Energy‐Level Alignment at TiO2@NH2‐MIL‐125 Interface for High‐Performance Gas Sensing
Metal oxide (MO)‐based chemiresistive sensors have great potential in environmental monitoring, security protection, and disease diagnosis. However, the thermally activated sensing mechanism in pristine MOs leads to high working temperature and poor selectivity, which are the main challenges impedin...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 64; no. 7; pp. e202419195 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
10.02.2025
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202419195 |
Cover
Loading…
Abstract | Metal oxide (MO)‐based chemiresistive sensors have great potential in environmental monitoring, security protection, and disease diagnosis. However, the thermally activated sensing mechanism in pristine MOs leads to high working temperature and poor selectivity, which are the main challenges impeding practical applications. Precise modulation of the band structure at the heterojunction interfaces of MOs offers the opportunity to unlock unique electrical and optical properties, enabling us to overcome these challenges. Metal–organic frameworks (MOFs) with tunable structures are promising materials for aligning the energy levels at the heterojunctions of MOs. Herein, we report the energy‐level structural engineering of MO@MOF heterojunctions to optimize chemiresistive sensing performance. The interface was flexibly modulated from a straddling gap to a staggered gap by ‐NH2 functionalization of TiO2@(NH2)x‐MIL‐125, varying x from 0 to 1 and 2, respectively. TiO2@(NH2)x‐MIL‐125 combines the advantages of MOs and MOFs to synergistically improve gas‐sensing properties. As a result, TiO2@NH2‐MIL‐125 is the first light‐activated material to detect NO2 at 1 ppb with a response time of < 0.3 min at room temperature. It also exhibited excellent selectivity and long‐term stability. Our study underscores the potential of energy band engineering in creating high‐performance sensors, offering a strategy to overcome current material limits.
Metal oxide‐based chemiresistive sensors suffer from high operating temperatures and poor selectivity. The TiO2@(NH2)x‐MIL‐125 (x = 0, 1, or 2) heterojunctions enhance sensing performance through energy level modulation. TiO2@NH2‐MIL‐125 detects NO2 at 1 ppb in < 0.3 min at room temperature, exhibiting high selectivity and stability, thereby underscoring the role of energy band engineering in the advancement of sensor performance. |
---|---|
AbstractList | Metal oxide (MO)‐based chemiresistive sensors have great potential in environmental monitoring, security protection, and disease diagnosis. However, the thermally activated sensing mechanism in pristine MOs leads to high working temperature and poor selectivity, which are the main challenges impeding practical applications. Precise modulation of the band structure at the heterojunction interfaces of MOs offers the opportunity to unlock unique electrical and optical properties, enabling us to overcome these challenges. Metal–organic frameworks (MOFs) with tunable structures are promising materials for aligning the energy levels at the heterojunctions of MOs. Herein, we report the energy‐level structural engineering of MO@MOF heterojunctions to optimize chemiresistive sensing performance. The interface was flexibly modulated from a straddling gap to a staggered gap by ‐NH2 functionalization of TiO2@(NH2)x‐MIL‐125, varying x from 0 to 1 and 2, respectively. TiO2@(NH2)x‐MIL‐125 combines the advantages of MOs and MOFs to synergistically improve gas‐sensing properties. As a result, TiO2@NH2‐MIL‐125 is the first light‐activated material to detect NO2 at 1 ppb with a response time of < 0.3 min at room temperature. It also exhibited excellent selectivity and long‐term stability. Our study underscores the potential of energy band engineering in creating high‐performance sensors, offering a strategy to overcome current material limits. Metal oxide (MO)-based chemiresistive sensors have great potential in environmental monitoring, security protection, and disease diagnosis. However, the thermally activated sensing mechanism in pristine MOs leads to high working temperature and poor selectivity, which are the main challenges impeding practical applications. Precise modulation of the band structure at the heterojunction interfaces of MOs offers the opportunity to unlock unique electrical and optical properties, enabling us to overcome these challenges. Metal-organic frameworks (MOFs) with tunable structures are promising materials for aligning the energy levels at the heterojunctions of MOs. Herein, we report the energy-level structural engineering of MO@MOF heterojunctions to optimize chemiresistive sensing performance. The interface was flexibly modulated from a straddling gap to a staggered gap by -NH2 functionalization of TiO2@(NH2)x-MIL-125, varying x from 0 to 1 and 2, respectively. TiO2@(NH2)x-MIL-125 combines the advantages of MOs and MOFs to synergistically improve gas-sensing properties. As a result, TiO2@NH2-MIL-125 is the first light-activated material to detect NO2 at 1 ppb with a response time of < 0.3 min at room temperature. It also exhibited excellent selectivity and long-term stability. Our study underscores the potential of energy band engineering in creating high-performance sensors, offering a strategy to overcome current material limits.Metal oxide (MO)-based chemiresistive sensors have great potential in environmental monitoring, security protection, and disease diagnosis. However, the thermally activated sensing mechanism in pristine MOs leads to high working temperature and poor selectivity, which are the main challenges impeding practical applications. Precise modulation of the band structure at the heterojunction interfaces of MOs offers the opportunity to unlock unique electrical and optical properties, enabling us to overcome these challenges. Metal-organic frameworks (MOFs) with tunable structures are promising materials for aligning the energy levels at the heterojunctions of MOs. Herein, we report the energy-level structural engineering of MO@MOF heterojunctions to optimize chemiresistive sensing performance. The interface was flexibly modulated from a straddling gap to a staggered gap by -NH2 functionalization of TiO2@(NH2)x-MIL-125, varying x from 0 to 1 and 2, respectively. TiO2@(NH2)x-MIL-125 combines the advantages of MOs and MOFs to synergistically improve gas-sensing properties. As a result, TiO2@NH2-MIL-125 is the first light-activated material to detect NO2 at 1 ppb with a response time of < 0.3 min at room temperature. It also exhibited excellent selectivity and long-term stability. Our study underscores the potential of energy band engineering in creating high-performance sensors, offering a strategy to overcome current material limits. Metal oxide (MO)‐based chemiresistive sensors have great potential in environmental monitoring, security protection, and disease diagnosis. However, the thermally activated sensing mechanism in pristine MOs leads to high working temperature and poor selectivity, which are the main challenges impeding practical applications. Precise modulation of the band structure at the heterojunction interfaces of MOs offers the opportunity to unlock unique electrical and optical properties, enabling us to overcome these challenges. Metal–organic frameworks (MOFs) with tunable structures are promising materials for aligning the energy levels at the heterojunctions of MOs. Herein, we report the energy‐level structural engineering of MO@MOF heterojunctions to optimize chemiresistive sensing performance. The interface was flexibly modulated from a straddling gap to a staggered gap by ‐NH2 functionalization of TiO2@(NH2)x‐MIL‐125, varying x from 0 to 1 and 2, respectively. TiO2@(NH2)x‐MIL‐125 combines the advantages of MOs and MOFs to synergistically improve gas‐sensing properties. As a result, TiO2@NH2‐MIL‐125 is the first light‐activated material to detect NO2 at 1 ppb with a response time of < 0.3 min at room temperature. It also exhibited excellent selectivity and long‐term stability. Our study underscores the potential of energy band engineering in creating high‐performance sensors, offering a strategy to overcome current material limits. Metal oxide‐based chemiresistive sensors suffer from high operating temperatures and poor selectivity. The TiO2@(NH2)x‐MIL‐125 (x = 0, 1, or 2) heterojunctions enhance sensing performance through energy level modulation. TiO2@NH2‐MIL‐125 detects NO2 at 1 ppb in < 0.3 min at room temperature, exhibiting high selectivity and stability, thereby underscoring the role of energy band engineering in the advancement of sensor performance. |
Author | Deng, Wei‐Hua Zhang, Min‐Yi Li, Chun‐Sen Xu, Gang Yao, Ming‐Shui |
Author_xml | – sequence: 1 givenname: Wei‐Hua surname: Deng fullname: Deng, Wei‐Hua organization: Chinese Academy of Sciences – sequence: 2 givenname: Min‐Yi surname: Zhang fullname: Zhang, Min‐Yi organization: Chinese Academy of Sciences – sequence: 3 givenname: Chun‐Sen surname: Li fullname: Li, Chun‐Sen email: chunsen.li@fjirsm.ac.cn organization: Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry – sequence: 4 givenname: Ming‐Shui orcidid: 0000-0003-1604-2611 surname: Yao fullname: Yao, Ming‐Shui email: msyao@ipe.ac.cn organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Gang orcidid: 0000-0001-8562-0724 surname: Xu fullname: Xu, Gang email: gxu@fjirsm.ac.cn organization: University of Chinese Academy of Sciences |
BookMark | eNpdkL1OwzAUhS1UJNrCyhyJhSXFvo4Te6OqShsptEiUEUVO6gRXqVOcFNSNR-AZeRIcFXVguT_nfLq6OgPUM7VRCF0TPCIYw500Wo0AQ0AEEewM9QkD4tMooj03B5T6EWfkAg2aZuN4znHYR69To2x5-Pn6TtSHqrxxpUuzVab1ZOut9BLuF3Nw7mOcuEqAebFplS1krryitt5cl2_OeHJSbbfSOHkmG-9ZmUab8hKdF7Jq1NVfH6KXh-lqMveT5SyejBN_B2HIfJpxSbiIMsGpXAtGQiLygLMsAMjWAvCa5kWYhUIwGgHPs4DjXMoOBChyoEN0e7y7s_X7XjVtutVNrqpKGlXvm5SSIGQUC0EdevMP3dR7a9x3jgoZMA68o8SR-tSVOqQ7q7fSHlKC0y7qtIs6PUWdjhfx9LTRX-_Zdx4 |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2025 Wiley-VCH GmbH 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2025 Wiley-VCH GmbH – notice: 2024 Wiley-VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202419195 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | ANIE202419195 |
Genre | article |
GrantInformation_xml | – fundername: Fujian Education Department Project funderid: JAT231011 – fundername: Natural Science Foundation of Fujian Province funderid: 2024J01455 – fundername: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China funderid: 2021ZR101 – fundername: Scientific Research and Equipment Development Project of CAS funderid: YJKYQ20210024 – fundername: Self-deployment Project Research Program of Haixi Institutes, Chinese Academy of Sciences funderid: CXZX-2022-GH09 – fundername: the research fund of State Key Laboratory of Mesoscience and Engineering funderid: MESO-23-A07; MESO-23-T02 – fundername: National Natural Science Foundation of China funderid: 91961115; 22171263; 22325109; 22475046; 22494633 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM K9. 53G 7X8 |
ID | FETCH-LOGICAL-p2665-3b8a1897b983ad951619c485b422bd920d3cf6b69953728cb480caa951622fc23 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 22:00:10 EDT 2025 Fri Jul 18 04:11:31 EDT 2025 Sun Jul 06 04:44:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2665-3b8a1897b983ad951619c485b422bd920d3cf6b69953728cb480caa951622fc23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1604-2611 0000-0001-8562-0724 |
PQID | 3165258283 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3146530993 proquest_journals_3165258283 wiley_primary_10_1002_anie_202419195_ANIE202419195 |
PublicationCentury | 2000 |
PublicationDate | February 10, 2025 |
PublicationDateYYYYMMDD | 2025-02-10 |
PublicationDate_xml | – month: 02 year: 2025 text: February 10, 2025 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2018; 360 2019; 11 2024; 504 2023; 620 2016; 187 2008; 8 2024 2021; 121 2024; 36 2019; 244 2020; 7 2023; 22 2023; 493 2016; 516 2024; 514 2013; 117 2022; 34 2020; 49 2016; 353 2014; 14 2016; 237 2000; 287 2024; 631 2014; 118 2007; 18 2021; 7 2001; 123 2023; 18 2017; 27 2013; 188 2024; 53 2017; 29 2015; 207 2009; 131 2021; 50 2024; 19 2017; 139 2016; 55 2021; 16 2003; 424 2016; 3 2018; 359 2020; 30 2022; 5 2022; 9 2013; 135 2008; 136 2001; 77 2016; 28 2012; 4 2016; 8 2016; 9 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 50 start-page: 6349 year: 2021 end-page: 6368 publication-title: Chem. Soc. Rev. – volume: 493 year: 2023 publication-title: Coord. Chem. Rev. – volume: 19 start-page: 941 year: 2024 end-page: 947 publication-title: Nat. Nanotechnol. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 77 start-page: 55 year: 2001 end-page: 61 publication-title: Sens. Actuators B – volume: 7 year: 2021 publication-title: Adv. Electron. Mater. – volume: 18 start-page: 136 year: 2023 end-page: 156 publication-title: Nat. Protoc. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 353 start-page: 808 year: 2016 end-page: 811 publication-title: Science – volume: 7 year: 2020 publication-title: Mater. Today – volume: 118 start-page: 11813 year: 2014 end-page: 11819 publication-title: J. Phys. Chem. C – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 353 start-page: 141 year: 2016 end-page: 144 publication-title: Science – volume: 8 start-page: 1012 year: 2008 end-page: 1016 publication-title: J. Nanosci. Nanotechnol. – volume: 504 year: 2024 publication-title: Coord. Chem. Rev. – volume: 514 year: 2024 publication-title: Coord. Chem. Rev. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 631 start-page: 771 year: 2024 end-page: 776 publication-title: Nature – volume: 9 year: 2022 publication-title: Natl. Sci. Rev. – volume: 117 start-page: 22805 year: 2013 end-page: 22810 publication-title: J. Phys. Chem. C – volume: 123 start-page: 9597 year: 2001 end-page: 9605 publication-title: J. Am. Chem. Soc. – volume: 359 start-page: 206 year: 2018 end-page: 210 publication-title: Science – volume: 207 start-page: 602 year: 2015 end-page: 613 publication-title: Sens. Actuators B – volume: 360 start-page: 1214 year: 2018 end-page: 1218 publication-title: Science – volume: 4 start-page: 928 year: 2012 end-page: 934 publication-title: ACS Appl. Mater. Interfaces – volume: 22 start-page: 1094 year: 2023 end-page: 1099 publication-title: Nat. Mater. – volume: 237 start-page: 1085 year: 2016 end-page: 1094 publication-title: Sens. Actuators B – volume: 12 start-page: 3419 year: 2010 end-page: 3421 publication-title: CrystEngComm – volume: 55 start-page: 6235 year: 2016 end-page: 6238 publication-title: Angew. Chem. Int. Ed. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 28 start-page: 5229 year: 2016 end-page: 5234 publication-title: Adv. Mater. – volume: 135 start-page: 10942 year: 2013 end-page: 10945 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 6364 year: 2020 end-page: 6401 publication-title: Chem. Soc. Rev. – volume: 139 start-page: 8222 year: 2017 end-page: 8228 publication-title: J. Am. Chem. Soc. – volume: 424 start-page: 171 year: 2003 end-page: 174 publication-title: Nature – volume: 188 start-page: 293 year: 2013 end-page: 297 publication-title: Sens. Actuators B – volume: 136 start-page: 46 year: 2008 end-page: 54 publication-title: Catal. Today – year: 2024 publication-title: Adv. Funct. Mater. – volume: 516 start-page: 185 year: 2016 end-page: 193 publication-title: J. Membr. Sci. – volume: 121 start-page: 12278 year: 2021 end-page: 12326 publication-title: Chem. Rev. – volume: 244 start-page: 511 year: 2019 end-page: 518 publication-title: Appl. Catal. B – volume: 16 start-page: 856 year: 2021 end-page: 868 publication-title: Nat. Nanotechnol. – volume: 131 start-page: 10857 year: 2009 end-page: 10859 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 3014 year: 2014 end-page: 3022 publication-title: Nano Lett. – volume: 8 start-page: 987 year: 2016 end-page: 987 publication-title: Nat. Chem. – volume: 18 year: 2007 publication-title: Nanotechnology – volume: 187 start-page: 212 year: 2016 end-page: 217 publication-title: Appl. Catal. B – volume: 53 start-page: 2530 year: 2024 end-page: 2577 publication-title: Chem. Soc. Rev. – volume: 620 start-page: 994 year: 2023 end-page: 1000 publication-title: Nature – year: 2024 publication-title: Adv. Mater. – volume: 11 start-page: 24172 year: 2019 end-page: 24183 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 744 year: 2022 end-page: 751 publication-title: Nat. Electron. – volume: 131 start-page: 3985 year: 2009 end-page: 3990 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 388 year: 2016 end-page: 395 publication-title: ChemSusChem – volume: 287 start-page: 622 year: 2000 end-page: 625 publication-title: Science – volume: 28 start-page: 795 year: 2016 end-page: 831 publication-title: Adv. Mater. |
SSID | ssj0028806 |
Score | 2.4919052 |
Snippet | Metal oxide (MO)‐based chemiresistive sensors have great potential in environmental monitoring, security protection, and disease diagnosis. However, the... Metal oxide (MO)-based chemiresistive sensors have great potential in environmental monitoring, security protection, and disease diagnosis. However, the... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e202419195 |
SubjectTerms | electrical device Energy bands energy level alignment Energy levels Environmental monitoring Gas sensors Heterojunctions high-performance NO2 detection Metal oxides Metal-organic frameworks MO@MOF interface Nitrogen dioxide Optical properties Room temperature Sensors Structural engineering Titanium dioxide |
Title | Energy‐Level Alignment at TiO2@NH2‐MIL‐125 Interface for High‐Performance Gas Sensing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202419195 https://www.proquest.com/docview/3165258283 https://www.proquest.com/docview/3146530993 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QF7jwRrwVJK4dndO0zY1p2hiIDcRD4oKqJE2nCdQhtl048RP4jfwS7HYrjyNcKlWJpdaxky-J_ZmxI-2EzXDi9zIpjBe4SHoqhcyzDpc7HQkXFNUbur2wcxec38v7b1n8JT9EdeBGnlHM1-Tg2oyOv0hDKQMb93e4Aqm6oixzCtgiVHRd8UcBGmeZXiSER1XoZ6yNPhz_FP-BL7-j1GKZaS8zPfvAMrrksTYZm5p9_cXd-J8_WGFLUwzKG6XRrLI5l6-xheas9Ns6e2gVGYEfb-8XFFPEG0-DfhE1wPWY3w4u4aTXAWztnl3gE8ELLw4WM20dRxDMKXgEG66-khL4qR7xGwqWz_sb7K7dum12vGkdBu8ZR1F6wsS6HqvIqFjoFCEZbrpsEEsTAJhUgZ_ieIcmVEqKCGJrgti3WlNHgMyC2GTz-TB3W4zbyMm6CTOZChloRUJZoH0Ut6AglttsbzYOydSZRomohxLoek9ss8OqGVVCdxs6d8MJ9SGiOIS72AcKpSfPJV1HUhIzQ0LqTip1J43eWat62_mL0C5bBKoGTOVh_D02P36ZuH2EKGNzUJjhJ_4u4Bo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLagHOAyYAPRrWyexDWQPsdJfFvVlbVbWyYo0i5TZDtOVW1Kq7W9cNqfsL9xf8neS5oAO8IlUmQ_KXn-9dl-7_sYO9NO2Awnfi-TwniBi6SnUsg863C505FwQaHeMBqH_dvg8zdZRRNSLkzJD1EfuNHIKOZrGuB0IH1xzxpKKdi4wcMlSLWV3GY7JOtNIgYfr2sGKcDuWSYYCeGRDn3F2-jDxWP7RwjzIU4tFprLfWaqTyzjS36cr1fm3N79x974rH84YC82MJR3yn5zyLZc_pLtdiv1t1fse69ICvz7-8-Qwop45-dsWgQOcL3ik9kVfBj3AUtHgyE-Eb_w4mwx09ZxxMGc4kew4Ot9XgL_pJf8huLl8-kRu73sTbp9byPF4C2wIaUnTKzbsYqMioVOEZXhvssGsTQBgEkV-Ck2eWhCpaSIILYmiH2rNVUEyCyIY9bI57k7YdxGTrZNmMlUyEArMsoC7aO5BQWxbLJW1RDJZjwtE9EOJdANn2iy93UxuoSuN3Tu5muqQ1xxiHixDhReTxYlY0dScjNDQu5OancnnfGgV7-9forRO7bbn4yGyXAw_vKG7QGJA5NajN9ijdWvtTtFxLIyb4s--Q8Il-Q0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwELZYkFgu_C2r5XeNxDWQju0kvlFBS7tbCtoFiQuKbMdBCBQqaC-ceASekSdhJmkD7JG9RIo8IyVjj_3ZnvmGsR3jhctx4g9yJWwgfawCnUEeOI_LnYmFl2X1huN-1DmXvy7Uxbss_oofoj5wI88o52ty8EGW772RhlIGNu7vcAXSDa2-sBkZoccQLPpTE0gBjs4qv0iIgMrQT2gbQ9j7qP8BYL6HqeU6015gZvKFVXjJze5oaHfd4z_kjf_zC4tsfgxCebMaNUtsyhfL7OvBpPbbN3bZKlMCX56eexRUxJu311dl2AA3Q352fQL7_Q5g63G3h09EL7w8WcyN8xxRMKfoEWw4fctK4Efmgf-laPniaoWdt1tnB51gXIghGGA3qkDYxDQSHVudCJMhJsNdl5OJshLAZhrCDDs8spHWSsSQOCuT0BlDggC5A_GdTRd3hf_BuIu9atgoV5lQ0mhSyqUJUd2BhkStso1JP6Rjb3pIRSNSQPd7YpVt181oErrcMIW_G5EMMcUh3kUZKI2eDiq-jrRiZoaUzJ3W5k6b_W6rflv7jNJPNnt62E573f7vdTYHVBmYSsWEG2x6eD_ymwhXhnarHJGvirbi7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Level+Alignment+at+TiO2%40NH2-MIL-125+Interface+for+High-Performance+Gas+Sensing&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Deng%2C+Wei-Hua&rft.au=Zhang%2C+Min-Yi&rft.au=Li%2C+Chun-Sen&rft.au=Yao%2C+Ming-Shui&rft.date=2025-02-10&rft.issn=1521-3773&rft.eissn=1521-3773&rft.spage=e202419195&rft_id=info:doi/10.1002%2Fanie.202419195&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |