Energy‐Level Alignment at TiO2@NH2‐MIL‐125 Interface for High‐Performance Gas Sensing

Metal oxide (MO)‐based chemiresistive sensors have great potential in environmental monitoring, security protection, and disease diagnosis. However, the thermally activated sensing mechanism in pristine MOs leads to high working temperature and poor selectivity, which are the main challenges impedin...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 64; no. 7; pp. e202419195 - n/a
Main Authors Deng, Wei‐Hua, Zhang, Min‐Yi, Li, Chun‐Sen, Yao, Ming‐Shui, Xu, Gang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 10.02.2025
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202419195

Cover

Loading…
Abstract Metal oxide (MO)‐based chemiresistive sensors have great potential in environmental monitoring, security protection, and disease diagnosis. However, the thermally activated sensing mechanism in pristine MOs leads to high working temperature and poor selectivity, which are the main challenges impeding practical applications. Precise modulation of the band structure at the heterojunction interfaces of MOs offers the opportunity to unlock unique electrical and optical properties, enabling us to overcome these challenges. Metal–organic frameworks (MOFs) with tunable structures are promising materials for aligning the energy levels at the heterojunctions of MOs. Herein, we report the energy‐level structural engineering of MO@MOF heterojunctions to optimize chemiresistive sensing performance. The interface was flexibly modulated from a straddling gap to a staggered gap by ‐NH2 functionalization of TiO2@(NH2)x‐MIL‐125, varying x from 0 to 1 and 2, respectively. TiO2@(NH2)x‐MIL‐125 combines the advantages of MOs and MOFs to synergistically improve gas‐sensing properties. As a result, TiO2@NH2‐MIL‐125 is the first light‐activated material to detect NO2 at 1 ppb with a response time of < 0.3 min at room temperature. It also exhibited excellent selectivity and long‐term stability. Our study underscores the potential of energy band engineering in creating high‐performance sensors, offering a strategy to overcome current material limits. Metal oxide‐based chemiresistive sensors suffer from high operating temperatures and poor selectivity. The TiO2@(NH2)x‐MIL‐125 (x = 0, 1, or 2) heterojunctions enhance sensing performance through energy level modulation. TiO2@NH2‐MIL‐125 detects NO2 at 1 ppb in < 0.3 min at room temperature, exhibiting high selectivity and stability, thereby underscoring the role of energy band engineering in the advancement of sensor performance.
AbstractList Metal oxide (MO)‐based chemiresistive sensors have great potential in environmental monitoring, security protection, and disease diagnosis. However, the thermally activated sensing mechanism in pristine MOs leads to high working temperature and poor selectivity, which are the main challenges impeding practical applications. Precise modulation of the band structure at the heterojunction interfaces of MOs offers the opportunity to unlock unique electrical and optical properties, enabling us to overcome these challenges. Metal–organic frameworks (MOFs) with tunable structures are promising materials for aligning the energy levels at the heterojunctions of MOs. Herein, we report the energy‐level structural engineering of MO@MOF heterojunctions to optimize chemiresistive sensing performance. The interface was flexibly modulated from a straddling gap to a staggered gap by ‐NH2 functionalization of TiO2@(NH2)x‐MIL‐125, varying x from 0 to 1 and 2, respectively. TiO2@(NH2)x‐MIL‐125 combines the advantages of MOs and MOFs to synergistically improve gas‐sensing properties. As a result, TiO2@NH2‐MIL‐125 is the first light‐activated material to detect NO2 at 1 ppb with a response time of < 0.3 min at room temperature. It also exhibited excellent selectivity and long‐term stability. Our study underscores the potential of energy band engineering in creating high‐performance sensors, offering a strategy to overcome current material limits.
Metal oxide (MO)-based chemiresistive sensors have great potential in environmental monitoring, security protection, and disease diagnosis. However, the thermally activated sensing mechanism in pristine MOs leads to high working temperature and poor selectivity, which are the main challenges impeding practical applications. Precise modulation of the band structure at the heterojunction interfaces of MOs offers the opportunity to unlock unique electrical and optical properties, enabling us to overcome these challenges. Metal-organic frameworks (MOFs) with tunable structures are promising materials for aligning the energy levels at the heterojunctions of MOs. Herein, we report the energy-level structural engineering of MO@MOF heterojunctions to optimize chemiresistive sensing performance. The interface was flexibly modulated from a straddling gap to a staggered gap by -NH2 functionalization of TiO2@(NH2)x-MIL-125, varying x from 0 to 1 and 2, respectively. TiO2@(NH2)x-MIL-125 combines the advantages of MOs and MOFs to synergistically improve gas-sensing properties. As a result, TiO2@NH2-MIL-125 is the first light-activated material to detect NO2 at 1 ppb with a response time of < 0.3 min at room temperature. It also exhibited excellent selectivity and long-term stability. Our study underscores the potential of energy band engineering in creating high-performance sensors, offering a strategy to overcome current material limits.Metal oxide (MO)-based chemiresistive sensors have great potential in environmental monitoring, security protection, and disease diagnosis. However, the thermally activated sensing mechanism in pristine MOs leads to high working temperature and poor selectivity, which are the main challenges impeding practical applications. Precise modulation of the band structure at the heterojunction interfaces of MOs offers the opportunity to unlock unique electrical and optical properties, enabling us to overcome these challenges. Metal-organic frameworks (MOFs) with tunable structures are promising materials for aligning the energy levels at the heterojunctions of MOs. Herein, we report the energy-level structural engineering of MO@MOF heterojunctions to optimize chemiresistive sensing performance. The interface was flexibly modulated from a straddling gap to a staggered gap by -NH2 functionalization of TiO2@(NH2)x-MIL-125, varying x from 0 to 1 and 2, respectively. TiO2@(NH2)x-MIL-125 combines the advantages of MOs and MOFs to synergistically improve gas-sensing properties. As a result, TiO2@NH2-MIL-125 is the first light-activated material to detect NO2 at 1 ppb with a response time of < 0.3 min at room temperature. It also exhibited excellent selectivity and long-term stability. Our study underscores the potential of energy band engineering in creating high-performance sensors, offering a strategy to overcome current material limits.
Metal oxide (MO)‐based chemiresistive sensors have great potential in environmental monitoring, security protection, and disease diagnosis. However, the thermally activated sensing mechanism in pristine MOs leads to high working temperature and poor selectivity, which are the main challenges impeding practical applications. Precise modulation of the band structure at the heterojunction interfaces of MOs offers the opportunity to unlock unique electrical and optical properties, enabling us to overcome these challenges. Metal–organic frameworks (MOFs) with tunable structures are promising materials for aligning the energy levels at the heterojunctions of MOs. Herein, we report the energy‐level structural engineering of MO@MOF heterojunctions to optimize chemiresistive sensing performance. The interface was flexibly modulated from a straddling gap to a staggered gap by ‐NH2 functionalization of TiO2@(NH2)x‐MIL‐125, varying x from 0 to 1 and 2, respectively. TiO2@(NH2)x‐MIL‐125 combines the advantages of MOs and MOFs to synergistically improve gas‐sensing properties. As a result, TiO2@NH2‐MIL‐125 is the first light‐activated material to detect NO2 at 1 ppb with a response time of < 0.3 min at room temperature. It also exhibited excellent selectivity and long‐term stability. Our study underscores the potential of energy band engineering in creating high‐performance sensors, offering a strategy to overcome current material limits. Metal oxide‐based chemiresistive sensors suffer from high operating temperatures and poor selectivity. The TiO2@(NH2)x‐MIL‐125 (x = 0, 1, or 2) heterojunctions enhance sensing performance through energy level modulation. TiO2@NH2‐MIL‐125 detects NO2 at 1 ppb in < 0.3 min at room temperature, exhibiting high selectivity and stability, thereby underscoring the role of energy band engineering in the advancement of sensor performance.
Author Deng, Wei‐Hua
Zhang, Min‐Yi
Li, Chun‐Sen
Xu, Gang
Yao, Ming‐Shui
Author_xml – sequence: 1
  givenname: Wei‐Hua
  surname: Deng
  fullname: Deng, Wei‐Hua
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Min‐Yi
  surname: Zhang
  fullname: Zhang, Min‐Yi
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Chun‐Sen
  surname: Li
  fullname: Li, Chun‐Sen
  email: chunsen.li@fjirsm.ac.cn
  organization: Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
– sequence: 4
  givenname: Ming‐Shui
  orcidid: 0000-0003-1604-2611
  surname: Yao
  fullname: Yao, Ming‐Shui
  email: msyao@ipe.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Gang
  orcidid: 0000-0001-8562-0724
  surname: Xu
  fullname: Xu, Gang
  email: gxu@fjirsm.ac.cn
  organization: University of Chinese Academy of Sciences
BookMark eNpdkL1OwzAUhS1UJNrCyhyJhSXFvo4Te6OqShsptEiUEUVO6gRXqVOcFNSNR-AZeRIcFXVguT_nfLq6OgPUM7VRCF0TPCIYw500Wo0AQ0AEEewM9QkD4tMooj03B5T6EWfkAg2aZuN4znHYR69To2x5-Pn6TtSHqrxxpUuzVab1ZOut9BLuF3Nw7mOcuEqAebFplS1krryitt5cl2_OeHJSbbfSOHkmG-9ZmUab8hKdF7Jq1NVfH6KXh-lqMveT5SyejBN_B2HIfJpxSbiIMsGpXAtGQiLygLMsAMjWAvCa5kWYhUIwGgHPs4DjXMoOBChyoEN0e7y7s_X7XjVtutVNrqpKGlXvm5SSIGQUC0EdevMP3dR7a9x3jgoZMA68o8SR-tSVOqQ7q7fSHlKC0y7qtIs6PUWdjhfx9LTRX-_Zdx4
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2025 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2025 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202419195
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202419195
Genre article
GrantInformation_xml – fundername: Fujian Education Department Project
  funderid: JAT231011
– fundername: Natural Science Foundation of Fujian Province
  funderid: 2024J01455
– fundername: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
  funderid: 2021ZR101
– fundername: Scientific Research and Equipment Development Project of CAS
  funderid: YJKYQ20210024
– fundername: Self-deployment Project Research Program of Haixi Institutes, Chinese Academy of Sciences
  funderid: CXZX-2022-GH09
– fundername: the research fund of State Key Laboratory of Mesoscience and Engineering
  funderid: MESO-23-A07; MESO-23-T02
– fundername: National Natural Science Foundation of China
  funderid: 91961115; 22171263; 22325109; 22475046; 22494633
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
K9.
53G
7X8
ID FETCH-LOGICAL-p2665-3b8a1897b983ad951619c485b422bd920d3cf6b69953728cb480caa951622fc23
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 22:00:10 EDT 2025
Fri Jul 18 04:11:31 EDT 2025
Sun Jul 06 04:44:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2665-3b8a1897b983ad951619c485b422bd920d3cf6b69953728cb480caa951622fc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1604-2611
0000-0001-8562-0724
PQID 3165258283
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_3146530993
proquest_journals_3165258283
wiley_primary_10_1002_anie_202419195_ANIE202419195
PublicationCentury 2000
PublicationDate February 10, 2025
PublicationDateYYYYMMDD 2025-02-10
PublicationDate_xml – month: 02
  year: 2025
  text: February 10, 2025
  day: 10
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2018; 360
2019; 11
2024; 504
2023; 620
2016; 187
2008; 8
2024
2021; 121
2024; 36
2019; 244
2020; 7
2023; 22
2023; 493
2016; 516
2024; 514
2013; 117
2022; 34
2020; 49
2016; 353
2014; 14
2016; 237
2000; 287
2024; 631
2014; 118
2007; 18
2021; 7
2001; 123
2023; 18
2017; 27
2013; 188
2024; 53
2017; 29
2015; 207
2009; 131
2021; 50
2024; 19
2017; 139
2016; 55
2021; 16
2003; 424
2016; 3
2018; 359
2020; 30
2022; 5
2022; 9
2013; 135
2008; 136
2001; 77
2016; 28
2012; 4
2016; 8
2016; 9
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 50
  start-page: 6349
  year: 2021
  end-page: 6368
  publication-title: Chem. Soc. Rev.
– volume: 493
  year: 2023
  publication-title: Coord. Chem. Rev.
– volume: 19
  start-page: 941
  year: 2024
  end-page: 947
  publication-title: Nat. Nanotechnol.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 77
  start-page: 55
  year: 2001
  end-page: 61
  publication-title: Sens. Actuators B
– volume: 7
  year: 2021
  publication-title: Adv. Electron. Mater.
– volume: 18
  start-page: 136
  year: 2023
  end-page: 156
  publication-title: Nat. Protoc.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 353
  start-page: 808
  year: 2016
  end-page: 811
  publication-title: Science
– volume: 7
  year: 2020
  publication-title: Mater. Today
– volume: 118
  start-page: 11813
  year: 2014
  end-page: 11819
  publication-title: J. Phys. Chem. C
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 353
  start-page: 141
  year: 2016
  end-page: 144
  publication-title: Science
– volume: 8
  start-page: 1012
  year: 2008
  end-page: 1016
  publication-title: J. Nanosci. Nanotechnol.
– volume: 504
  year: 2024
  publication-title: Coord. Chem. Rev.
– volume: 514
  year: 2024
  publication-title: Coord. Chem. Rev.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 631
  start-page: 771
  year: 2024
  end-page: 776
  publication-title: Nature
– volume: 9
  year: 2022
  publication-title: Natl. Sci. Rev.
– volume: 117
  start-page: 22805
  year: 2013
  end-page: 22810
  publication-title: J. Phys. Chem. C
– volume: 123
  start-page: 9597
  year: 2001
  end-page: 9605
  publication-title: J. Am. Chem. Soc.
– volume: 359
  start-page: 206
  year: 2018
  end-page: 210
  publication-title: Science
– volume: 207
  start-page: 602
  year: 2015
  end-page: 613
  publication-title: Sens. Actuators B
– volume: 360
  start-page: 1214
  year: 2018
  end-page: 1218
  publication-title: Science
– volume: 4
  start-page: 928
  year: 2012
  end-page: 934
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 1094
  year: 2023
  end-page: 1099
  publication-title: Nat. Mater.
– volume: 237
  start-page: 1085
  year: 2016
  end-page: 1094
  publication-title: Sens. Actuators B
– volume: 12
  start-page: 3419
  year: 2010
  end-page: 3421
  publication-title: CrystEngComm
– volume: 55
  start-page: 6235
  year: 2016
  end-page: 6238
  publication-title: Angew. Chem. Int. Ed.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 28
  start-page: 5229
  year: 2016
  end-page: 5234
  publication-title: Adv. Mater.
– volume: 135
  start-page: 10942
  year: 2013
  end-page: 10945
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 6364
  year: 2020
  end-page: 6401
  publication-title: Chem. Soc. Rev.
– volume: 139
  start-page: 8222
  year: 2017
  end-page: 8228
  publication-title: J. Am. Chem. Soc.
– volume: 424
  start-page: 171
  year: 2003
  end-page: 174
  publication-title: Nature
– volume: 188
  start-page: 293
  year: 2013
  end-page: 297
  publication-title: Sens. Actuators B
– volume: 136
  start-page: 46
  year: 2008
  end-page: 54
  publication-title: Catal. Today
– year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 516
  start-page: 185
  year: 2016
  end-page: 193
  publication-title: J. Membr. Sci.
– volume: 121
  start-page: 12278
  year: 2021
  end-page: 12326
  publication-title: Chem. Rev.
– volume: 244
  start-page: 511
  year: 2019
  end-page: 518
  publication-title: Appl. Catal. B
– volume: 16
  start-page: 856
  year: 2021
  end-page: 868
  publication-title: Nat. Nanotechnol.
– volume: 131
  start-page: 10857
  year: 2009
  end-page: 10859
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 3014
  year: 2014
  end-page: 3022
  publication-title: Nano Lett.
– volume: 8
  start-page: 987
  year: 2016
  end-page: 987
  publication-title: Nat. Chem.
– volume: 18
  year: 2007
  publication-title: Nanotechnology
– volume: 187
  start-page: 212
  year: 2016
  end-page: 217
  publication-title: Appl. Catal. B
– volume: 53
  start-page: 2530
  year: 2024
  end-page: 2577
  publication-title: Chem. Soc. Rev.
– volume: 620
  start-page: 994
  year: 2023
  end-page: 1000
  publication-title: Nature
– year: 2024
  publication-title: Adv. Mater.
– volume: 11
  start-page: 24172
  year: 2019
  end-page: 24183
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 744
  year: 2022
  end-page: 751
  publication-title: Nat. Electron.
– volume: 131
  start-page: 3985
  year: 2009
  end-page: 3990
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 388
  year: 2016
  end-page: 395
  publication-title: ChemSusChem
– volume: 287
  start-page: 622
  year: 2000
  end-page: 625
  publication-title: Science
– volume: 28
  start-page: 795
  year: 2016
  end-page: 831
  publication-title: Adv. Mater.
SSID ssj0028806
Score 2.4919052
Snippet Metal oxide (MO)‐based chemiresistive sensors have great potential in environmental monitoring, security protection, and disease diagnosis. However, the...
Metal oxide (MO)-based chemiresistive sensors have great potential in environmental monitoring, security protection, and disease diagnosis. However, the...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e202419195
SubjectTerms electrical device
Energy bands
energy level alignment
Energy levels
Environmental monitoring
Gas sensors
Heterojunctions
high-performance NO2 detection
Metal oxides
Metal-organic frameworks
MO@MOF interface
Nitrogen dioxide
Optical properties
Room temperature
Sensors
Structural engineering
Titanium dioxide
Title Energy‐Level Alignment at TiO2@NH2‐MIL‐125 Interface for High‐Performance Gas Sensing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202419195
https://www.proquest.com/docview/3165258283
https://www.proquest.com/docview/3146530993
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QF7jwRrwVJK4dndO0zY1p2hiIDcRD4oKqJE2nCdQhtl048RP4jfwS7HYrjyNcKlWJpdaxky-J_ZmxI-2EzXDi9zIpjBe4SHoqhcyzDpc7HQkXFNUbur2wcxec38v7b1n8JT9EdeBGnlHM1-Tg2oyOv0hDKQMb93e4Aqm6oixzCtgiVHRd8UcBGmeZXiSER1XoZ6yNPhz_FP-BL7-j1GKZaS8zPfvAMrrksTYZm5p9_cXd-J8_WGFLUwzKG6XRrLI5l6-xheas9Ns6e2gVGYEfb-8XFFPEG0-DfhE1wPWY3w4u4aTXAWztnl3gE8ELLw4WM20dRxDMKXgEG66-khL4qR7xGwqWz_sb7K7dum12vGkdBu8ZR1F6wsS6HqvIqFjoFCEZbrpsEEsTAJhUgZ_ieIcmVEqKCGJrgti3WlNHgMyC2GTz-TB3W4zbyMm6CTOZChloRUJZoH0Ut6AglttsbzYOydSZRomohxLoek9ss8OqGVVCdxs6d8MJ9SGiOIS72AcKpSfPJV1HUhIzQ0LqTip1J43eWat62_mL0C5bBKoGTOVh_D02P36ZuH2EKGNzUJjhJ_4u4Bo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLagHOAyYAPRrWyexDWQPsdJfFvVlbVbWyYo0i5TZDtOVW1Kq7W9cNqfsL9xf8neS5oAO8IlUmQ_KXn-9dl-7_sYO9NO2Awnfi-TwniBi6SnUsg863C505FwQaHeMBqH_dvg8zdZRRNSLkzJD1EfuNHIKOZrGuB0IH1xzxpKKdi4wcMlSLWV3GY7JOtNIgYfr2sGKcDuWSYYCeGRDn3F2-jDxWP7RwjzIU4tFprLfWaqTyzjS36cr1fm3N79x974rH84YC82MJR3yn5zyLZc_pLtdiv1t1fse69ICvz7-8-Qwop45-dsWgQOcL3ik9kVfBj3AUtHgyE-Eb_w4mwx09ZxxMGc4kew4Ot9XgL_pJf8huLl8-kRu73sTbp9byPF4C2wIaUnTKzbsYqMioVOEZXhvssGsTQBgEkV-Ck2eWhCpaSIILYmiH2rNVUEyCyIY9bI57k7YdxGTrZNmMlUyEArMsoC7aO5BQWxbLJW1RDJZjwtE9EOJdANn2iy93UxuoSuN3Tu5muqQ1xxiHixDhReTxYlY0dScjNDQu5OancnnfGgV7-9forRO7bbn4yGyXAw_vKG7QGJA5NajN9ijdWvtTtFxLIyb4s--Q8Il-Q0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwELZYkFgu_C2r5XeNxDWQju0kvlFBS7tbCtoFiQuKbMdBCBQqaC-ceASekSdhJmkD7JG9RIo8IyVjj_3ZnvmGsR3jhctx4g9yJWwgfawCnUEeOI_LnYmFl2X1huN-1DmXvy7Uxbss_oofoj5wI88o52ty8EGW772RhlIGNu7vcAXSDa2-sBkZoccQLPpTE0gBjs4qv0iIgMrQT2gbQ9j7qP8BYL6HqeU6015gZvKFVXjJze5oaHfd4z_kjf_zC4tsfgxCebMaNUtsyhfL7OvBpPbbN3bZKlMCX56eexRUxJu311dl2AA3Q352fQL7_Q5g63G3h09EL7w8WcyN8xxRMKfoEWw4fctK4Efmgf-laPniaoWdt1tnB51gXIghGGA3qkDYxDQSHVudCJMhJsNdl5OJshLAZhrCDDs8spHWSsSQOCuT0BlDggC5A_GdTRd3hf_BuIu9atgoV5lQ0mhSyqUJUd2BhkStso1JP6Rjb3pIRSNSQPd7YpVt181oErrcMIW_G5EMMcUh3kUZKI2eDiq-jrRiZoaUzJ3W5k6b_W6rflv7jNJPNnt62E573f7vdTYHVBmYSsWEG2x6eD_ymwhXhnarHJGvirbi7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Level+Alignment+at+TiO2%40NH2-MIL-125+Interface+for+High-Performance+Gas+Sensing&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Deng%2C+Wei-Hua&rft.au=Zhang%2C+Min-Yi&rft.au=Li%2C+Chun-Sen&rft.au=Yao%2C+Ming-Shui&rft.date=2025-02-10&rft.issn=1521-3773&rft.eissn=1521-3773&rft.spage=e202419195&rft_id=info:doi/10.1002%2Fanie.202419195&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon