacity retention after 1000 cycles at 1 C, which surpass other solid-state symmetrical batteries. Hence, this work provides a practice of high-performance solid-state batteries with symmetrical configuration and is constructive for next-generation battery technology. Solid‐state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of high‐performance bipolar electrodes and compatible solid electrolytes. Herein, a quasi‐solid‐state all‐V2O5 battery constructed by a binder‐free carbon fabric‐V2O5 nanowires@graphene (CVOG) bipolar electrode and a softly cross‐linked polyethylene oxide‐based solid polymer electrolyte (SPE) is reported. The synergetic effect of nano‐structuring of V2O5, hierarchical conductive network, and graphene wrapping endows the CVOG electrode with boosted reaction kinetics and suppressed vanadium dissolution. The cathodic and anodic reactions of CVOG are decoupled by electrochemical analysis, conceiving the feasibility of constructing all‐V2O5 full battery. In manifesting the solid‐state all‐V2O5 battery, the robust and elastic SPE exhibits high ionic conductivity, tight/self‐adaptable electrolyte‐electrode contact, and a low charge‐transfer barrier. The resultant solid‐state full battery exhibits a high reversible capacity of 158 mAh g−1 at 0.1 C, good capacity retention of over 61% from 0.1 C to 2 C, and remarkable cycling stability of 77% capacity retention after 1000 cycles at 1 C, which surpass other solid‐state symmetrical batteries. Hence, this work provides a practice of high‐performance solid‐state batteries with symmetrical configuration and is constructive for next‐generation battery technology. |
Author | Song, Jiale Wang, Guolong Zhao, Zehua Cui, Xiaoqian Shi, Xiaowei Yang, Zhuofan Li, Yanhuai Song, Zhongxiao Liu, Jiamei Zhang, Yan Wang, Jingqi Li, Lei Wang, Xiao |
Author_xml | – sequence: 1 givenname: Guolong surname: Wang fullname: Wang, Guolong organization: Xi'an Jiaotong University – sequence: 2 givenname: Xiaoqian surname: Cui fullname: Cui, Xiaoqian organization: Xi'an Jiaotong University – sequence: 3 givenname: Zhuofan surname: Yang fullname: Yang, Zhuofan organization: Xi'an Jiaotong University – sequence: 4 givenname: Jiamei surname: Liu fullname: Liu, Jiamei organization: Xi'an Jiaotong University – sequence: 5 givenname: Xiaowei surname: Shi fullname: Shi, Xiaowei organization: Xi'an Jiaotong University – sequence: 6 givenname: Yan surname: Zhang fullname: Zhang, Yan organization: Xi'an Jiaotong University – sequence: 7 givenname: Zehua surname: Zhao fullname: Zhao, Zehua organization: Xi'an Jiaotong University – sequence: 8 givenname: Jingqi surname: Wang fullname: Wang, Jingqi organization: Xi'an Jiaotong University – sequence: 9 givenname: Jiale surname: Song fullname: Song, Jiale organization: Xi'an Jiaotong University – sequence: 10 givenname: Xiao surname: Wang fullname: Wang, Xiao organization: State Power Investment Corporation – sequence: 11 givenname: Yanhuai surname: Li fullname: Li, Yanhuai organization: Xi'an Jiaotong University – sequence: 12 givenname: Zhongxiao surname: Song fullname: Song, Zhongxiao organization: Xi'an Jiaotong University – sequence: 13 givenname: Lei orcidid: 0000-0002-8510-6714 surname: Li fullname: Li, Lei email: l-li@xjtu.edu.cn organization: Xi'an Jiaotong University |
BookMark | eNpdkE1LAzEQhoMo2Favngteetk6mTTJ5liLX7BSpOo1ZNMEtqS7dbOL9OZP8Df6S9yl0oOXed-Bh2F4huS0rEpHyBWFKQXAm7gNYYqADGYyFSdkQAVliUhRnR47hXMyjHEDwCjO5IBMXloTi5-v71UVinWfjWnceB5C199xyce3pmlcvb8gZ96E6C7_ckTe7u9eF49Jtnx4WsyzZIdCiMQIl7O19cxaphRVykqWegqMc9cPLnyOXlq_RpS5gRlPJVfeylRxozBnIzI53N3V1UfrYqO3RbQuBFO6qo0aFXCOUqHo0Ot_6KZq67L7TjMQFCRyYB2lDtRnEdxe7-pia-q9pqB7a7q3po_W9Oo5y44b-wX7WmS_ |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH. |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202304786 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL202304786 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52072297; 51907149 – fundername: China Postdoctoral Science Foundation funderid: 2019M653303 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY EBD EMOBN JG9 L7M SV3 7X8 |
ID | FETCH-LOGICAL-p2666-a6eb3dcf3cc399199c738f10355e035556fb2f7cfd227ba0458759fc7895a92b3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 16:23:13 EDT 2025 Fri Jul 25 11:52:27 EDT 2025 Wed Jan 22 17:20:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2666-a6eb3dcf3cc399199c738f10355e035556fb2f7cfd227ba0458759fc7895a92b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8510-6714 |
PQID | 3061072503 |
PQPubID | 1046358 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2905527926 proquest_journals_3061072503 wiley_primary_10_1002_smll_202304786_SMLL202304786 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2021; 21 2020; 120 2023; 6 2013; 244 2020; 16 2022; 21 2020; 10 2020; 5 2018; 3 2013; 15 2021; 31 2020; 3 2017; 39 2022; 605 2020; 454 2014; 9 2014; 7 2014; 50 2022; 126 2021; 9 2021; 8 2019; 7 2018; 29 2019; 9 2015; 5 2019; 6 2023; 11 2019; 5 2019; 31 2016; 329 2023; 16 2013; 101 2022; 46 2019; 305 2011; 4 2011; 133 2016; 12 2022; 100 2015; 272 2018; 18 2015; 27 2016; 3 2022; 5 2022; 7 2021; 17 2020; 512 2022; 12 2018; 11 2018; 10 2016; 26 2016; 8 2016; 24 2022; 18 2014; 343 2022; 19 |
References_xml | – volume: 272 start-page: 138 year: 2015 publication-title: Solid State Ionics – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 18 year: 2022 publication-title: Small – volume: 343 start-page: 1210 year: 2014 publication-title: Science – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 5 start-page: 229 year: 2020 publication-title: Nat. Rev. Mater. – volume: 329 start-page: 1 year: 2016 publication-title: J. Power Sources – volume: 39 start-page: 151 year: 2017 publication-title: Nano Energy – volume: 7 start-page: 1597 year: 2014 publication-title: Energy Environ. Sci. – volume: 120 start-page: 6820 year: 2020 publication-title: Chem. Rev. – volume: 305 start-page: 101 year: 2019 publication-title: Electrochim. Acta – volume: 16 year: 2020 publication-title: Small – volume: 101 start-page: 59 year: 2013 publication-title: Electrochim. Acta – volume: 29 start-page: 1049 year: 2018 publication-title: Adv. Powder Technol. – volume: 454 year: 2020 publication-title: J. Power Sources – volume: 16 start-page: 222 year: 2023 publication-title: Energy Environ. Sci. – volume: 15 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 1272 year: 2023 publication-title: ACS Appl. Nano Mater. – volume: 3 start-page: 522 year: 2020 publication-title: Matter – volume: 6 start-page: 2013 year: 2019 publication-title: ChemElectroChem – volume: 19 start-page: 2036 year: 2022 publication-title: Int. J. Appl. Ceram. Technol. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 11 start-page: 9029 year: 2023 publication-title: J. Mater. Chem. A – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 26 start-page: 6114 year: 2016 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 459 year: 2018 publication-title: Chem. Rec. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 126 year: 2022 publication-title: J. Phys. Chem. C – volume: 244 start-page: 312 year: 2013 publication-title: J. Power Sources – volume: 21 start-page: 217 year: 2022 publication-title: Nat. Mater. – volume: 605 year: 2022 publication-title: Appl. Surf. Sci. – volume: 4 start-page: 4000 year: 2011 publication-title: Energy Environ. Sci. – volume: 3 start-page: 2791 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 24 start-page: 32 year: 2016 publication-title: Nano Energy – volume: 17 year: 2021 publication-title: Small – volume: 10 year: 2018 publication-title: Nanoscale – volume: 21 start-page: 3527 year: 2021 publication-title: Nano Lett. – volume: 27 start-page: 3473 year: 2015 publication-title: Adv. Mater. – volume: 50 year: 2014 publication-title: Chem. Commun. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 21 year: 2021 publication-title: Mater. Today Energy – volume: 7 start-page: 736 year: 2022 publication-title: Nat. Rev. Mater. – volume: 8 start-page: 866 year: 2021 publication-title: ChemElectroChem – volume: 9 start-page: 1031 year: 2014 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 5 year: 2019 publication-title: Nat. Rev. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 3 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 11 start-page: 30 year: 2018 publication-title: Energy Storage Mater. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 4307 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 31 start-page: 512 year: 2019 publication-title: Chem. Mater. – volume: 3 start-page: 915 year: 2018 publication-title: ACS Energy Lett. – volume: 46 start-page: 8590 year: 2022 publication-title: Int. J. Energy Res. – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 100 year: 2022 publication-title: Nano Energy – volume: 512 year: 2020 publication-title: Appl. Surf. Sci. – volume: 12 start-page: 1082 year: 2016 publication-title: Small |
SSID | ssj0031247 |
Score | 2.4581475 |
Snippet | Solid‐state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of... Solid-state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2304786 |
SubjectTerms | Anodic dissolution Cathodic dissolution charge transport kinetics Chemical reactions Cross-linked polyethylene Dissolution Electrochemical analysis Electrodes Electrolytes Graphene Ion currents Molten salt electrolytes Nanowires Polyethylene oxide Reaction kinetics solid electrolyte Solid electrolytes symmetrical battery V2O5 Vanadium pentoxide |
Title | Quasi‐Solid‐State All‐V2O5 Battery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202304786 https://www.proquest.com/docview/3061072503 https://www.proquest.com/docview/2905527926 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT4MwFMcbs5Me_G2cToOJBy9srFBKj4txWczU6JzZrWkLJIvIFhkHPfkn-Df6l_gebLh51AuUkBJ4ee37Ptp-Ssi5x7TPFHNsFjjM9oSCfrBtIOfhrnF4yINI49rhm1u_N_SuR2y0tIq_5ENUP9ywZRT9NTZwpbPWDzQ0e0lw6KAYNwqQuY0TtlAVPVT8KBeCV7G7CsQsG8FbC2qjQ1ur1Vf05bJKLcJMd4uoxQuWs0uem_lMN837L3bjf75gm2zONajVKZ1mh6xF6S7ZWCIT7pGL-1xl46-Pz8EkGYd4RlFqdZIEyk_0jlklmPNtnwy7V4-XPXu-qYI9hVjs28qH9Dk0sWsMaJO2EIa7Qdx2QHdEeGB-rGnMTRxSyrXCcVTORGx4IJgSVLsHpJZO0uiQWMrw0Kc6DpEKBr6gQS-ImLvaxad4pk4aC6PKecvIJKQokHGC8HLr5Ky6DT6NAxUqjSZ5JqlwEAwnqF8ntLCgnJbsDVlSlqlE28nKdnJw0-9XV0d_qXRM1qHslXMZG6Q2e82jE9AbM31a-NQ3217OWg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGICBN6JQIEgMLIHUieN4REBVIAVBAbFZsZNIFaVFpB1g4ifwG_kl3CVtoIyw5Clbyens-853_g5gz-Pa5xF3bB443PZkhPNgzaDPI1zjiFgEiaa9w81Lv3HnnT_wUTYh7YUp-CHKBTcaGfl8TQOcFqQPv1lDs6cOxQ7ywFHgT8I0lfUm-vyTm5JBykXzlddXQatlE_XWiLfRYYfj7ccQ5k-cmhua-gLo0ScW-SWPB4O-PjBvv9gb__UPizA_hKHWUaE3SzCRdJdh7gc54QrsXw-irP35_tHqddoxnQmXWkedDl7fsytuFdycr6twVz-9PW7Yw7oK9jOaY9-OfPSgY5O6xiA8qUlphBukNQehR0IH7qeapcKkMWNCRxRKFVymRgSSR5Jpdw2mur1usg5WZETsM53GRAyG6qARMshUuNqlXjxTgepIqmo4ODKFXgo6nYi93Arslq9RrSlWEXWT3iBTTDrEDSeZXwGWi1A9F_QbqiBaZopkp0rZqVYzDMu7jb802oGZxm0zVOHZ5cUmzOJzr0htrMJU_2WQbCH86OvtXMG-ANa30nY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2BFlLRIHLoHUie34WAEVS1lLETfLdmKporQVbQ9w4hP4Rr6EcdKGwhEucRLLUTKa8bzJ2G8A9kKqGVXU92jkUy8UCufBssGYhwfG5zGPEu32Dl9esdNGeP5IH8d28Wf8EPkPN2cZ6XztDLwb28Nv0tDec8ulDtK8UcQmYSpkvnDFG47vcgKpAL1XWl4FnZbnmLdGtI0-Ofw5_gfAHIepqZ-pzoMavWG2vOTpYNDXB-btF3njfz5hAeaGILRUybRmESaS9hLMjlETLsP-7UD1mp_vH_VOqxm71qHSUqXVwvMHck1LGTPn6wo0qif3R6fesKqC10VnzDzFMH6OjQ2MQXBSFsLwILJlH4FH4g6UWU0sNzYmhGvlEqmcCmt4JKgSRAerUGh32skalJThMSPaxo4WDJVBI2AQlgc6cE8JTRE2R0KVQ9PoSYxRMORE5BUUYTfvRqV2mQrVTjqDniTCd8xwgrAikFSCspuRb8iMZplIJzuZy07WL2u1_Gr9L4N2YPrmuCprZ1cXGzCDt8NsXeMmFPovg2QLsUdfb6fq9QWFfdEl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-Solid-State+All-V2O5+Battery&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Guolong&rft.au=Cui%2C+Xiaoqian&rft.au=Yang%2C+Zhuofan&rft.au=Liu%2C+Jiamei&rft.date=2024-05-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=20&rft.issue=22&rft.spage=e2304786&rft_id=info:doi/10.1002%2Fsmll.202304786&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |