Quasi‐Solid‐State All‐V2O5 Battery

Solid‐state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of high‐performance bipolar electrodes and compatible solid electrolytes. Herein, a quasi‐solid‐state all‐V2O5 battery constructed by a binder‐free ca...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 22; pp. e2304786 - n/a
Main Authors Wang, Guolong, Cui, Xiaoqian, Yang, Zhuofan, Liu, Jiamei, Shi, Xiaowei, Zhang, Yan, Zhao, Zehua, Wang, Jingqi, Song, Jiale, Wang, Xiao, Li, Yanhuai, Song, Zhongxiao, Li, Lei
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solid‐state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of high‐performance bipolar electrodes and compatible solid electrolytes. Herein, a quasi‐solid‐state all‐V2O5 battery constructed by a binder‐free carbon fabric‐V2O5 nanowires@graphene (CVOG) bipolar electrode and a softly cross‐linked polyethylene oxide‐based solid polymer electrolyte (SPE) is reported. The synergetic effect of nano‐structuring of V2O5, hierarchical conductive network, and graphene wrapping endows the CVOG electrode with boosted reaction kinetics and suppressed vanadium dissolution. The cathodic and anodic reactions of CVOG are decoupled by electrochemical analysis, conceiving the feasibility of constructing all‐V2O5 full battery. In manifesting the solid‐state all‐V2O5 battery, the robust and elastic SPE exhibits high ionic conductivity, tight/self‐adaptable electrolyte‐electrode contact, and a low charge‐transfer barrier. The resultant solid‐state full battery exhibits a high reversible capacity of 158 mAh g−1 at 0.1 C, good capacity retention of over 61% from 0.1 C to 2 C, and remarkable cycling stability of 77% capacity retention after 1000 cycles at 1 C, which surpass other solid‐state symmetrical batteries. Hence, this work provides a practice of high‐performance solid‐state batteries with symmetrical configuration and is constructive for next‐generation battery technology. A quasi‐solid‐state all‐V2O5 battery is demonstrated by using a binder‐free graphene‐wrapped V2O5 nanowires‐carbon fabric bipolar electrode and a cross‐linked polyethylene oxide‐based electrolyte. This battery shows a well‐defined discharge voltage plateau and excellent electrochemical performance in capacity, rate property, and cycling stability over other reported solid‐state symmetrical batteries.
AbstractList Solid‐state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of high‐performance bipolar electrodes and compatible solid electrolytes. Herein, a quasi‐solid‐state all‐V2O5 battery constructed by a binder‐free carbon fabric‐V2O5 nanowires@graphene (CVOG) bipolar electrode and a softly cross‐linked polyethylene oxide‐based solid polymer electrolyte (SPE) is reported. The synergetic effect of nano‐structuring of V2O5, hierarchical conductive network, and graphene wrapping endows the CVOG electrode with boosted reaction kinetics and suppressed vanadium dissolution. The cathodic and anodic reactions of CVOG are decoupled by electrochemical analysis, conceiving the feasibility of constructing all‐V2O5 full battery. In manifesting the solid‐state all‐V2O5 battery, the robust and elastic SPE exhibits high ionic conductivity, tight/self‐adaptable electrolyte‐electrode contact, and a low charge‐transfer barrier. The resultant solid‐state full battery exhibits a high reversible capacity of 158 mAh g−1 at 0.1 C, good capacity retention of over 61% from 0.1 C to 2 C, and remarkable cycling stability of 77% capacity retention after 1000 cycles at 1 C, which surpass other solid‐state symmetrical batteries. Hence, this work provides a practice of high‐performance solid‐state batteries with symmetrical configuration and is constructive for next‐generation battery technology. A quasi‐solid‐state all‐V2O5 battery is demonstrated by using a binder‐free graphene‐wrapped V2O5 nanowires‐carbon fabric bipolar electrode and a cross‐linked polyethylene oxide‐based electrolyte. This battery shows a well‐defined discharge voltage plateau and excellent electrochemical performance in capacity, rate property, and cycling stability over other reported solid‐state symmetrical batteries.
Solid-state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of high-performance bipolar electrodes and compatible solid electrolytes. Herein, a quasi-solid-state all-V2O5 battery constructed by a binder-free carbon fabric-V2O5 nanowires@graphene (CVOG) bipolar electrode and a softly cross-linked polyethylene oxide-based solid polymer electrolyte (SPE) is reported. The synergetic effect of nano-structuring of V2O5, hierarchical conductive network, and graphene wrapping endows the CVOG electrode with boosted reaction kinetics and suppressed vanadium dissolution. The cathodic and anodic reactions of CVOG are decoupled by electrochemical analysis, conceiving the feasibility of constructing all-V2O5 full battery. In manifesting the solid-state all-V2O5 battery, the robust and elastic SPE exhibits high ionic conductivity, tight/self-adaptable electrolyte-electrode contact, and a low charge-transfer barrier. The resultant solid-state full battery exhibits a high reversible capacity of 158 mAh g-1 at 0.1 C, good capacity retention of over 61% from 0.1 C to 2 C, and remarkable cycling stability of 77% capacity retention after 1000 cycles at 1 C, which surpass other solid-state symmetrical batteries. Hence, this work provides a practice of high-performance solid-state batteries with symmetrical configuration and is constructive for next-generation battery technology.Solid-state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of high-performance bipolar electrodes and compatible solid electrolytes. Herein, a quasi-solid-state all-V2O5 battery constructed by a binder-free carbon fabric-V2O5 nanowires@graphene (CVOG) bipolar electrode and a softly cross-linked polyethylene oxide-based solid polymer electrolyte (SPE) is reported. The synergetic effect of nano-structuring of V2O5, hierarchical conductive network, and graphene wrapping endows the CVOG electrode with boosted reaction kinetics and suppressed vanadium dissolution. The cathodic and anodic reactions of CVOG are decoupled by electrochemical analysis, conceiving the feasibility of constructing all-V2O5 full battery. In manifesting the solid-state all-V2O5 battery, the robust and elastic SPE exhibits high ionic conductivity, tight/self-adaptable electrolyte-electrode contact, and a low charge-transfer barrier. The resultant solid-state full battery exhibits a high reversible capacity of 158 mAh g-1 at 0.1 C, good capacity retention of over 61% from 0.1 C to 2 C, and remarkable cycling stability of 77% capacity retention after 1000 cycles at 1 C, which surpass other solid-state symmetrical batteries. Hence, this work provides a practice of high-performance solid-state batteries with symmetrical configuration and is constructive for next-generation battery technology.
Solid‐state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of high‐performance bipolar electrodes and compatible solid electrolytes. Herein, a quasi‐solid‐state all‐V2O5 battery constructed by a binder‐free carbon fabric‐V2O5 nanowires@graphene (CVOG) bipolar electrode and a softly cross‐linked polyethylene oxide‐based solid polymer electrolyte (SPE) is reported. The synergetic effect of nano‐structuring of V2O5, hierarchical conductive network, and graphene wrapping endows the CVOG electrode with boosted reaction kinetics and suppressed vanadium dissolution. The cathodic and anodic reactions of CVOG are decoupled by electrochemical analysis, conceiving the feasibility of constructing all‐V2O5 full battery. In manifesting the solid‐state all‐V2O5 battery, the robust and elastic SPE exhibits high ionic conductivity, tight/self‐adaptable electrolyte‐electrode contact, and a low charge‐transfer barrier. The resultant solid‐state full battery exhibits a high reversible capacity of 158 mAh g−1 at 0.1 C, good capacity retention of over 61% from 0.1 C to 2 C, and remarkable cycling stability of 77% capacity retention after 1000 cycles at 1 C, which surpass other solid‐state symmetrical batteries. Hence, this work provides a practice of high‐performance solid‐state batteries with symmetrical configuration and is constructive for next‐generation battery technology.
Author Song, Jiale
Wang, Guolong
Zhao, Zehua
Cui, Xiaoqian
Shi, Xiaowei
Yang, Zhuofan
Li, Yanhuai
Song, Zhongxiao
Liu, Jiamei
Zhang, Yan
Wang, Jingqi
Li, Lei
Wang, Xiao
Author_xml – sequence: 1
  givenname: Guolong
  surname: Wang
  fullname: Wang, Guolong
  organization: Xi'an Jiaotong University
– sequence: 2
  givenname: Xiaoqian
  surname: Cui
  fullname: Cui, Xiaoqian
  organization: Xi'an Jiaotong University
– sequence: 3
  givenname: Zhuofan
  surname: Yang
  fullname: Yang, Zhuofan
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Jiamei
  surname: Liu
  fullname: Liu, Jiamei
  organization: Xi'an Jiaotong University
– sequence: 5
  givenname: Xiaowei
  surname: Shi
  fullname: Shi, Xiaowei
  organization: Xi'an Jiaotong University
– sequence: 6
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  organization: Xi'an Jiaotong University
– sequence: 7
  givenname: Zehua
  surname: Zhao
  fullname: Zhao, Zehua
  organization: Xi'an Jiaotong University
– sequence: 8
  givenname: Jingqi
  surname: Wang
  fullname: Wang, Jingqi
  organization: Xi'an Jiaotong University
– sequence: 9
  givenname: Jiale
  surname: Song
  fullname: Song, Jiale
  organization: Xi'an Jiaotong University
– sequence: 10
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
  organization: State Power Investment Corporation
– sequence: 11
  givenname: Yanhuai
  surname: Li
  fullname: Li, Yanhuai
  organization: Xi'an Jiaotong University
– sequence: 12
  givenname: Zhongxiao
  surname: Song
  fullname: Song, Zhongxiao
  organization: Xi'an Jiaotong University
– sequence: 13
  givenname: Lei
  orcidid: 0000-0002-8510-6714
  surname: Li
  fullname: Li, Lei
  email: l-li@xjtu.edu.cn
  organization: Xi'an Jiaotong University
BookMark eNpdkE1LAzEQhoMo2Favngteetk6mTTJ5liLX7BSpOo1ZNMEtqS7dbOL9OZP8Df6S9yl0oOXed-Bh2F4huS0rEpHyBWFKQXAm7gNYYqADGYyFSdkQAVliUhRnR47hXMyjHEDwCjO5IBMXloTi5-v71UVinWfjWnceB5C199xyce3pmlcvb8gZ96E6C7_ckTe7u9eF49Jtnx4WsyzZIdCiMQIl7O19cxaphRVykqWegqMc9cPLnyOXlq_RpS5gRlPJVfeylRxozBnIzI53N3V1UfrYqO3RbQuBFO6qo0aFXCOUqHo0Ot_6KZq67L7TjMQFCRyYB2lDtRnEdxe7-pia-q9pqB7a7q3po_W9Oo5y44b-wX7WmS_
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH.
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202304786
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202304786
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52072297; 51907149
– fundername: China Postdoctoral Science Foundation
  funderid: 2019M653303
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
EBD
EMOBN
JG9
L7M
SV3
7X8
ID FETCH-LOGICAL-p2666-a6eb3dcf3cc399199c738f10355e035556fb2f7cfd227ba0458759fc7895a92b3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 16:23:13 EDT 2025
Fri Jul 25 11:52:27 EDT 2025
Wed Jan 22 17:20:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2666-a6eb3dcf3cc399199c738f10355e035556fb2f7cfd227ba0458759fc7895a92b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8510-6714
PQID 3061072503
PQPubID 1046358
PageCount 12
ParticipantIDs proquest_miscellaneous_2905527926
proquest_journals_3061072503
wiley_primary_10_1002_smll_202304786_SMLL202304786
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2021; 21
2020; 120
2023; 6
2013; 244
2020; 16
2022; 21
2020; 10
2020; 5
2018; 3
2013; 15
2021; 31
2020; 3
2017; 39
2022; 605
2020; 454
2014; 9
2014; 7
2014; 50
2022; 126
2021; 9
2021; 8
2019; 7
2018; 29
2019; 9
2015; 5
2019; 6
2023; 11
2019; 5
2019; 31
2016; 329
2023; 16
2013; 101
2022; 46
2019; 305
2011; 4
2011; 133
2016; 12
2022; 100
2015; 272
2018; 18
2015; 27
2016; 3
2022; 5
2022; 7
2021; 17
2020; 512
2022; 12
2018; 11
2018; 10
2016; 26
2016; 8
2016; 24
2022; 18
2014; 343
2022; 19
References_xml – volume: 272
  start-page: 138
  year: 2015
  publication-title: Solid State Ionics
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 343
  start-page: 1210
  year: 2014
  publication-title: Science
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 5
  start-page: 229
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 329
  start-page: 1
  year: 2016
  publication-title: J. Power Sources
– volume: 39
  start-page: 151
  year: 2017
  publication-title: Nano Energy
– volume: 7
  start-page: 1597
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 120
  start-page: 6820
  year: 2020
  publication-title: Chem. Rev.
– volume: 305
  start-page: 101
  year: 2019
  publication-title: Electrochim. Acta
– volume: 16
  year: 2020
  publication-title: Small
– volume: 101
  start-page: 59
  year: 2013
  publication-title: Electrochim. Acta
– volume: 29
  start-page: 1049
  year: 2018
  publication-title: Adv. Powder Technol.
– volume: 454
  year: 2020
  publication-title: J. Power Sources
– volume: 16
  start-page: 222
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 15
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 1272
  year: 2023
  publication-title: ACS Appl. Nano Mater.
– volume: 3
  start-page: 522
  year: 2020
  publication-title: Matter
– volume: 6
  start-page: 2013
  year: 2019
  publication-title: ChemElectroChem
– volume: 19
  start-page: 2036
  year: 2022
  publication-title: Int. J. Appl. Ceram. Technol.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 9029
  year: 2023
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 6114
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 459
  year: 2018
  publication-title: Chem. Rec.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 126
  year: 2022
  publication-title: J. Phys. Chem. C
– volume: 244
  start-page: 312
  year: 2013
  publication-title: J. Power Sources
– volume: 21
  start-page: 217
  year: 2022
  publication-title: Nat. Mater.
– volume: 605
  year: 2022
  publication-title: Appl. Surf. Sci.
– volume: 4
  start-page: 4000
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 2791
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 24
  start-page: 32
  year: 2016
  publication-title: Nano Energy
– volume: 17
  year: 2021
  publication-title: Small
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 21
  start-page: 3527
  year: 2021
  publication-title: Nano Lett.
– volume: 27
  start-page: 3473
  year: 2015
  publication-title: Adv. Mater.
– volume: 50
  year: 2014
  publication-title: Chem. Commun.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 21
  year: 2021
  publication-title: Mater. Today Energy
– volume: 7
  start-page: 736
  year: 2022
  publication-title: Nat. Rev. Mater.
– volume: 8
  start-page: 866
  year: 2021
  publication-title: ChemElectroChem
– volume: 9
  start-page: 1031
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 5
  year: 2019
  publication-title: Nat. Rev. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 11
  start-page: 30
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 4307
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 31
  start-page: 512
  year: 2019
  publication-title: Chem. Mater.
– volume: 3
  start-page: 915
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 46
  start-page: 8590
  year: 2022
  publication-title: Int. J. Energy Res.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 100
  year: 2022
  publication-title: Nano Energy
– volume: 512
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 12
  start-page: 1082
  year: 2016
  publication-title: Small
SSID ssj0031247
Score 2.4581475
Snippet Solid‐state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of...
Solid-state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2304786
SubjectTerms Anodic dissolution
Cathodic dissolution
charge transport kinetics
Chemical reactions
Cross-linked polyethylene
Dissolution
Electrochemical analysis
Electrodes
Electrolytes
Graphene
Ion currents
Molten salt electrolytes
Nanowires
Polyethylene oxide
Reaction kinetics
solid electrolyte
Solid electrolytes
symmetrical battery
V2O5
Vanadium pentoxide
Title Quasi‐Solid‐State All‐V2O5 Battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202304786
https://www.proquest.com/docview/3061072503
https://www.proquest.com/docview/2905527926
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT4MwFMcbs5Me_G2cToOJBy9srFBKj4txWczU6JzZrWkLJIvIFhkHPfkn-Df6l_gebLh51AuUkBJ4ee37Ptp-Ssi5x7TPFHNsFjjM9oSCfrBtIOfhrnF4yINI49rhm1u_N_SuR2y0tIq_5ENUP9ywZRT9NTZwpbPWDzQ0e0lw6KAYNwqQuY0TtlAVPVT8KBeCV7G7CsQsG8FbC2qjQ1ur1Vf05bJKLcJMd4uoxQuWs0uem_lMN837L3bjf75gm2zONajVKZ1mh6xF6S7ZWCIT7pGL-1xl46-Pz8EkGYd4RlFqdZIEyk_0jlklmPNtnwy7V4-XPXu-qYI9hVjs28qH9Dk0sWsMaJO2EIa7Qdx2QHdEeGB-rGnMTRxSyrXCcVTORGx4IJgSVLsHpJZO0uiQWMrw0Kc6DpEKBr6gQS-ImLvaxad4pk4aC6PKecvIJKQokHGC8HLr5Ky6DT6NAxUqjSZ5JqlwEAwnqF8ntLCgnJbsDVlSlqlE28nKdnJw0-9XV0d_qXRM1qHslXMZG6Q2e82jE9AbM31a-NQ3217OWg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGICBN6JQIEgMLIHUieN4REBVIAVBAbFZsZNIFaVFpB1g4ifwG_kl3CVtoIyw5Clbyens-853_g5gz-Pa5xF3bB443PZkhPNgzaDPI1zjiFgEiaa9w81Lv3HnnT_wUTYh7YUp-CHKBTcaGfl8TQOcFqQPv1lDs6cOxQ7ywFHgT8I0lfUm-vyTm5JBykXzlddXQatlE_XWiLfRYYfj7ccQ5k-cmhua-gLo0ScW-SWPB4O-PjBvv9gb__UPizA_hKHWUaE3SzCRdJdh7gc54QrsXw-irP35_tHqddoxnQmXWkedDl7fsytuFdycr6twVz-9PW7Yw7oK9jOaY9-OfPSgY5O6xiA8qUlphBukNQehR0IH7qeapcKkMWNCRxRKFVymRgSSR5Jpdw2mur1usg5WZETsM53GRAyG6qARMshUuNqlXjxTgepIqmo4ODKFXgo6nYi93Arslq9RrSlWEXWT3iBTTDrEDSeZXwGWi1A9F_QbqiBaZopkp0rZqVYzDMu7jb802oGZxm0zVOHZ5cUmzOJzr0htrMJU_2WQbCH86OvtXMG-ANa30nY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2BFlLRIHLoHUie34WAEVS1lLETfLdmKporQVbQ9w4hP4Rr6EcdKGwhEucRLLUTKa8bzJ2G8A9kKqGVXU92jkUy8UCufBssGYhwfG5zGPEu32Dl9esdNGeP5IH8d28Wf8EPkPN2cZ6XztDLwb28Nv0tDec8ulDtK8UcQmYSpkvnDFG47vcgKpAL1XWl4FnZbnmLdGtI0-Ofw5_gfAHIepqZ-pzoMavWG2vOTpYNDXB-btF3njfz5hAeaGILRUybRmESaS9hLMjlETLsP-7UD1mp_vH_VOqxm71qHSUqXVwvMHck1LGTPn6wo0qif3R6fesKqC10VnzDzFMH6OjQ2MQXBSFsLwILJlH4FH4g6UWU0sNzYmhGvlEqmcCmt4JKgSRAerUGh32skalJThMSPaxo4WDJVBI2AQlgc6cE8JTRE2R0KVQ9PoSYxRMORE5BUUYTfvRqV2mQrVTjqDniTCd8xwgrAikFSCspuRb8iMZplIJzuZy07WL2u1_Gr9L4N2YPrmuCprZ1cXGzCDt8NsXeMmFPovg2QLsUdfb6fq9QWFfdEl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-Solid-State+All-V2O5+Battery&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Guolong&rft.au=Cui%2C+Xiaoqian&rft.au=Yang%2C+Zhuofan&rft.au=Liu%2C+Jiamei&rft.date=2024-05-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=20&rft.issue=22&rft.spage=e2304786&rft_id=info:doi/10.1002%2Fsmll.202304786&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon