Soluble and Perfluorinated Polyelectrolyte for Safe and High‐Performance Li−O2 Batteries
The severe performance degradation of high‐capacity Li−O2 batteries induced by Li dendrite growth and concentration polarization from the low Li+ transfer number of conventional electrolytes hinder their practical applications. Herein, lithiated Nafion (LN) with the sulfonic group immobilized on the...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 19; pp. e202116635 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
02.05.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The severe performance degradation of high‐capacity Li−O2 batteries induced by Li dendrite growth and concentration polarization from the low Li+ transfer number of conventional electrolytes hinder their practical applications. Herein, lithiated Nafion (LN) with the sulfonic group immobilized on the perfluorinated backbone has been designed as a soluble lithium salt for preparing a less flammable polyelectrolyte solution, which not only simultaneously achieves a high Li+ transfer number (0.84) and conductivity (2.5 mS cm−1), but also the perfluorinated anion of LN produces a LiF‐rich SEI for protecting the Li anode from dendrite growth. Thus, the Li−O2 battery with a LN‐based electrolyte achieves an all‐round performance improvement, like low charge overpotential (0.18 V), large discharge capacity (9508 mAh g−1), and excellent cycling performance (225 cycles). Besides, the fabricated pouch‐type Li–air cells exhibit promising applications to power electronic equipment with satisfactory safety.
A novel design principle of polymerization and fluorination for salt anions has been proposed and lithiated Nafion (LN) was suggested as a representative soluble lithium salt for the polyelectrolyte solution to improve the Li+ transfer number and produce a LiF‐rich solid electrolyte interface (SEI). Furthermore, the perfluorinated backbone of LN delivers the polyelectrolyte solution low flammability. Thus, making the Li−O2 batteries realize all‐round performance amelioration. |
---|---|
AbstractList | The severe performance degradation of high‐capacity Li−O2 batteries induced by Li dendrite growth and concentration polarization from the low Li+ transfer number of conventional electrolytes hinder their practical applications. Herein, lithiated Nafion (LN) with the sulfonic group immobilized on the perfluorinated backbone has been designed as a soluble lithium salt for preparing a less flammable polyelectrolyte solution, which not only simultaneously achieves a high Li+ transfer number (0.84) and conductivity (2.5 mS cm−1), but also the perfluorinated anion of LN produces a LiF‐rich SEI for protecting the Li anode from dendrite growth. Thus, the Li−O2 battery with a LN‐based electrolyte achieves an all‐round performance improvement, like low charge overpotential (0.18 V), large discharge capacity (9508 mAh g−1), and excellent cycling performance (225 cycles). Besides, the fabricated pouch‐type Li–air cells exhibit promising applications to power electronic equipment with satisfactory safety. The severe performance degradation of high-capacity Li-O2 batteries induced by Li dendrite growth and concentration polarization from the low Li+ transfer number of conventional electrolytes hinder their practical applications. Herein, lithiated Nafion (LN) with the sulfonic group immobilized on the perfluorinated backbone has been designed as a soluble lithium salt for preparing a less flammable polyelectrolyte solution, which not only simultaneously achieves a high Li+ transfer number (0.84) and conductivity (2.5 mS cm-1 ), but also the perfluorinated anion of LN produces a LiF-rich SEI for protecting the Li anode from dendrite growth. Thus, the Li-O2 battery with a LN-based electrolyte achieves an all-round performance improvement, like low charge overpotential (0.18 V), large discharge capacity (9508 mAh g-1 ), and excellent cycling performance (225 cycles). Besides, the fabricated pouch-type Li-air cells exhibit promising applications to power electronic equipment with satisfactory safety.The severe performance degradation of high-capacity Li-O2 batteries induced by Li dendrite growth and concentration polarization from the low Li+ transfer number of conventional electrolytes hinder their practical applications. Herein, lithiated Nafion (LN) with the sulfonic group immobilized on the perfluorinated backbone has been designed as a soluble lithium salt for preparing a less flammable polyelectrolyte solution, which not only simultaneously achieves a high Li+ transfer number (0.84) and conductivity (2.5 mS cm-1 ), but also the perfluorinated anion of LN produces a LiF-rich SEI for protecting the Li anode from dendrite growth. Thus, the Li-O2 battery with a LN-based electrolyte achieves an all-round performance improvement, like low charge overpotential (0.18 V), large discharge capacity (9508 mAh g-1 ), and excellent cycling performance (225 cycles). Besides, the fabricated pouch-type Li-air cells exhibit promising applications to power electronic equipment with satisfactory safety. The severe performance degradation of high‐capacity Li−O2 batteries induced by Li dendrite growth and concentration polarization from the low Li+ transfer number of conventional electrolytes hinder their practical applications. Herein, lithiated Nafion (LN) with the sulfonic group immobilized on the perfluorinated backbone has been designed as a soluble lithium salt for preparing a less flammable polyelectrolyte solution, which not only simultaneously achieves a high Li+ transfer number (0.84) and conductivity (2.5 mS cm−1), but also the perfluorinated anion of LN produces a LiF‐rich SEI for protecting the Li anode from dendrite growth. Thus, the Li−O2 battery with a LN‐based electrolyte achieves an all‐round performance improvement, like low charge overpotential (0.18 V), large discharge capacity (9508 mAh g−1), and excellent cycling performance (225 cycles). Besides, the fabricated pouch‐type Li–air cells exhibit promising applications to power electronic equipment with satisfactory safety. A novel design principle of polymerization and fluorination for salt anions has been proposed and lithiated Nafion (LN) was suggested as a representative soluble lithium salt for the polyelectrolyte solution to improve the Li+ transfer number and produce a LiF‐rich solid electrolyte interface (SEI). Furthermore, the perfluorinated backbone of LN delivers the polyelectrolyte solution low flammability. Thus, making the Li−O2 batteries realize all‐round performance amelioration. |
Author | Zhang, Xin‐Bo Yan, Jun‐Min Yu, Yue Li, Jian‐Chen Xiong, Qi Huang, Gang Li, Chao‐Le |
Author_xml | – sequence: 1 givenname: Qi surname: Xiong fullname: Xiong, Qi organization: Chinese Academy of Sciences – sequence: 2 givenname: Gang surname: Huang fullname: Huang, Gang organization: Chinese Academy of Sciences – sequence: 3 givenname: Yue surname: Yu fullname: Yu, Yue organization: University of Science and Technology of China – sequence: 4 givenname: Chao‐Le surname: Li fullname: Li, Chao‐Le organization: Chinese Academy of Sciences – sequence: 5 givenname: Jian‐Chen surname: Li fullname: Li, Jian‐Chen organization: Jilin University – sequence: 6 givenname: Jun‐Min surname: Yan fullname: Yan, Jun‐Min organization: Jilin University – sequence: 7 givenname: Xin‐Bo orcidid: 0000-0002-5806-159X surname: Zhang fullname: Zhang, Xin‐Bo email: xbzhang@ciac.ac.cn organization: University of Science and Technology of China |
BookMark | eNpd0E1Lw0AQBuBFKthWr54DXryk7neSYy3VFooVqjdh2SYTTdnu1k2C9ObRo_gT-0vcUunB08zAM8Pw9lDHOgsIXRI8IBjTG20rGFBMCZGSiRPUJYKSmCUJ64SeMxYnqSBnqFfXq-DTFMsuelk40y4NRNoW0SP40rTOV1Y3EEZntmAgb3xoGohK56OFLg92Ur2-7T6_9yvOr7XNIZpVu6-fOY1uddOAr6A-R6elNjVc_NU-er4bP40m8Wx-Px0NZ_GGSiniRHPKhc4g47wgy7zEEjRnkPMCSMZTAaSkgPOUFCzFS6olpUwWpRSMFBIY66Prw92Nd-8t1I1aV3UOxmgLrq0VlSxNiCAiC_TqH1251tvwXVCCZTLAJKjsoD4qA1u18dVa-60iWO2TVvuk1TFpNXyYjo8T-wXt9neU |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202116635 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | ANIE202116635 |
Genre | article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 7X8 |
ID | FETCH-LOGICAL-p2665-7a4245a9e944d1bcf06ea43ec4de19485e1f2e0c81d380b2a62236df6531d6e33 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 04:58:55 EDT 2025 Sun Jul 13 04:31:07 EDT 2025 Wed Jan 22 16:24:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2665-7a4245a9e944d1bcf06ea43ec4de19485e1f2e0c81d380b2a62236df6531d6e33 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5806-159X |
PQID | 2653968717 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2638715159 proquest_journals_2653968717 wiley_primary_10_1002_anie_202116635_ANIE202116635 |
PublicationCentury | 2000 |
PublicationDate | May 2, 2022 |
PublicationDateYYYYMMDD | 2022-05-02 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2, 2022 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 4 2015; 6 2017; 2 2019; 31 2020; 120 2019; 11 2020; 142 2017; 27 2017; 21 2020 2020; 59 132 1983; 97 2020; 13 2021; 143 2020; 32 2019; 141 2013; 5 2013; 6 2012; 33 2014; 114 2019 2019; 58 131 2019; 123 2020; 5 2016; 7 2018; 3 2016 2016; 55 128 2020; 2 2021; 33 2018; 4 2018; 555 2021 2021; 60 133 2013; 135 2021; 592 2018; 51 2012; 48 2018; 11 2016; 28 2012; 116 2012; 337 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 33 start-page: 580 year: 2012 end-page: 592 publication-title: J. Comput. Chem. – volume: 97 start-page: 270 year: 1983 end-page: 274 publication-title: Chem. Phys. Lett. – volume: 58 131 start-page: 12553 12683 year: 2019 2019 end-page: 12557 12687 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 143 start-page: 14253 year: 2021 end-page: 14260 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 2345 2367 year: 2019 2019 end-page: 2349 2371 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 644 year: 2019 end-page: 650 publication-title: ACS Energy Lett. – volume: 135 start-page: 494 year: 2013 end-page: 500 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1806 year: 2013 end-page: 1810 publication-title: Energy Environ. Sci. – volume: 4 start-page: 269 year: 2019 end-page: 280 publication-title: Nat. Energy – volume: 5 start-page: 291 year: 2020 end-page: 298 publication-title: Nat. Energy – volume: 13 start-page: 3075 year: 2020 end-page: 3081 publication-title: Energy Environ. Sci. – volume: 51 start-page: 8761 year: 2018 end-page: 8771 publication-title: Macromolecules – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 120 start-page: 6626 year: 2020 end-page: 6683 publication-title: Chem. Rev. – volume: 2 start-page: 2563 year: 2017 end-page: 2575 publication-title: ACS Energy Lett. – volume: 116 start-page: 19084 year: 2012 end-page: 19094 publication-title: J. Phys. Chem. C – volume: 114 start-page: 11503 year: 2014 end-page: 11618 publication-title: Chem. Rev. – volume: 4 start-page: 540 year: 2019 end-page: 550 publication-title: Nat. Energy – volume: 59 132 start-page: 9382 9468 year: 2020 2020 end-page: 9387 9473 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 2974 2994 year: 2020 2020 end-page: 2997 3019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 592 start-page: 551 year: 2021 end-page: 557 publication-title: Nature – volume: 33 start-page: 524 year: 2021 end-page: 534 publication-title: Chem. Mater. – volume: 6 start-page: 4653 year: 2015 end-page: 4672 publication-title: J. Phys. Chem. Lett. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 2 start-page: 354 year: 2020 end-page: 366 publication-title: Trends Chem. – volume: 123 start-page: 10858 year: 2019 end-page: 10867 publication-title: J. Phys. Chem. B – volume: 55 128 start-page: 2521 2567 year: 2016 2016 end-page: 2525 2571 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 337 start-page: 563 year: 2012 end-page: 566 publication-title: Science – volume: 555 start-page: 502 year: 2018 end-page: 506 publication-title: Nature – volume: 60 133 start-page: 5821 5885 year: 2021 2021 end-page: 5826 5890 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 21 start-page: 1879 year: 2017 end-page: 1905 publication-title: J. Solid State Electrochem. – volume: 3 start-page: 20 year: 2018 end-page: 27 publication-title: ACS Energy Lett. – volume: 11 start-page: 2600 year: 2018 end-page: 2608 publication-title: Energy Environ. Sci. – volume: 142 start-page: 16776 year: 2020 end-page: 16786 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 6948 year: 2012 end-page: 6950 publication-title: Chem. Commun. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 7 start-page: 1204 year: 2016 end-page: 1212 publication-title: J. Phys. Chem. Lett. – volume: 5 start-page: 489 year: 2013 end-page: 494 publication-title: Nat. Chem. – volume: 141 start-page: 6263 year: 2019 end-page: 6270 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 64 year: 2019 end-page: 70 publication-title: Nat. Chem. – volume: 59 132 start-page: 19311 19473 year: 2020 2020 end-page: 19319 19481 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 143 start-page: 1941 year: 2021 end-page: 1947 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 9620 year: 2016 end-page: 9628 publication-title: Adv. Mater. – volume: 51 start-page: 282 year: 2018 end-page: 289 publication-title: Acc. Chem. Res. |
SSID | ssj0028806 |
Score | 2.5305138 |
Snippet | The severe performance degradation of high‐capacity Li−O2 batteries induced by Li dendrite growth and concentration polarization from the low Li+ transfer... The severe performance degradation of high-capacity Li-O2 batteries induced by Li dendrite growth and concentration polarization from the low Li+ transfer... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e202116635 |
SubjectTerms | Anodic protection Dendrites Dendritic structure Electrolytes Electrolytic cells Electronic equipment Flammability High Li+ Transfer Number LiF-Rich Solid Electrolyte Interface Lithiated Nafion Lithium Lithium fluoride Li−O2 Battery Performance degradation Polyelectrolyte Solution Polyelectrolytes Sulfonic acid |
Title | Soluble and Perfluorinated Polyelectrolyte for Safe and High‐Performance Li−O2 Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202116635 https://www.proquest.com/docview/2653968717 https://www.proquest.com/docview/2638715159 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4MF734NqJo1sTrAtt2C3skBIJGkagkHEw27babGMlCeBzw5NGj8SfyS5zZF-BRj812kt3ZTuebduYbQq7BiypPuo6tuOvZ3JXMVgaAHA-YxsJML4jZ9u-7otPntwN3sFbFn_BD5AduaBnxfo0GLtW0siINxQpsiO8ggEGnCZswJmwhKnrM-aMoLM6kvIgxG7vQZ6yNVVrZFN_Al-soNXYz7T0isxdMskveyvOZKgfvv7gb__MF-2Q3xaBWI1k0B2TLRIdku5m1fjsiL3hYpobGkpG2emYSDueYpwewFIaj4SLtnTNczIwFoNd6kmEyF7NGlh9fvVU1gnX3uvz8fqBWQuQJcfkx6bdbz82OnbZhsMfgvV27JvF2VHrG41w7KgirwkjOTMC1cZBcxjghNdUAkC-rVxWVAiCH0KEA89bCMHZCCtEoMqfEgvDFCbnQAa1pzkGkFoYCMIiqB1S71C2SUvYb_NSWpj5F9lwBgV2tSK7yx6ARvNqQkRnNcQ6DCYjNioTGOvfHCVuHn_AyUx-17efa9hvdm1Y-OvuL0DnZoVgLgdmPtEQKs8ncXABCmanLeBX-AAFI30c |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB4heqCXQl9qeLSL1B4N8Xq9wQcOiIeSElLUgsQByex6x1JE5CCSCKUnjhwR_6R_pT-BX9IZv4AeK3Ho0fKuZO_s7HwzO_MNwGeyojYyoe9ZFUaeCk3gWSQgp5LAcWFmlORs-wc93T5WX0_Ckxn4VdXCFPwQdcCNNSM_r1nBOSC9_sAayiXY5OCRB8NWs8yr3MfpFXlto83ODon4i5R7u0fbba9sLOBdkD0KvZbh-z4TYaSU822SNjUaFWCiHPpMl4J-KrGZEJYLNppWGk1GVLtU04Z1GjkGSqf-C24jznT9O99rxipJ6lAUNAWBx33vK57Iplx_-r1PEO1jXJwbtr15-F0tSZHPcr42Gdu15OdfbJH_1ZotwKsSZoutQi9ewwxmb2Buu-pu9xZOOR5oByhM5sQhXqaDCaciEvKmx-FgWrYHGkzHKAjXix8mLcZyYsz99e3hQ8GF6Pbvb-6-SVFwlfZx9A6On-Xn3sNsNszwAwjy0PxUaZfIllOKprTSVBPMshuJdKEMG7BcyT0uj4tRLJkgWJPv2mrAav2aVoRvb0yGwwmPCWgAw88GyFzI8UVBSBIX1NMyZunGtXTjrV5nt35a_JdJn2CufXTQjbud3v4SvJRc-sHJnnIZZseXE1whQDa2H3MVEHD23PvnD3aFPKU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB5VRQIu5V-kFDASHLfd9Xqd7oFD1TRqaAkRUKkHpMVej6WKaBM1iVA4ceRY9Ul4FV6hT8LM_pVyROqBo7W25PV4PN_YM98AvCQralOTRIFVSRqoxMSBRQJyKo8dJ2amecm2_3ao94_Um-PkeAV-NrkwFT9Ee-HGmlGe16zgU-e3LklDOQOb_DtyYNho1mGVB7j8Sk7b7PWgRxJ-JWV_7-PuflDXFQimZI6SoGv4uc-kmCrlIpv7UKNRMebKYcRsKRh5iWFOUC7eDq00mmyodl7TfnUa-QqUDv0bSocpF4vovW8JqyRpQ5XPFMcBl71vaCJDuXV1vlcA7Z-wuLRr_Tvwq1mRKpzly-Zibjfzb3-RRf5PS3YX1mqQLXYqrbgHK1jch1u7TW27B_CJbwPtGIUpnBjhqR8vOBCRcDc1J-NlXRxovJyjIFQvPhhf9eWwmIvvZ6PLdAtxeHLx4_ydFBVT6QnOHsLRtfzcI1gtJgU-BkH-WeSVdrnsOqVoSNd7TSDLbufSJTLpwEYj9qw-LGaZZHpgTZ5rtwMv2s-0Ivx2YwqcLLhPTB0YfHZAljLOphUdSVYRT8uMpZu10s12hoO9trX-L4Oew81Rr58dDoYHT-C25LwPjvSUG7A6P13gU0Jjc_usVAABn697-_wGYW47VA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soluble+and+Perfluorinated+Polyelectrolyte+for+Safe+and+High%E2%80%90Performance+Li%E2%88%92O2+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xiong%2C+Qi&rft.au=Huang%2C+Gang&rft.au=Yu%2C+Yue&rft.au=Li%2C+Chao%E2%80%90Le&rft.date=2022-05-02&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202116635&rft.externalDBID=10.1002%252Fanie.202116635&rft.externalDocID=ANIE202116635 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |