Highly Dispersed Ru–Co Nanoparticles Interfaced With Nitrogen‐Doped Carbon Polyhedron for High Efficiency Reversible Li–O2 Battery

The lithium–oxygen (Li–O2) battery with high energy density of 3860 Wh kg−1 represents one of the most promising new secondary batteries for future electric vehicles and mobile electronic devices. However, slow oxygen reduction/oxygen evolution (ORR/OER) reaction efficiency and unstable cycling perf...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 48; pp. e2204836 - n/a
Main Authors Tong, Zhen, Lv, Chao, Zhou, Yao, Zhang, Peng‐Fang, Xiang, Cheng‐Cheng, Li, Zhen‐Gang, Wang, Zhen, Liu, Zong‐Kui, Li, Jun‐Tao, Sun, Shi‐Gang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The lithium–oxygen (Li–O2) battery with high energy density of 3860 Wh kg−1 represents one of the most promising new secondary batteries for future electric vehicles and mobile electronic devices. However, slow oxygen reduction/oxygen evolution (ORR/OER) reaction efficiency and unstable cycling performance restrain the practical applications of the Li–O2 battery. Herein, Ru‐modified nitrogen‐doped porous carbon‐encapsulated Co nanoparticles (Ru/Co@CoNx–C) are synthesized through reduction of Ru on metal–organic framework (MOFs) pyrolyzed derivatives strategies. Porous carbon polyhedra provide channels for reactive species and stable structure ensures the cyclic stability of the catalyst; abundant Co–Nx sites and high specific surface area (353 m2 g−1) provide more catalytically active sites and deposition sites for reaction products. Theoretical calculations further verify that Ru/Co@CoNx–C can regulate the growth of Li2O2 to improve reversibility of Li–O2 batteries. Li–O2 batteries with Ru/Co@CoNx–C as cathode catalyst achieve small voltage gaps of 1.08 V, exhibit excellent cycle stability (205 cycles), and deliver high discharge specific capacity (17050 mAh g−1). Furthermore, pouch‐type Li–O2 batteries that maintain stable electrochemical performance output even under conditions of bending deformation and corner cutting are successfully assembled. This study demonstrates Ru/Co@CoNx–C catalyst's great application potential in Li–O2 batteries. A composite catalyst of highly dispersed Ru–Co nanoparticles and nitrogen‐doped carbon polyhedron is prepared as Li–O2 cathode. The stable porous carbon structure, uniformly dispersed, and abundant Co–Nx active sites, and the presence of the ultrafine Ru nanoparticles enables efficient and reversible formation and decomposition of Li2O2 with low overpotential and high discharge specific capacity.
AbstractList The lithium–oxygen (Li–O2) battery with high energy density of 3860 Wh kg−1 represents one of the most promising new secondary batteries for future electric vehicles and mobile electronic devices. However, slow oxygen reduction/oxygen evolution (ORR/OER) reaction efficiency and unstable cycling performance restrain the practical applications of the Li–O2 battery. Herein, Ru‐modified nitrogen‐doped porous carbon‐encapsulated Co nanoparticles (Ru/Co@CoNx–C) are synthesized through reduction of Ru on metal–organic framework (MOFs) pyrolyzed derivatives strategies. Porous carbon polyhedra provide channels for reactive species and stable structure ensures the cyclic stability of the catalyst; abundant Co–Nx sites and high specific surface area (353 m2 g−1) provide more catalytically active sites and deposition sites for reaction products. Theoretical calculations further verify that Ru/Co@CoNx–C can regulate the growth of Li2O2 to improve reversibility of Li–O2 batteries. Li–O2 batteries with Ru/Co@CoNx–C as cathode catalyst achieve small voltage gaps of 1.08 V, exhibit excellent cycle stability (205 cycles), and deliver high discharge specific capacity (17050 mAh g−1). Furthermore, pouch‐type Li–O2 batteries that maintain stable electrochemical performance output even under conditions of bending deformation and corner cutting are successfully assembled. This study demonstrates Ru/Co@CoNx–C catalyst's great application potential in Li–O2 batteries. A composite catalyst of highly dispersed Ru–Co nanoparticles and nitrogen‐doped carbon polyhedron is prepared as Li–O2 cathode. The stable porous carbon structure, uniformly dispersed, and abundant Co–Nx active sites, and the presence of the ultrafine Ru nanoparticles enables efficient and reversible formation and decomposition of Li2O2 with low overpotential and high discharge specific capacity.
The lithium–oxygen (Li–O2) battery with high energy density of 3860 Wh kg−1 represents one of the most promising new secondary batteries for future electric vehicles and mobile electronic devices. However, slow oxygen reduction/oxygen evolution (ORR/OER) reaction efficiency and unstable cycling performance restrain the practical applications of the Li–O2 battery. Herein, Ru‐modified nitrogen‐doped porous carbon‐encapsulated Co nanoparticles (Ru/Co@CoNx–C) are synthesized through reduction of Ru on metal–organic framework (MOFs) pyrolyzed derivatives strategies. Porous carbon polyhedra provide channels for reactive species and stable structure ensures the cyclic stability of the catalyst; abundant Co–Nx sites and high specific surface area (353 m2 g−1) provide more catalytically active sites and deposition sites for reaction products. Theoretical calculations further verify that Ru/Co@CoNx–C can regulate the growth of Li2O2 to improve reversibility of Li–O2 batteries. Li–O2 batteries with Ru/Co@CoNx–C as cathode catalyst achieve small voltage gaps of 1.08 V, exhibit excellent cycle stability (205 cycles), and deliver high discharge specific capacity (17050 mAh g−1). Furthermore, pouch‐type Li–O2 batteries that maintain stable electrochemical performance output even under conditions of bending deformation and corner cutting are successfully assembled. This study demonstrates Ru/Co@CoNx–C catalyst's great application potential in Li–O2 batteries.
The lithium-oxygen (Li-O2 ) battery with high energy density of 3860 Wh kg-1 represents one of the most promising new secondary batteries for future electric vehicles and mobile electronic devices. However, slow oxygen reduction/oxygen evolution (ORR/OER) reaction efficiency and unstable cycling performance restrain the practical applications of the Li-O2 battery. Herein, Ru-modified nitrogen-doped porous carbon-encapsulated Co nanoparticles (Ru/Co@CoNx -C) are synthesized through reduction of Ru on metal-organic framework (MOFs) pyrolyzed derivatives strategies. Porous carbon polyhedra provide channels for reactive species and stable structure ensures the cyclic stability of the catalyst; abundant Co-Nx sites and high specific surface area (353 m2 g-1 ) provide more catalytically active sites and deposition sites for reaction products. Theoretical calculations further verify that Ru/Co@CoNx -C can regulate the growth of Li2 O2 to improve reversibility of Li-O2 batteries. Li-O2 batteries with Ru/Co@CoNx -C as cathode catalyst achieve small voltage gaps of 1.08 V, exhibit excellent cycle stability (205 cycles), and deliver high discharge specific capacity (17050 mAh g-1 ). Furthermore, pouch-type Li-O2 batteries that maintain stable electrochemical performance output even under conditions of bending deformation and corner cutting are successfully assembled. This study demonstrates Ru/Co@CoNx -C catalyst's great application potential in Li-O2 batteries.The lithium-oxygen (Li-O2 ) battery with high energy density of 3860 Wh kg-1 represents one of the most promising new secondary batteries for future electric vehicles and mobile electronic devices. However, slow oxygen reduction/oxygen evolution (ORR/OER) reaction efficiency and unstable cycling performance restrain the practical applications of the Li-O2 battery. Herein, Ru-modified nitrogen-doped porous carbon-encapsulated Co nanoparticles (Ru/Co@CoNx -C) are synthesized through reduction of Ru on metal-organic framework (MOFs) pyrolyzed derivatives strategies. Porous carbon polyhedra provide channels for reactive species and stable structure ensures the cyclic stability of the catalyst; abundant Co-Nx sites and high specific surface area (353 m2 g-1 ) provide more catalytically active sites and deposition sites for reaction products. Theoretical calculations further verify that Ru/Co@CoNx -C can regulate the growth of Li2 O2 to improve reversibility of Li-O2 batteries. Li-O2 batteries with Ru/Co@CoNx -C as cathode catalyst achieve small voltage gaps of 1.08 V, exhibit excellent cycle stability (205 cycles), and deliver high discharge specific capacity (17050 mAh g-1 ). Furthermore, pouch-type Li-O2 batteries that maintain stable electrochemical performance output even under conditions of bending deformation and corner cutting are successfully assembled. This study demonstrates Ru/Co@CoNx -C catalyst's great application potential in Li-O2 batteries.
Author Zhou, Yao
Lv, Chao
Liu, Zong‐Kui
Zhang, Peng‐Fang
Tong, Zhen
Wang, Zhen
Li, Jun‐Tao
Sun, Shi‐Gang
Li, Zhen‐Gang
Xiang, Cheng‐Cheng
Author_xml – sequence: 1
  givenname: Zhen
  surname: Tong
  fullname: Tong, Zhen
  organization: Xiamen University
– sequence: 2
  givenname: Chao
  surname: Lv
  fullname: Lv, Chao
  organization: Xiamen University
– sequence: 3
  givenname: Yao
  surname: Zhou
  fullname: Zhou, Yao
  organization: Xiamen University
– sequence: 4
  givenname: Peng‐Fang
  surname: Zhang
  fullname: Zhang, Peng‐Fang
  organization: Xiamen University
– sequence: 5
  givenname: Cheng‐Cheng
  surname: Xiang
  fullname: Xiang, Cheng‐Cheng
  organization: Xiamen University
– sequence: 6
  givenname: Zhen‐Gang
  surname: Li
  fullname: Li, Zhen‐Gang
  organization: Xiamen University
– sequence: 7
  givenname: Zhen
  surname: Wang
  fullname: Wang, Zhen
  organization: Xiamen University
– sequence: 8
  givenname: Zong‐Kui
  surname: Liu
  fullname: Liu, Zong‐Kui
  organization: Xiamen University
– sequence: 9
  givenname: Jun‐Tao
  orcidid: 0000-0002-9650-6385
  surname: Li
  fullname: Li, Jun‐Tao
  email: jtli@xmu.edu.cn
  organization: Xiamen University
– sequence: 10
  givenname: Shi‐Gang
  orcidid: 0000-0003-2327-4090
  surname: Sun
  fullname: Sun, Shi‐Gang
  organization: Xiamen University
BookMark eNpdkbtOwzAUhi0EEteV2RILS8GxUzsZoRSoFC7iIsbISY6pkWsHOwVlY2RE4g37JLgCdWA6F336zpH-bbRunQWE9hNylBBCj8PMmCNKKCVpxvga2kp4wgY8o_n6qk_IJtoO4YUQltBUbKHPS_08NT0-06EFH6DBd_PFx_fI4WtpXSt9p2sDAU9sB17JOgJPupvia9159wx28fF15tq4HUlfOYtvnemn0PjYKufx0o7HSulag617fAdv8YquDOBCxzs3FJ_KLqr7XbShpAmw91d30OP5-GF0OShuLiajk2LQUs75gOcZb6qGDEGKXFGpqlwyOuSMNTSFSqRcDYFTnjNIWVxykdU1bZiQkitRZ2wHHf56W-9e5xC6cqZDDcZIC24eSiqibUgFX6IH_9AXN_c2fhepaE8FzUSk8l_qXRvoy9brmfR9mZBymUq5TKVcpVLeXxXFamI_YeGIzQ
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202204836
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202204836
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21875197
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-p2666-6986dbd05ea79f2afb9a325633d24eb746f5e62693e4333d678cc2d37aa6f7c83
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 12:01:50 EDT 2025
Sat Jul 19 20:10:31 EDT 2025
Wed Jan 22 16:25:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2666-6986dbd05ea79f2afb9a325633d24eb746f5e62693e4333d678cc2d37aa6f7c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2327-4090
0000-0002-9650-6385
PQID 2743347287
PQPubID 1046358
PageCount 12
ParticipantIDs proquest_miscellaneous_2725652768
proquest_journals_2743347287
wiley_primary_10_1002_smll_202204836_SMLL202204836
PublicationCentury 2000
PublicationDate December 1, 2022
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 1, 2022
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 9
2021; 5
2006; 97
2021; 89
2019; 6
2013; 2
2019; 31
2021; 189
2020; 142
2019; 10
2019; 12
2019; 58
2022; 91
2019; 17
2014; 26
2016; 30
2020; 14
2020; 11
2021; 122
2011; 4
2019; 141
1996; 54
1996; 77
2018; 6
2021; 16
2018; 8
2018; 2
2021; 12
2021; 11
2019; 64
2020; 30
1999; 59
2017; 12
2017; 56
2020; 49
2020; 579
2021; 133
2018; 11
2021; 41
1994; 50
2012; 337
2016; 26
2012; 5
2016; 8
2019; 131
1994; 32
1996; 6
References_xml – volume: 26
  start-page: 3258
  year: 2014
  publication-title: Adv. Mater.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 15
  year: 1996
  publication-title: Comp. Mater. Sci.
– volume: 91
  year: 2022
  publication-title: Nano Energy
– volume: 89
  year: 2021
  publication-title: Nano Energy
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 141
  start-page: 6900
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 301
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 2236
  year: 2018
  publication-title: ACS Catal.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 337
  start-page: 563
  year: 2012
  publication-title: Science
– volume: 64
  year: 2019
  publication-title: Nano Energy
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 7450
  year: 2021
  publication-title: ACS Catal.
– volume: 16
  start-page: 1523
  year: 2021
  publication-title: ACS Nano
– volume: 2
  start-page: 88
  year: 2013
  publication-title: Nano Energy
– volume: 131
  year: 2019
  publication-title: Angew. Chem.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 26
  start-page: 7725
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1640
  year: 2019
  publication-title: ACS Catal.
– volume: 30
  start-page: 128
  year: 2016
  publication-title: Angew. Chem.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 579
  start-page: 448
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 32
  start-page: 1523
  year: 1994
  publication-title: Carbon
– volume: 2
  start-page: 2235
  year: 2018
  publication-title: Joule
– volume: 12
  start-page: 250
  year: 2019
  publication-title: Environ. Sci.
– volume: 122
  year: 2021
  publication-title: Electrochem. Commun.
– volume: 12
  year: 2021
  publication-title: Adv Funct Mater
– volume: 189
  start-page: 404
  year: 2021
  publication-title: Carbon
– volume: 6
  start-page: 715
  year: 2019
  publication-title: Inorg. Chem. Front.
– volume: 133
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 2952
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 17
  start-page: 374
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 141
  start-page: 9623
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 1576
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  year: 2018
  publication-title: J Mater Chem
– volume: 41
  start-page: 404
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 97
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 918
  year: 2021
  publication-title: Energy Environ. Mater.
– volume: 12
  start-page: 535
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 1204
  year: 2018
  publication-title: Environ. Sci.
– volume: 11
  start-page: 2191
  year: 2020
  publication-title: Nat. Commun.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 7936
  year: 2012
  publication-title: Environ Sci
SSID ssj0031247
Score 2.4747658
Snippet The lithium–oxygen (Li–O2) battery with high energy density of 3860 Wh kg−1 represents one of the most promising new secondary batteries for future electric...
The lithium–oxygen (Li–O2) battery with high energy density of 3860 Wh kg−1 represents one of the most promising new secondary batteries for future electric...
The lithium-oxygen (Li-O2 ) battery with high energy density of 3860 Wh kg-1 represents one of the most promising new secondary batteries for future electric...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2204836
SubjectTerms Carbon
Catalysts
cathode catalysts
Cobalt
Co–N x groups
Electric vehicles
Electrochemical analysis
Electronic devices
Lithium
Li–O 2 batteries
Metal-organic frameworks
metal–organic framework (MOFs)
Nanoparticles
Nanotechnology
Nitrogen
Oxygen evolution reactions
Polyhedra
Reaction products
Reduction (metal working)
Ru nanoparticles
Ruthenium
Storage batteries
Title Highly Dispersed Ru–Co Nanoparticles Interfaced With Nitrogen‐Doped Carbon Polyhedron for High Efficiency Reversible Li–O2 Battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202204836
https://www.proquest.com/docview/2743347287
https://www.proquest.com/docview/2725652768
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EeUlI7EGWtt16hEVEELloQKCLbJjW1SUpGrToUyMjEj8Q34Jd0kbCiNsjmPHjs7n-84-fyZkX5qal-DuBIpVTSCcqAUg5mpgwJSA0L1oxHh2-OJSnt2J84f6w9Qp_oIfolxwQ83I52tUcG0Gh9-koYPnLm4dMGSe5ci5jQFbiIraJX8UB-OV364CNitA4q0Ja2OVHf6s_gNfTqPU3MycLhI96WARXfJ0MMzMQfzyi7vxP3-wRBbGGJQeFYNmmcy4ZIXMTzETrpI3jP_ojuhxB5nEB87S9vDz9aOZUpiOwc8eh9PRfEHR6xgK3HeyR3rZyfopjMnP1_fjtAe5Td03aUKv0-7o0dk-JAElU_w6PcnZK_DoJ227PDrEdB1tdaCdK0YL4s_RGrk7PbltngXjSxuCHth6GUjVkNbYat3pUHmmvVGaA67i3DLhTCikrzvwohR3gkMmGMs4ZpaHWksfxg2-TmaTNHEbhNaMtQBwrFImBrNplKj5BtdWecmYlrJCtidCi8aaN4jAy-ZchOAIVshe-Rp0BjdCdOLSIZaBDtUZeFoVwnIJRb2C2yMqWJxZhLKJStlENxetVvm0-ZdKW2QO00UkzDaZzfpDtwN4JjO7-Zj9AqAb8bw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED60ydBmSNIX4jxaFuiqxCZpyhwDJ4Hbym7hJmg3gRRJxKgjGbY8OFPGjAH6D_NLeqRsNenYbhJFShSOx7vvePwI8EHolhMIdyJJmzrilrciFHMz0mhKUOiOdzK_d7g_EL0L_ulHe5VN6PfCVPwQdcDNa0aYr72C-4D00R_W0NnV2K8dUE89y8RTWPfHegdUNawZpBiar3C-ClqtyFNvrXgbm_TocftHHuZDPzUYmrMt0KsuVvklPw_npT7Mrv9ib_yvf9iGzaUbSo6rcfMCntj8JWw8ICd8Bbc-BWS8ICcjTyY-s4YM5_c3v7oFwRkZofYyo46EmKJTGVb4PiovyWBUTgsclvc3dyfFBEu7aqqLnHwtxotLa6Z4iY4y8W8np4HAwu_-JEMbEkT02JJkhN_5QknF_bl4DRdnp-fdXrQ8tyGaoLkXkZAdYbRptq2KpaPKaakYulaMGcqtjrlwbYtASjLLGRaivcwyalislHBx1mFvYC0vcrsDpKWNQR_HSKkztJxa8pbrMGWkE5QqIRqwv5JaulS-WYpAmzEeIxZswPv6MaqNXwtRuS3mvg52qE0RbDWABhGlk4reI62InGnqZZPWskm_9ZOkvtv9l0bv4FnvvJ-kycfB5z147surxJh9WCunc3uA7k2p34YB_BuzevXX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9iIE3jAPtCKx-bJ-0aSG3XiY-opYKtdKgbGrfIjm1RrSRVmx7KiSPHSfsP-Ut4Ttqs7LjdEsdOHL33_H7Pfv4Z4JPQTScw3AkkDXXALW8GKOYw0OhKUOiOx6nfO3zeF6eX_PNV62plF3_FD1FPuHnLKMdrb-Bj447-kIZOb0Z-6YB65lkmnsEGF2Hs9bozqAmkGHqv8ngVdFqBZ95a0jaG9Ohp-ycAcxWmln6muw1q2cMqveTn4azQh-ntX-SN__MLL2FrAULJcaU1r2DNZq9hc4Wa8A3c-wSQ0Zx0hp5KfGoNGcwe7n63c4LjMQbai3w6Us4oOpVihR_D4pr0h8UkR6V8uPvVycdY2lYTnWfkIh_Nr62Z4CXCZOLfTk5K-gq_95MMbJkeokeW9Ib4na-UVMyf87dw2T353j4NFqc2BGN09iIQMhZGm7BlVSQdVU5LxRBYMWYotzriwrUshlGSWc6wEL1lmlLDIqWEi9KY7cB6lmf2HZCmNgYRjpFSp-g3teRNFzNlpBOUKiEasL8UWrIwvWmCYTZjPMJIsAEf68doNH4lRGU2n_k62KEWxVCrAbSUUDKuyD2SisaZJl42SS2b5Nt5r1ff7f5Low_w_KLTTXpn_S978MIXV1kx-7BeTGb2ALFNod-X6vsI_HL0jw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Dispersed+Ru%E2%80%93Co+Nanoparticles+Interfaced+With+Nitrogen%E2%80%90Doped+Carbon+Polyhedron+for+High+Efficiency+Reversible+Li%E2%80%93O2+Battery&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Tong%2C+Zhen&rft.au=Lv%2C+Chao&rft.au=Zhou%2C+Yao&rft.au=Peng%E2%80%90Fang+Zhang&rft.date=2022-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=48&rft_id=info:doi/10.1002%2Fsmll.202204836&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon