Highly Dispersed Ru–Co Nanoparticles Interfaced With Nitrogen‐Doped Carbon Polyhedron for High Efficiency Reversible Li–O2 Battery
The lithium–oxygen (Li–O2) battery with high energy density of 3860 Wh kg−1 represents one of the most promising new secondary batteries for future electric vehicles and mobile electronic devices. However, slow oxygen reduction/oxygen evolution (ORR/OER) reaction efficiency and unstable cycling perf...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 48; pp. e2204836 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The lithium–oxygen (Li–O2) battery with high energy density of 3860 Wh kg−1 represents one of the most promising new secondary batteries for future electric vehicles and mobile electronic devices. However, slow oxygen reduction/oxygen evolution (ORR/OER) reaction efficiency and unstable cycling performance restrain the practical applications of the Li–O2 battery. Herein, Ru‐modified nitrogen‐doped porous carbon‐encapsulated Co nanoparticles (Ru/Co@CoNx–C) are synthesized through reduction of Ru on metal–organic framework (MOFs) pyrolyzed derivatives strategies. Porous carbon polyhedra provide channels for reactive species and stable structure ensures the cyclic stability of the catalyst; abundant Co–Nx sites and high specific surface area (353 m2 g−1) provide more catalytically active sites and deposition sites for reaction products. Theoretical calculations further verify that Ru/Co@CoNx–C can regulate the growth of Li2O2 to improve reversibility of Li–O2 batteries. Li–O2 batteries with Ru/Co@CoNx–C as cathode catalyst achieve small voltage gaps of 1.08 V, exhibit excellent cycle stability (205 cycles), and deliver high discharge specific capacity (17050 mAh g−1). Furthermore, pouch‐type Li–O2 batteries that maintain stable electrochemical performance output even under conditions of bending deformation and corner cutting are successfully assembled. This study demonstrates Ru/Co@CoNx–C catalyst's great application potential in Li–O2 batteries.
A composite catalyst of highly dispersed Ru–Co nanoparticles and nitrogen‐doped carbon polyhedron is prepared as Li–O2 cathode. The stable porous carbon structure, uniformly dispersed, and abundant Co–Nx active sites, and the presence of the ultrafine Ru nanoparticles enables efficient and reversible formation and decomposition of Li2O2 with low overpotential and high discharge specific capacity. |
---|---|
AbstractList | The lithium–oxygen (Li–O2) battery with high energy density of 3860 Wh kg−1 represents one of the most promising new secondary batteries for future electric vehicles and mobile electronic devices. However, slow oxygen reduction/oxygen evolution (ORR/OER) reaction efficiency and unstable cycling performance restrain the practical applications of the Li–O2 battery. Herein, Ru‐modified nitrogen‐doped porous carbon‐encapsulated Co nanoparticles (Ru/Co@CoNx–C) are synthesized through reduction of Ru on metal–organic framework (MOFs) pyrolyzed derivatives strategies. Porous carbon polyhedra provide channels for reactive species and stable structure ensures the cyclic stability of the catalyst; abundant Co–Nx sites and high specific surface area (353 m2 g−1) provide more catalytically active sites and deposition sites for reaction products. Theoretical calculations further verify that Ru/Co@CoNx–C can regulate the growth of Li2O2 to improve reversibility of Li–O2 batteries. Li–O2 batteries with Ru/Co@CoNx–C as cathode catalyst achieve small voltage gaps of 1.08 V, exhibit excellent cycle stability (205 cycles), and deliver high discharge specific capacity (17050 mAh g−1). Furthermore, pouch‐type Li–O2 batteries that maintain stable electrochemical performance output even under conditions of bending deformation and corner cutting are successfully assembled. This study demonstrates Ru/Co@CoNx–C catalyst's great application potential in Li–O2 batteries.
A composite catalyst of highly dispersed Ru–Co nanoparticles and nitrogen‐doped carbon polyhedron is prepared as Li–O2 cathode. The stable porous carbon structure, uniformly dispersed, and abundant Co–Nx active sites, and the presence of the ultrafine Ru nanoparticles enables efficient and reversible formation and decomposition of Li2O2 with low overpotential and high discharge specific capacity. The lithium–oxygen (Li–O2) battery with high energy density of 3860 Wh kg−1 represents one of the most promising new secondary batteries for future electric vehicles and mobile electronic devices. However, slow oxygen reduction/oxygen evolution (ORR/OER) reaction efficiency and unstable cycling performance restrain the practical applications of the Li–O2 battery. Herein, Ru‐modified nitrogen‐doped porous carbon‐encapsulated Co nanoparticles (Ru/Co@CoNx–C) are synthesized through reduction of Ru on metal–organic framework (MOFs) pyrolyzed derivatives strategies. Porous carbon polyhedra provide channels for reactive species and stable structure ensures the cyclic stability of the catalyst; abundant Co–Nx sites and high specific surface area (353 m2 g−1) provide more catalytically active sites and deposition sites for reaction products. Theoretical calculations further verify that Ru/Co@CoNx–C can regulate the growth of Li2O2 to improve reversibility of Li–O2 batteries. Li–O2 batteries with Ru/Co@CoNx–C as cathode catalyst achieve small voltage gaps of 1.08 V, exhibit excellent cycle stability (205 cycles), and deliver high discharge specific capacity (17050 mAh g−1). Furthermore, pouch‐type Li–O2 batteries that maintain stable electrochemical performance output even under conditions of bending deformation and corner cutting are successfully assembled. This study demonstrates Ru/Co@CoNx–C catalyst's great application potential in Li–O2 batteries. The lithium-oxygen (Li-O2 ) battery with high energy density of 3860 Wh kg-1 represents one of the most promising new secondary batteries for future electric vehicles and mobile electronic devices. However, slow oxygen reduction/oxygen evolution (ORR/OER) reaction efficiency and unstable cycling performance restrain the practical applications of the Li-O2 battery. Herein, Ru-modified nitrogen-doped porous carbon-encapsulated Co nanoparticles (Ru/Co@CoNx -C) are synthesized through reduction of Ru on metal-organic framework (MOFs) pyrolyzed derivatives strategies. Porous carbon polyhedra provide channels for reactive species and stable structure ensures the cyclic stability of the catalyst; abundant Co-Nx sites and high specific surface area (353 m2 g-1 ) provide more catalytically active sites and deposition sites for reaction products. Theoretical calculations further verify that Ru/Co@CoNx -C can regulate the growth of Li2 O2 to improve reversibility of Li-O2 batteries. Li-O2 batteries with Ru/Co@CoNx -C as cathode catalyst achieve small voltage gaps of 1.08 V, exhibit excellent cycle stability (205 cycles), and deliver high discharge specific capacity (17050 mAh g-1 ). Furthermore, pouch-type Li-O2 batteries that maintain stable electrochemical performance output even under conditions of bending deformation and corner cutting are successfully assembled. This study demonstrates Ru/Co@CoNx -C catalyst's great application potential in Li-O2 batteries.The lithium-oxygen (Li-O2 ) battery with high energy density of 3860 Wh kg-1 represents one of the most promising new secondary batteries for future electric vehicles and mobile electronic devices. However, slow oxygen reduction/oxygen evolution (ORR/OER) reaction efficiency and unstable cycling performance restrain the practical applications of the Li-O2 battery. Herein, Ru-modified nitrogen-doped porous carbon-encapsulated Co nanoparticles (Ru/Co@CoNx -C) are synthesized through reduction of Ru on metal-organic framework (MOFs) pyrolyzed derivatives strategies. Porous carbon polyhedra provide channels for reactive species and stable structure ensures the cyclic stability of the catalyst; abundant Co-Nx sites and high specific surface area (353 m2 g-1 ) provide more catalytically active sites and deposition sites for reaction products. Theoretical calculations further verify that Ru/Co@CoNx -C can regulate the growth of Li2 O2 to improve reversibility of Li-O2 batteries. Li-O2 batteries with Ru/Co@CoNx -C as cathode catalyst achieve small voltage gaps of 1.08 V, exhibit excellent cycle stability (205 cycles), and deliver high discharge specific capacity (17050 mAh g-1 ). Furthermore, pouch-type Li-O2 batteries that maintain stable electrochemical performance output even under conditions of bending deformation and corner cutting are successfully assembled. This study demonstrates Ru/Co@CoNx -C catalyst's great application potential in Li-O2 batteries. |
Author | Zhou, Yao Lv, Chao Liu, Zong‐Kui Zhang, Peng‐Fang Tong, Zhen Wang, Zhen Li, Jun‐Tao Sun, Shi‐Gang Li, Zhen‐Gang Xiang, Cheng‐Cheng |
Author_xml | – sequence: 1 givenname: Zhen surname: Tong fullname: Tong, Zhen organization: Xiamen University – sequence: 2 givenname: Chao surname: Lv fullname: Lv, Chao organization: Xiamen University – sequence: 3 givenname: Yao surname: Zhou fullname: Zhou, Yao organization: Xiamen University – sequence: 4 givenname: Peng‐Fang surname: Zhang fullname: Zhang, Peng‐Fang organization: Xiamen University – sequence: 5 givenname: Cheng‐Cheng surname: Xiang fullname: Xiang, Cheng‐Cheng organization: Xiamen University – sequence: 6 givenname: Zhen‐Gang surname: Li fullname: Li, Zhen‐Gang organization: Xiamen University – sequence: 7 givenname: Zhen surname: Wang fullname: Wang, Zhen organization: Xiamen University – sequence: 8 givenname: Zong‐Kui surname: Liu fullname: Liu, Zong‐Kui organization: Xiamen University – sequence: 9 givenname: Jun‐Tao orcidid: 0000-0002-9650-6385 surname: Li fullname: Li, Jun‐Tao email: jtli@xmu.edu.cn organization: Xiamen University – sequence: 10 givenname: Shi‐Gang orcidid: 0000-0003-2327-4090 surname: Sun fullname: Sun, Shi‐Gang organization: Xiamen University |
BookMark | eNpdkbtOwzAUhi0EEteV2RILS8GxUzsZoRSoFC7iIsbISY6pkWsHOwVlY2RE4g37JLgCdWA6F336zpH-bbRunQWE9hNylBBCj8PMmCNKKCVpxvga2kp4wgY8o_n6qk_IJtoO4YUQltBUbKHPS_08NT0-06EFH6DBd_PFx_fI4WtpXSt9p2sDAU9sB17JOgJPupvia9159wx28fF15tq4HUlfOYtvnemn0PjYKufx0o7HSulag617fAdv8YquDOBCxzs3FJ_KLqr7XbShpAmw91d30OP5-GF0OShuLiajk2LQUs75gOcZb6qGDEGKXFGpqlwyOuSMNTSFSqRcDYFTnjNIWVxykdU1bZiQkitRZ2wHHf56W-9e5xC6cqZDDcZIC24eSiqibUgFX6IH_9AXN_c2fhepaE8FzUSk8l_qXRvoy9brmfR9mZBymUq5TKVcpVLeXxXFamI_YeGIzQ |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202204836 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL202204836 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21875197 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-p2666-6986dbd05ea79f2afb9a325633d24eb746f5e62693e4333d678cc2d37aa6f7c83 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 12:01:50 EDT 2025 Sat Jul 19 20:10:31 EDT 2025 Wed Jan 22 16:25:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2666-6986dbd05ea79f2afb9a325633d24eb746f5e62693e4333d678cc2d37aa6f7c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2327-4090 0000-0002-9650-6385 |
PQID | 2743347287 |
PQPubID | 1046358 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2725652768 proquest_journals_2743347287 wiley_primary_10_1002_smll_202204836_SMLL202204836 |
PublicationCentury | 2000 |
PublicationDate | December 1, 2022 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 1, 2022 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 9 2021; 5 2006; 97 2021; 89 2019; 6 2013; 2 2019; 31 2021; 189 2020; 142 2019; 10 2019; 12 2019; 58 2022; 91 2019; 17 2014; 26 2016; 30 2020; 14 2020; 11 2021; 122 2011; 4 2019; 141 1996; 54 1996; 77 2018; 6 2021; 16 2018; 8 2018; 2 2021; 12 2021; 11 2019; 64 2020; 30 1999; 59 2017; 12 2017; 56 2020; 49 2020; 579 2021; 133 2018; 11 2021; 41 1994; 50 2012; 337 2016; 26 2012; 5 2016; 8 2019; 131 1994; 32 1996; 6 |
References_xml | – volume: 26 start-page: 3258 year: 2014 publication-title: Adv. Mater. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 15 year: 1996 publication-title: Comp. Mater. Sci. – volume: 91 year: 2022 publication-title: Nano Energy – volume: 89 year: 2021 publication-title: Nano Energy – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 141 start-page: 6900 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 301 year: 2020 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 2236 year: 2018 publication-title: ACS Catal. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 337 start-page: 563 year: 2012 publication-title: Science – volume: 64 year: 2019 publication-title: Nano Energy – volume: 2 year: 2018 publication-title: Small Methods – volume: 50 year: 1994 publication-title: Phys. Rev. B – volume: 11 start-page: 7450 year: 2021 publication-title: ACS Catal. – volume: 16 start-page: 1523 year: 2021 publication-title: ACS Nano – volume: 2 start-page: 88 year: 2013 publication-title: Nano Energy – volume: 131 year: 2019 publication-title: Angew. Chem. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 26 start-page: 7725 year: 2016 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1640 year: 2019 publication-title: ACS Catal. – volume: 30 start-page: 128 year: 2016 publication-title: Angew. Chem. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 579 start-page: 448 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 32 start-page: 1523 year: 1994 publication-title: Carbon – volume: 2 start-page: 2235 year: 2018 publication-title: Joule – volume: 12 start-page: 250 year: 2019 publication-title: Environ. Sci. – volume: 122 year: 2021 publication-title: Electrochem. Commun. – volume: 12 year: 2021 publication-title: Adv Funct Mater – volume: 189 start-page: 404 year: 2021 publication-title: Carbon – volume: 6 start-page: 715 year: 2019 publication-title: Inorg. Chem. Front. – volume: 133 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 2952 year: 2011 publication-title: Energy Environ. Sci. – volume: 17 start-page: 374 year: 2019 publication-title: Energy Storage Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 141 start-page: 9623 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1576 year: 2020 publication-title: Nat. Commun. – volume: 6 year: 2018 publication-title: J Mater Chem – volume: 41 start-page: 404 year: 2021 publication-title: Energy Storage Mater. – volume: 97 year: 2006 publication-title: Phys. Rev. Lett. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 918 year: 2021 publication-title: Energy Environ. Mater. – volume: 12 start-page: 535 year: 2017 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 1204 year: 2018 publication-title: Environ. Sci. – volume: 11 start-page: 2191 year: 2020 publication-title: Nat. Commun. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 7936 year: 2012 publication-title: Environ Sci |
SSID | ssj0031247 |
Score | 2.4747658 |
Snippet | The lithium–oxygen (Li–O2) battery with high energy density of 3860 Wh kg−1 represents one of the most promising new secondary batteries for future electric... The lithium–oxygen (Li–O2) battery with high energy density of 3860 Wh kg−1 represents one of the most promising new secondary batteries for future electric... The lithium-oxygen (Li-O2 ) battery with high energy density of 3860 Wh kg-1 represents one of the most promising new secondary batteries for future electric... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2204836 |
SubjectTerms | Carbon Catalysts cathode catalysts Cobalt Co–N x groups Electric vehicles Electrochemical analysis Electronic devices Lithium Li–O 2 batteries Metal-organic frameworks metal–organic framework (MOFs) Nanoparticles Nanotechnology Nitrogen Oxygen evolution reactions Polyhedra Reaction products Reduction (metal working) Ru nanoparticles Ruthenium Storage batteries |
Title | Highly Dispersed Ru–Co Nanoparticles Interfaced With Nitrogen‐Doped Carbon Polyhedron for High Efficiency Reversible Li–O2 Battery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202204836 https://www.proquest.com/docview/2743347287 https://www.proquest.com/docview/2725652768 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EeUlI7EGWtt16hEVEELloQKCLbJjW1SUpGrToUyMjEj8Q34Jd0kbCiNsjmPHjs7n-84-fyZkX5qal-DuBIpVTSCcqAUg5mpgwJSA0L1oxHh2-OJSnt2J84f6w9Qp_oIfolxwQ83I52tUcG0Gh9-koYPnLm4dMGSe5ci5jQFbiIraJX8UB-OV364CNitA4q0Ja2OVHf6s_gNfTqPU3MycLhI96WARXfJ0MMzMQfzyi7vxP3-wRBbGGJQeFYNmmcy4ZIXMTzETrpI3jP_ojuhxB5nEB87S9vDz9aOZUpiOwc8eh9PRfEHR6xgK3HeyR3rZyfopjMnP1_fjtAe5Td03aUKv0-7o0dk-JAElU_w6PcnZK_DoJ227PDrEdB1tdaCdK0YL4s_RGrk7PbltngXjSxuCHth6GUjVkNbYat3pUHmmvVGaA67i3DLhTCikrzvwohR3gkMmGMs4ZpaHWksfxg2-TmaTNHEbhNaMtQBwrFImBrNplKj5BtdWecmYlrJCtidCi8aaN4jAy-ZchOAIVshe-Rp0BjdCdOLSIZaBDtUZeFoVwnIJRb2C2yMqWJxZhLKJStlENxetVvm0-ZdKW2QO00UkzDaZzfpDtwN4JjO7-Zj9AqAb8bw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED60ydBmSNIX4jxaFuiqxCZpyhwDJ4Hbym7hJmg3gRRJxKgjGbY8OFPGjAH6D_NLeqRsNenYbhJFShSOx7vvePwI8EHolhMIdyJJmzrilrciFHMz0mhKUOiOdzK_d7g_EL0L_ulHe5VN6PfCVPwQdcDNa0aYr72C-4D00R_W0NnV2K8dUE89y8RTWPfHegdUNawZpBiar3C-ClqtyFNvrXgbm_TocftHHuZDPzUYmrMt0KsuVvklPw_npT7Mrv9ib_yvf9iGzaUbSo6rcfMCntj8JWw8ICd8Bbc-BWS8ICcjTyY-s4YM5_c3v7oFwRkZofYyo46EmKJTGVb4PiovyWBUTgsclvc3dyfFBEu7aqqLnHwtxotLa6Z4iY4y8W8np4HAwu_-JEMbEkT02JJkhN_5QknF_bl4DRdnp-fdXrQ8tyGaoLkXkZAdYbRptq2KpaPKaakYulaMGcqtjrlwbYtASjLLGRaivcwyalislHBx1mFvYC0vcrsDpKWNQR_HSKkztJxa8pbrMGWkE5QqIRqwv5JaulS-WYpAmzEeIxZswPv6MaqNXwtRuS3mvg52qE0RbDWABhGlk4reI62InGnqZZPWskm_9ZOkvtv9l0bv4FnvvJ-kycfB5z147surxJh9WCunc3uA7k2p34YB_BuzevXX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9iIE3jAPtCKx-bJ-0aSG3XiY-opYKtdKgbGrfIjm1RrSRVmx7KiSPHSfsP-Ut4Ttqs7LjdEsdOHL33_H7Pfv4Z4JPQTScw3AkkDXXALW8GKOYw0OhKUOiOx6nfO3zeF6eX_PNV62plF3_FD1FPuHnLKMdrb-Bj447-kIZOb0Z-6YB65lkmnsEGF2Hs9bozqAmkGHqv8ngVdFqBZ95a0jaG9Ohp-ycAcxWmln6muw1q2cMqveTn4azQh-ntX-SN__MLL2FrAULJcaU1r2DNZq9hc4Wa8A3c-wSQ0Zx0hp5KfGoNGcwe7n63c4LjMQbai3w6Us4oOpVihR_D4pr0h8UkR6V8uPvVycdY2lYTnWfkIh_Nr62Z4CXCZOLfTk5K-gq_95MMbJkeokeW9Ib4na-UVMyf87dw2T353j4NFqc2BGN09iIQMhZGm7BlVSQdVU5LxRBYMWYotzriwrUshlGSWc6wEL1lmlLDIqWEi9KY7cB6lmf2HZCmNgYRjpFSp-g3teRNFzNlpBOUKiEasL8UWrIwvWmCYTZjPMJIsAEf68doNH4lRGU2n_k62KEWxVCrAbSUUDKuyD2SisaZJl42SS2b5Nt5r1ff7f5Low_w_KLTTXpn_S978MIXV1kx-7BeTGb2ALFNod-X6vsI_HL0jw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Dispersed+Ru%E2%80%93Co+Nanoparticles+Interfaced+With+Nitrogen%E2%80%90Doped+Carbon+Polyhedron+for+High+Efficiency+Reversible+Li%E2%80%93O2+Battery&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Tong%2C+Zhen&rft.au=Lv%2C+Chao&rft.au=Zhou%2C+Yao&rft.au=Peng%E2%80%90Fang+Zhang&rft.date=2022-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=48&rft_id=info:doi/10.1002%2Fsmll.202204836&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |