Theoretical Prediction of Monolayer BeP2O4H4 with Excellent Nonlinear‐Optical Properties in Deep‐Ultraviolet Range
Most 2D nonlinear optical (NLO) materials do not have an ultrawide bandgap, therefore, they are unsuitable for working in the deep‐ultraviolet spectral range (< 200 nm). Herein, the theoretical prediction of an excellent monolayer BeP2O4H4 (ML‐BPOH) is reported. DFT analyses suggest a low cleavag...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 40; pp. e2404155 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most 2D nonlinear optical (NLO) materials do not have an ultrawide bandgap, therefore, they are unsuitable for working in the deep‐ultraviolet spectral range (< 200 nm). Herein, the theoretical prediction of an excellent monolayer BeP2O4H4 (ML‐BPOH) is reported. DFT analyses suggest a low cleavage energy (≈45 meV per atom) from a naturally existed bulk‐BPOH material, indicating feasible exfoliation. This novel 2D material exhibits excellent properties including an ultrawide bandgap (Eg) of 7.84 eV, and a strong second‐order nonlinear susceptibility (dbulkeff$d_{bulk}^{eff}$ = 0.43 pm V−1), which is comparable to that of benchmark bulk‐KBBF crystal (d16 = 0.45 pm V−1). The wide bandgap and large SHG effect of ML‐BPOH are mainly derived from the (PO2H2)− tetrahedron. Notably, ML‐BPOH exhibits an outstanding 50% variation in dsheet under minor stress stimuli (±3%) due to rotation of structurally rigid (PO2H2)− tetrahedron. This indicates significant potential for application in material deformation monitoring.
The theoretical prediction of an excellent DUV SHG 2D material, monolayer BeP2O4H4 (ML‐BPOH) characterized by a low cleavage energy from a naturally existing bulk‐BPOH is reported. Notably, ML‐BPOH exhibits an outstanding 50% variation in dsheet (Å·pm V−1) under minor stress stimuli (±3%), indicating a potential for application in material deformation monitoring. |
---|---|
AbstractList | Most 2D nonlinear optical (NLO) materials do not have an ultrawide bandgap, therefore, they are unsuitable for working in the deep‐ultraviolet spectral range (< 200 nm). Herein, the theoretical prediction of an excellent monolayer BeP2O4H4 (ML‐BPOH) is reported. DFT analyses suggest a low cleavage energy (≈45 meV per atom) from a naturally existed bulk‐BPOH material, indicating feasible exfoliation. This novel 2D material exhibits excellent properties including an ultrawide bandgap (Eg) of 7.84 eV, and a strong second‐order nonlinear susceptibility (dbulkeff$d_{bulk}^{eff}$ = 0.43 pm V−1), which is comparable to that of benchmark bulk‐KBBF crystal (d16 = 0.45 pm V−1). The wide bandgap and large SHG effect of ML‐BPOH are mainly derived from the (PO2H2)− tetrahedron. Notably, ML‐BPOH exhibits an outstanding 50% variation in dsheet under minor stress stimuli (±3%) due to rotation of structurally rigid (PO2H2)− tetrahedron. This indicates significant potential for application in material deformation monitoring.
The theoretical prediction of an excellent DUV SHG 2D material, monolayer BeP2O4H4 (ML‐BPOH) characterized by a low cleavage energy from a naturally existing bulk‐BPOH is reported. Notably, ML‐BPOH exhibits an outstanding 50% variation in dsheet (Å·pm V−1) under minor stress stimuli (±3%), indicating a potential for application in material deformation monitoring. Most 2D nonlinear optical (NLO) materials do not have an ultrawide bandgap, therefore, they are unsuitable for working in the deep-ultraviolet spectral range (< 200 nm). Herein, the theoretical prediction of an excellent monolayer BeP2O4H4 (ML-BPOH) is reported. DFT analyses suggest a low cleavage energy (≈45 meV per atom) from a naturally existed bulk-BPOH material, indicating feasible exfoliation. This novel 2D material exhibits excellent properties including an ultrawide bandgap (Eg) of 7.84 eV, and a strong second-order nonlinear susceptibility ( d b u l k e f f $d_{bulk}^{eff}$ = 0.43 pm V-1), which is comparable to that of benchmark bulk-KBBF crystal (d16 = 0.45 pm V-1). The wide bandgap and large SHG effect of ML-BPOH are mainly derived from the (PO2H2)- tetrahedron. Notably, ML-BPOH exhibits an outstanding 50% variation in dsheet under minor stress stimuli (±3%) due to rotation of structurally rigid (PO2H2)- tetrahedron. This indicates significant potential for application in material deformation monitoring.Most 2D nonlinear optical (NLO) materials do not have an ultrawide bandgap, therefore, they are unsuitable for working in the deep-ultraviolet spectral range (< 200 nm). Herein, the theoretical prediction of an excellent monolayer BeP2O4H4 (ML-BPOH) is reported. DFT analyses suggest a low cleavage energy (≈45 meV per atom) from a naturally existed bulk-BPOH material, indicating feasible exfoliation. This novel 2D material exhibits excellent properties including an ultrawide bandgap (Eg) of 7.84 eV, and a strong second-order nonlinear susceptibility ( d b u l k e f f $d_{bulk}^{eff}$ = 0.43 pm V-1), which is comparable to that of benchmark bulk-KBBF crystal (d16 = 0.45 pm V-1). The wide bandgap and large SHG effect of ML-BPOH are mainly derived from the (PO2H2)- tetrahedron. Notably, ML-BPOH exhibits an outstanding 50% variation in dsheet under minor stress stimuli (±3%) due to rotation of structurally rigid (PO2H2)- tetrahedron. This indicates significant potential for application in material deformation monitoring. Most 2D nonlinear optical (NLO) materials do not have an ultrawide bandgap, therefore, they are unsuitable for working in the deep‐ultraviolet spectral range (< 200 nm). Herein, the theoretical prediction of an excellent monolayer BeP2O4H4 (ML‐BPOH) is reported. DFT analyses suggest a low cleavage energy (≈45 meV per atom) from a naturally existed bulk‐BPOH material, indicating feasible exfoliation. This novel 2D material exhibits excellent properties including an ultrawide bandgap (Eg) of 7.84 eV, and a strong second‐order nonlinear susceptibility (dbulkeff$d_{bulk}^{eff}$ = 0.43 pm V−1), which is comparable to that of benchmark bulk‐KBBF crystal (d16 = 0.45 pm V−1). The wide bandgap and large SHG effect of ML‐BPOH are mainly derived from the (PO2H2)− tetrahedron. Notably, ML‐BPOH exhibits an outstanding 50% variation in dsheet under minor stress stimuli (±3%) due to rotation of structurally rigid (PO2H2)− tetrahedron. This indicates significant potential for application in material deformation monitoring. |
Author | Wu, Li‐Ming Lin, Zheshuai Liu, Xin Chen, Ling Kang, Lei |
Author_xml | – sequence: 1 givenname: Xin surname: Liu fullname: Liu, Xin organization: Beijing Normal University – sequence: 2 givenname: Li‐Ming surname: Wu fullname: Wu, Li‐Ming organization: Beijing Normal University – sequence: 3 givenname: Lei surname: Kang fullname: Kang, Lei email: kanglei@mail.ipc.ac.cn organization: Chinese Academy of Sciences – sequence: 4 givenname: Zheshuai surname: Lin fullname: Lin, Zheshuai organization: Chinese Academy of Sciences – sequence: 5 givenname: Ling orcidid: 0000-0002-3693-4193 surname: Chen fullname: Chen, Ling email: chenl@bnu.edu.cn organization: Beijing Normal University |
BookMark | eNpdkbtOAzEQRS0EEiHQUluioQn4td51ySM8pIQgSGrL2YyJkWMv3g2Qjk_gG_kSNgJSUM2M5ujq6t49tB1iAIQOKTmhhLDTeuH9CSNMEEGzbAt1qKS8Jwumtjc7Jbtor66fCeGUibyDXsdziAkaVxqP7xPMXNm4GHC0eBhD9GYFCZ_DPRuJG4HfXDPH_fcSvIfQ4LsYvAtg0tfH56j604gVpMZBjV3AlwBV-5z4JplXFz00-MGEJ9hHO9b4Gg5-ZxdNrvrji5veYHR9e3E26FVMyqynrMhmpc3LnJQSTFlYxZSiRLDZzExFZgTQXNCpUpZPCw5gLC8sWFnYnEqW8S46_tGtUnxZQt3ohavX9k2AuKw1J1JyrvJCtejRP_Q5LlNo3WlO27CkyHLZUuqHenMeVrpKbmHSSlOi1x3odQd604F-HA4Gm4t_A_W0ggs |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202404155 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL202404155 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22193043; 12174404 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-p2665-9f45dcf7c70c6eac8f92991042ddab45a4e1741b99f3b83eeaf38fef68f716253 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 20:05:07 EDT 2025 Fri Jul 25 12:01:06 EDT 2025 Wed Jan 22 17:16:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2665-9f45dcf7c70c6eac8f92991042ddab45a4e1741b99f3b83eeaf38fef68f716253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3693-4193 |
PQID | 3112464576 |
PQPubID | 1046358 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_3066339789 proquest_journals_3112464576 wiley_primary_10_1002_smll_202404155_SMLL202404155 |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 27 2023; 52 2021; 15 2015; 6 2004 2011 2021 2019 2020; 432 50 60 141 59 2013; 1 2004; 60 2013; 13 2020 2022 2023; 20 61 62 2018; 30 2022; 10 2016 2020; 353 59 2013 2017; 87 29 2009 2009; 457 97 2020 2021 2021; 14 9 8 2018; 57 2017; 118 |
References_xml | – volume: 57 start-page: 7503 year: 2018 publication-title: Inorg. Chem. – volume: 60 start-page: 73 year: 2004 publication-title: Acta Crystallogr. Section C Struct. Chem. – volume: 353 59 start-page: 9439 year: 2016 2020 publication-title: Science Angew. Chem., Int. Ed. – volume: 1 year: 2013 publication-title: APL Mater. – volume: 10 year: 2022 publication-title: J. Mater. Chem. C. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 20 61 62 start-page: 8084 year: 2020 2022 2023 publication-title: Cryst. Growth Des. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 87 29 year: 2013 2017 publication-title: Phys. Rev. B Adv. Mater. – volume: 432 50 60 141 59 start-page: 605 9141 8093 year: 2004 2011 2021 2019 2020 publication-title: Nature Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. J. Am. Chem. Soc. Angew. Chem., Int. Ed. – volume: 6 start-page: 8849 year: 2015 publication-title: Nat. Commun. – volume: 27 year: 2021 publication-title: Chem.‐Eur. J. – volume: 14 9 8 year: 2020 2021 2021 publication-title: Laser Photonics Rev. Adv. Opt. Mater. Adv. Mater. Interfaces – volume: 13 start-page: 3329 year: 2013 publication-title: Nano Lett. – volume: 52 start-page: 8699 year: 2023 publication-title: Chem. Soc. Rev. – volume: 457 97 start-page: 953 9 year: 2009 2009 publication-title: Nature appl phys b‐lasers o – volume: 118 year: 2017 publication-title: Phys. Rev. Lett. – volume: 15 start-page: 7155 year: 2021 publication-title: ACS Nano |
SSID | ssj0031247 |
Score | 2.4697852 |
Snippet | Most 2D nonlinear optical (NLO) materials do not have an ultrawide bandgap, therefore, they are unsuitable for working in the deep‐ultraviolet spectral range... Most 2D nonlinear optical (NLO) materials do not have an ultrawide bandgap, therefore, they are unsuitable for working in the deep-ultraviolet spectral range... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2404155 |
SubjectTerms | 2D materials deep‐ultraviolet nonlinear optical materials Energy gap material deformation monitoring Monolayers Nonlinear optics Optical properties Tetrahedra Two dimensional materials |
Title | Theoretical Prediction of Monolayer BeP2O4H4 with Excellent Nonlinear‐Optical Properties in Deep‐Ultraviolet Range |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202404155 https://www.proquest.com/docview/3112464576 https://www.proquest.com/docview/3066339789 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QTnDgjRgMFCSuHSVJHzny2DShsSFgErcq6RIJMbpq6xDixE_gN_JLsNut2zjCrVWaKpFj-0tsfyHkFEyca_EOQKyYdYR2lSMV8x1uQ637DDnjsDj5tuO3euLmyXtaqOIv-CHKAzfUjNxeo4IrPT6bk4aOXwcYOgCPhD4RjDAmbCEqui_5ozg4r_x2FfBZDhJvzVgbXXa23H0JXy6i1NzNNDeImg2wyC55qU8yXY8_fnE3_mcGm2R9ikHpRbFotsiKSbbJ2gIz4Q55e5wXONK7EUZzUIJ0aClYAdgOA1Knl-aOdUVLUDzMpY33PAiQZLRTDE6Nvj-_uunsH8MUU7jNmD4n9NqYFBp7g2yk8tSAjN5jlcMu6TUbj1ctZ3pFg5OCZ_ccaYXXj20QB27sgw0PLcAtQCCC9ftKC08JA1uecy2l5TrkxijLQ2usH1qkrvL4Hqkkw8TsE-oxzWNXC65iLmQspeKBFZoHArY8UrMqqc1EFE31bBxxgIsYmw38Kjkpm0FDcMYqMcMJfIOoCmBXKKuE5fKI0oLJIyo4m1mEkohKSUQPt-12-Xbwl06HZBWfi6y_Gqlko4k5AvSS6eN8hf4AZgjqwg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB619AAcoEArFmgxEtdAsJ0fHwsFbcvugmBX4hbZWVuqgGy0m0WIE4_QZ-RJmEk2AXqkx8RxZGs8M589M58BdtHE-Y7uAKSKWU8aX3tK89ATLjZmyIkzjoqTu72wPZC_r4I6m5BqYSp-iObAjTSjtNek4HQgvf_CGjq5vaHYAbokcoof4RNd613uqi4aBimB7qu8XwW9lkfUWzVvo8_33_Z_gzBf49TS0Zwsg6mHWOWXXO9NC7OXPvzD3vhfc_gMSzMYyn5U62YFPthsFRZfkROuwV3_pcaRnY8poENCZCPH0BDgjhjBOju05_xMtiWj81x2fF_GAbKC9arR6fHT49-zvP7HKKcsbjthfzL209ocGwc3xViX2QEFu6BChy8wODnuH7W92S0NXo7OPfCUk8EwdVEa-WmIZjx2iLgQhEg-HGojAy0t7noOjFJOmFhYq52InXVh7Ii9KhBfYS4bZXYdWMCNSH0jhU6FVKlSWkROGhFJ3PUow1uwVcsomanaJBGIGCk8G4Ut2GmaUUloxjqzoyl-Q8AKkVesWsBLgSR5ReaRVLTNPCFJJI0kkstup9M8bbyn0zbMt_vdTtL51TvdhAV6XyUBbsFcMZ7abwhmCvO9XK7PEPHu3Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61IFXlAPQlllddqddAsJ2Hj8Cy2rbLsqKsxC2yE1uqgGy0m0WIEz-B38gvYSbZDUuP7TFxHNkaz8xnz8xngO9o4nxHdwBSxawnja89pXnoCRcbk3HijKPi5NN-2B3Kn5fB5UIVf80P0Ry4kWZU9poUvMjc_gtp6OTmmkIH6JHIJ76FZRn6Ma3r9nlDICXQe1XXq6DT8oh5a07b6PP91_1fAcxFmFr5mc4a6PkI6_SSq71pafbS-7_IG_9nCuuwOgOh7LBeNR_gjc0_wsoCNeEnuL14qXBkgzGFc0iEbOQYmgHcDyNUZ0d2wM9kVzI6zWUnd1UUIC9Zvx6cHj89PJ4V83-MCsrhthP2J2dtawtsHF6XY13lBpTsnMocPsOwc3Jx3PVmdzR4Bbr2wFNOBlnqojTy0xCNeOwQbyEEkTzLtJGBlhb3PAdGKSdMLKzVTsTOujB2xF0ViC-wlI9yuwEs4EakvpFCp0KqVCktIieNiCTueZThLdieiyiZKdokEYgXKTgbhS341jSjitCMdW5HU_yGYBXirli1gFfySIqayiOpSZt5QpJIGkkkv097veZp8186fYV3g3Yn6f3o_9qC9_S6zgDchqVyPLU7iGRKs1st1mdxA-2V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Prediction+of+Monolayer+BeP2O4H4+with+Excellent+Nonlinear-Optical+Properties+in+Deep-Ultraviolet+Range&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Xin&rft.au=Wu%2C+Li-Ming&rft.au=Kang%2C+Lei&rft.au=Lin%2C+Zheshuai&rft.date=2024-10-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=20&rft.issue=40&rft.spage=e2404155&rft_id=info:doi/10.1002%2Fsmll.202404155&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |