Ligand Defect‐Induced Active Sites in Ni‐MOF‐74 for Efficient Photocatalytic CO2 Reduction to CO

The conversion of CO2 into valuable carbon‐based products using clean and renewable solar energy has been a significant challenge in photocatalysis. It is of paramount importance to develop efficient photocatalysts for the catalytic conversion of CO2 using visible light. In this study, the Ni‐MOF‐74...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 23; pp. e2308005 - n/a
Main Authors Dong, Yong‐Li, Jiang, Yu, Ni, Shuang, Guan, Guo‐Wei, Zheng, Su‐Tao, Guan, Qingqing, Pei, Ling‐Min, Yang, Qing‐Yuan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.06.2024
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202308005

Cover

Loading…
Abstract The conversion of CO2 into valuable carbon‐based products using clean and renewable solar energy has been a significant challenge in photocatalysis. It is of paramount importance to develop efficient photocatalysts for the catalytic conversion of CO2 using visible light. In this study, the Ni‐MOF‐74 material is successfully modified to achieve a highly porous structure (Ni‐74‐Am) through temperature and solvent modulation. Compared to the original Ni‐MOF‐74, Ni‐74‐Am contains more unsaturated Ni active sites resulting from defects, thereby enhancing the performance of CO2 photocatalytic conversion. Remarkably, Ni‐74‐Am exhibits outstanding photocatalytic performance, with a CO generation rate of 1380 µmol g−1 h−1 and 94% CO selectivity under visible light, significantly surpassing the majority of MOF‐based photocatalysts reported to date. Furthermore, experimental characterizations reveal that Ni‐74‐Am has significantly higher efficiency of photogenerated electron–hole separation and faster carrier migration rate for photocatalytic CO2 reduction. This work enriches the design and application of defective MOFs and provides new insights into the design of MOF‐based photocatalysts for renewable energy and environmental sustainability. The findings of this study hold significant promise for developing efficient photocatalysts for CO2 reduction under visible‐light conditions. Defective metal‐organic framework (MOF)‐74 (Ni‐74‐Am) is synthesized by adjusting temperature and solvent in the synthesis of Ni‐MOF‐74. Despite lacking long‐range order, Ni‐74‐Am exhibits abundant ligand defects, resulting in enhanced photocatalytic CO2 reduction performance. It demonstrates excellent photocatalytic performance with a high CO generation rate of 1.38 mmol g−1 h−1 and a remarkable CO selectivity of 94%, surpassing most reported MOF‐based catalysts.
AbstractList The conversion of CO2 into valuable carbon‐based products using clean and renewable solar energy has been a significant challenge in photocatalysis. It is of paramount importance to develop efficient photocatalysts for the catalytic conversion of CO2 using visible light. In this study, the Ni‐MOF‐74 material is successfully modified to achieve a highly porous structure (Ni‐74‐Am) through temperature and solvent modulation. Compared to the original Ni‐MOF‐74, Ni‐74‐Am contains more unsaturated Ni active sites resulting from defects, thereby enhancing the performance of CO2 photocatalytic conversion. Remarkably, Ni‐74‐Am exhibits outstanding photocatalytic performance, with a CO generation rate of 1380 µmol g−1 h−1 and 94% CO selectivity under visible light, significantly surpassing the majority of MOF‐based photocatalysts reported to date. Furthermore, experimental characterizations reveal that Ni‐74‐Am has significantly higher efficiency of photogenerated electron–hole separation and faster carrier migration rate for photocatalytic CO2 reduction. This work enriches the design and application of defective MOFs and provides new insights into the design of MOF‐based photocatalysts for renewable energy and environmental sustainability. The findings of this study hold significant promise for developing efficient photocatalysts for CO2 reduction under visible‐light conditions.
The conversion of CO2 into valuable carbon-based products using clean and renewable solar energy has been a significant challenge in photocatalysis. It is of paramount importance to develop efficient photocatalysts for the catalytic conversion of CO2 using visible light. In this study, the Ni-MOF-74 material is successfully modified to achieve a highly porous structure (Ni-74-Am) through temperature and solvent modulation. Compared to the original Ni-MOF-74, Ni-74-Am contains more unsaturated Ni active sites resulting from defects, thereby enhancing the performance of CO2 photocatalytic conversion. Remarkably, Ni-74-Am exhibits outstanding photocatalytic performance, with a CO generation rate of 1380 µmol g-1 h-1 and 94% CO selectivity under visible light, significantly surpassing the majority of MOF-based photocatalysts reported to date. Furthermore, experimental characterizations reveal that Ni-74-Am has significantly higher efficiency of photogenerated electron-hole separation and faster carrier migration rate for photocatalytic CO2 reduction. This work enriches the design and application of defective MOFs and provides new insights into the design of MOF-based photocatalysts for renewable energy and environmental sustainability. The findings of this study hold significant promise for developing efficient photocatalysts for CO2 reduction under visible-light conditions.The conversion of CO2 into valuable carbon-based products using clean and renewable solar energy has been a significant challenge in photocatalysis. It is of paramount importance to develop efficient photocatalysts for the catalytic conversion of CO2 using visible light. In this study, the Ni-MOF-74 material is successfully modified to achieve a highly porous structure (Ni-74-Am) through temperature and solvent modulation. Compared to the original Ni-MOF-74, Ni-74-Am contains more unsaturated Ni active sites resulting from defects, thereby enhancing the performance of CO2 photocatalytic conversion. Remarkably, Ni-74-Am exhibits outstanding photocatalytic performance, with a CO generation rate of 1380 µmol g-1 h-1 and 94% CO selectivity under visible light, significantly surpassing the majority of MOF-based photocatalysts reported to date. Furthermore, experimental characterizations reveal that Ni-74-Am has significantly higher efficiency of photogenerated electron-hole separation and faster carrier migration rate for photocatalytic CO2 reduction. This work enriches the design and application of defective MOFs and provides new insights into the design of MOF-based photocatalysts for renewable energy and environmental sustainability. The findings of this study hold significant promise for developing efficient photocatalysts for CO2 reduction under visible-light conditions.
The conversion of CO2 into valuable carbon‐based products using clean and renewable solar energy has been a significant challenge in photocatalysis. It is of paramount importance to develop efficient photocatalysts for the catalytic conversion of CO2 using visible light. In this study, the Ni‐MOF‐74 material is successfully modified to achieve a highly porous structure (Ni‐74‐Am) through temperature and solvent modulation. Compared to the original Ni‐MOF‐74, Ni‐74‐Am contains more unsaturated Ni active sites resulting from defects, thereby enhancing the performance of CO2 photocatalytic conversion. Remarkably, Ni‐74‐Am exhibits outstanding photocatalytic performance, with a CO generation rate of 1380 µmol g−1 h−1 and 94% CO selectivity under visible light, significantly surpassing the majority of MOF‐based photocatalysts reported to date. Furthermore, experimental characterizations reveal that Ni‐74‐Am has significantly higher efficiency of photogenerated electron–hole separation and faster carrier migration rate for photocatalytic CO2 reduction. This work enriches the design and application of defective MOFs and provides new insights into the design of MOF‐based photocatalysts for renewable energy and environmental sustainability. The findings of this study hold significant promise for developing efficient photocatalysts for CO2 reduction under visible‐light conditions. Defective metal‐organic framework (MOF)‐74 (Ni‐74‐Am) is synthesized by adjusting temperature and solvent in the synthesis of Ni‐MOF‐74. Despite lacking long‐range order, Ni‐74‐Am exhibits abundant ligand defects, resulting in enhanced photocatalytic CO2 reduction performance. It demonstrates excellent photocatalytic performance with a high CO generation rate of 1.38 mmol g−1 h−1 and a remarkable CO selectivity of 94%, surpassing most reported MOF‐based catalysts.
Author Yang, Qing‐Yuan
Guan, Guo‐Wei
Ni, Shuang
Zheng, Su‐Tao
Guan, Qingqing
Dong, Yong‐Li
Jiang, Yu
Pei, Ling‐Min
Author_xml – sequence: 1
  givenname: Yong‐Li
  surname: Dong
  fullname: Dong, Yong‐Li
  organization: Xi'an Jiaotong University
– sequence: 2
  givenname: Yu
  surname: Jiang
  fullname: Jiang, Yu
  organization: Xi'an Jiaotong University
– sequence: 3
  givenname: Shuang
  surname: Ni
  fullname: Ni, Shuang
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Guo‐Wei
  surname: Guan
  fullname: Guan, Guo‐Wei
  organization: Xi'an Jiaotong University
– sequence: 5
  givenname: Su‐Tao
  surname: Zheng
  fullname: Zheng, Su‐Tao
  organization: Xi'an Jiaotong University
– sequence: 6
  givenname: Qingqing
  surname: Guan
  fullname: Guan, Qingqing
  email: 15545488@qq.com
  organization: Xinjiang University
– sequence: 7
  givenname: Ling‐Min
  surname: Pei
  fullname: Pei, Ling‐Min
  email: lmpei@xzmu.edu.cn
  organization: Xizang Minzu University
– sequence: 8
  givenname: Qing‐Yuan
  orcidid: 0000-0002-1742-2088
  surname: Yang
  fullname: Yang, Qing‐Yuan
  email: qingyuan.yang@xjtu.edu.cn
  organization: Xi'an Jiaotong University
BookMark eNpdkLtOwzAUhi0EEteV2RILS-HYTuxmROUqBYq4zJbjHINRapfEBXXjEXhGngQjUAeWc_3069e_TdZDDEjIPoMjBsCPh1nXHXHgAsYA5RrZYpKJkRzzan01M9gk28PwAiAYL9QWcbV_MqGlp-jQpq-Pz6vQLiy29MQm_4b03iccqA_0xufn9fQ8V1VQF3t65py3HkOit88xRWuS6ZbJWzqZcnqHWSb5GGiK-bBLNpzpBtz76zvk8fzsYXI5qqcXV5OTejTnUpYjxphowJVjVCU6QOGKlhWyEaIpqyaPquHCZuOq5SVr0BhVYdtIUzprG9GKHXL4qzvv4-sCh6RnfrDYdSZgXAyaVyCVEsDGGT34h77ERR-yOy1AFopLXkCmql_q3Xe41PPez0y_1Az0T-b6J3O9ylzfX9f1ahPf1wB68w
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH.
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202308005
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202308005
Genre article
GrantInformation_xml – fundername: Shccig‐Qinling Program
  funderid: SMYJY20220582
– fundername: National Natural Science Foundation of China
  funderid: 22371221
– fundername: China National Key R&D Program
  funderid: 2022YFB4003701
– fundername: XinJiang Science Fund for Distinguished Young Scholars
  funderid: 2022D01E40
– fundername: China Tobacco Anhui Industrial Co., Ltd.
  funderid: 2022162
– fundername: Natural Science Foundation of Tibet Autonomous Region
  funderid: XZ202001ZR0066G
– fundername: Young Scholar Incubation Plan of Xizang Minzu University
  funderid: 22MDX02
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-p2665-1113b0f58e75ef0e3f4d146b33b59bd147b23c2477d251beaa79edb6a5fccb3d3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 11:08:48 EDT 2025
Fri Jul 25 12:07:34 EDT 2025
Sun Jul 06 04:45:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2665-1113b0f58e75ef0e3f4d146b33b59bd147b23c2477d251beaa79edb6a5fccb3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1742-2088
PQID 3064726240
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_2906773018
proquest_journals_3064726240
wiley_primary_10_1002_smll_202308005_SMLL202308005
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2019; 9
2021; 43
2023; 13
2019; 31
2023; 145
2023; 464
2023; 462
2019; 58
2014; 47
2020; 12
2020; 11
2020; 10
2021; 143
2019; 141
2012; 33
2022; 28
2016; 284
2018; 47
2022; 144
2020; 8
2022; 442
2021; 13
2023; 62
2021; 1200
2018; 733
2022; 4
2022; 61
2023; 333
2020; 49
2021; 294
2022; 14
2021; 272
2022; 15
2023; 616
2021; 60
2022; 307
2022; 428
2022; 16
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 428
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 464
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 442
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 141
  start-page: 7615
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 61
  year: 2022
  publication-title: Inorg. Chem.
– volume: 284
  start-page: 1348
  year: 2016
  publication-title: Chem. Eng. J.
– volume: 4
  year: 2022
  publication-title: J. Energy Chem.
– volume: 307
  year: 2022
  publication-title: Appl. Catal., B
– volume: 294
  year: 2021
  publication-title: Appl. Catal., B
– volume: 28
  year: 2022
  publication-title: Appl. Mater. Today
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 47
  start-page: 1555
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 345
  year: 2020
  publication-title: ACS Catal.
– volume: 33
  start-page: 580
  year: 2012
  publication-title: J. Comput. Chem.
– volume: 49
  start-page: 5143
  year: 2020
  publication-title: Dalton Trans.
– volume: 31
  start-page: 5320
  year: 2019
  publication-title: Chem. Mater.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 616
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 47
  year: 2018
  publication-title: Dalton Trans.
– volume: 9
  start-page: 1726
  year: 2019
  publication-title: ACS Catal.
– volume: 10
  start-page: 5734
  year: 2020
  publication-title: ACS Catal.
– volume: 333
  year: 2023
  publication-title: Fuel
– volume: 62
  start-page: 4248
  year: 2023
  publication-title: Inorg. Chem.
– volume: 462
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 1200
  year: 2021
  publication-title: Comput. Theor. Chem.
– volume: 13
  start-page: 2547
  year: 2023
  publication-title: ACS Catal.
– volume: 43
  year: 2021
  publication-title: J. CO2 Util.
– volume: 16
  start-page: 181
  year: 2022
  publication-title: Nano Res.
– volume: 58
  start-page: 2717
  year: 2019
  publication-title: Inorg. Chem.
– volume: 733
  start-page: 8
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 15
  start-page: 8229
  year: 2022
  publication-title: Energies
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 272
  year: 2021
  publication-title: Sep. Purif. Technol.
SSID ssj0031247
Score 2.541931
Snippet The conversion of CO2 into valuable carbon‐based products using clean and renewable solar energy has been a significant challenge in photocatalysis. It is of...
The conversion of CO2 into valuable carbon-based products using clean and renewable solar energy has been a significant challenge in photocatalysis. It is of...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2308005
SubjectTerms Alternative energy sources
Carbon dioxide
Catalytic converters
Clean energy
CO2 photoreduction
defect
Defects
Metal-organic frameworks
metal‐organic framework
Ni‐MOF‐74
Photocatalysis
Photocatalysts
Solar energy
Title Ligand Defect‐Induced Active Sites in Ni‐MOF‐74 for Efficient Photocatalytic CO2 Reduction to CO
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202308005
https://www.proquest.com/docview/3064726240
https://www.proquest.com/docview/2906773018
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT4MwFG_MTnrwv3E6TU28shEKFI7L3LKY_TGbS3YjLW11UWERdtCTH8HP6CfxtWy4edQLKTSl8Oh779f28XsIXXM_ViwgxAp8ZlsujV0rENy1YnC1AdhkzzM5I_sDvztxb6fedO0v_oIfolxw05ph7LVWcMazxg9paPbyrLcOAEIHBYmpDtjSqGhU8kcRcF4muwr4LEsTb61YG22nsdl8A1-uo1TjZjp7iK0esIgueaovcl6P339xN_7nDfbR7hKD4mYxaA7QlkwO0c4aM-ERUr3ZA0sEvpE63OPr41On-IilwE1jH_EYkGqGZwkezKCyP-zAkboYEDBuG1IK8GX47jHNU7M-9AY94dbQwSPNFKvHAs5TuHCMJp32fatrLVMyWHPw5J6lE9NzW3mBpJ5UtiTKFWBrOSHcCzkUKXdIDFKnAoATl4zRUAruM0_FMSeCnKBKkibyFGFAotJnJBShgDk687kSoS2ULeBmIQ1VFdVWnyRa6lUW6fkSdXyAIVV0VVaDRuhtDpbIdJFFmsCeasMVVJFj5B_NC-aOqOBodiIt-aiUfDTu93rl2dlfGp2jbSi7RQxZDVXy14W8ALSS80szIr8B6A_kzw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECWC5JD2kKUL6mZjgF5lC6IkSkcjieG0sl04MdAbQYpkaiSRjFo-tKd8Qr4xX5IZylbjHpuLIJGgliFn5pEcvSHki4pzKxPGvCSWvhfyPPQSrUIvB1ebgE2OIpczcjCM-5Pw649oFU2I_8LU_BDNghtqhrPXqOC4IN35yxo6v7_DvQPA0IljMd3CtN5uVjVuGKQYuC-XXwW8lofUWyveRj_orLdfQ5gvcapzNL1dolavWMeX3LYXlWrnf_5hb3zVN-yRnSUMpd163OyTDVO8I29fkBO-Jzab3shC03ODER9PD4-Y5SM3mnadiaRXAFbndFrQ4RQqB6MeHHlIAQTTC8dLAe6Mfv9ZVqVbIvoNT6Jno4COkSwWhwOtSij4QCa9i-uzvrfMyuDNwJlHHuamV76NEsMjY33DbKjB3CrGVJQqOOUqYDmInWvATspIyVOjVSwjm-eKafaRbBZlYT4RCmDUxJKlOtUwTZexsjr1tfU13CzlqW2Rw1WfiKVqzQVOmXgQAxJpkdOmGpQCdzpkYcrFXCCHPUfblbRI4DpAzGryDlHTNAcCJS8ayYurQZY1V5__p9EJ2e5fDzKRXQ6_HZA3UB7WIWWHZLP6tTBHAF4qdeyG5zM6Cujq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT4MwFG6MJkYfvBunU2viK0ooUHg0bsvUXcymiW9NS1tdVFgce9Anf4K_0V_iadlw-qgvBNqUwuFcvl74DkLHIkw0jwhxopC7jk8T34mk8J0EQm0EPjkIbM7Idids3vqXd8HdzF_8BT9EOeFmLMP6a2PgQ6lPv0lDR89PZukAIHRkSUwX_NCNjF7XeiWBFIHoZdOrQNByDPPWlLbR9U5_tv8BMGdhqo0zjVXEp09YbC95PBnn4iR5-0Xe-J9XWEMrExCKzwqtWUdzKt1AyzPUhJtItwb3PJW4psx-j8_3D5PjI1ESn1kHifsAVUd4kOLOACrb3QYcqY8BAuO6ZaWAYIavH7I8sxNEr9ATPu96uGeoYo0y4DyDgi1026jfnDedSU4GZwihPHBMZnrh6iBSNFDaVUT7EpytIEQEsYBTKjySgNSpBOQkFOc0VlKEPNBJIogk22g-zVK1gzBAURVyEstYwiCdh0LL2JXalXCzmMa6gqrTT8ImhjViZsBEvRBwSAUdldVgEmadg6cqG4-YYbCnxnNFFeRZ-bNhQd3BCpJmjxnJs1LyrN9utcqr3b80OkSL17UGa110rvbQEhT7xX6yKprPX8ZqH5BLLg6scn4Brajnog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ligand+Defect-Induced+Active+Sites+in+Ni-MOF-74+for+Efficient+Photocatalytic+CO2+Reduction+to+CO&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Dong%2C+Yong-Li&rft.au=Jiang%2C+Yu&rft.au=Ni%2C+Shuang&rft.au=Guan%2C+Guo-Wei&rft.date=2024-06-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=20&rft.issue=23&rft.spage=e2308005&rft_id=info:doi/10.1002%2Fsmll.202308005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon