Application of Nanostructured TiO2 in UV Photodetectors: A Review
As a wide‐bandgap semiconductor material, titanium dioxide (TiO2), which possesses three crystal polymorphs (i.e., rutile, anatase, and brookite), has gained tremendous attention as a cutting‐edge material for application in the environment and energy fields. Based on the strong attractiveness from...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 28; pp. e2109083 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a wide‐bandgap semiconductor material, titanium dioxide (TiO2), which possesses three crystal polymorphs (i.e., rutile, anatase, and brookite), has gained tremendous attention as a cutting‐edge material for application in the environment and energy fields. Based on the strong attractiveness from its advantages such as high stability, excellent photoelectric properties, and low‐cost fabrication, the construction of high‐performance photodetectors (PDs) based on TiO2 nanostructures is being extensively developed. An elaborate microtopography and device configuration is the most widely used strategy to achieve efficient TiO2‐based PDs with high photoelectric performances; however, a deep understanding of all the key parameters that influence the behavior of photon‐generated carriers, is also highly required to achieve improved photoelectric performances, as well as their ultimate functional applications. Herein, an in‐depth illustration of the electrical and optical properties of TiO2 nanostructures in addition to the advances in the technological issues such as preparation, microdefects, p‐type doping, bandgap engineering, heterojunctions, and functional applications are presented. Finally, a future outlook for TiO2‐based PDs, particularly that of further functional applications is provided. This work will systematically illustrate the fundamentals of TiO2 and shed light on the preparation of more efficient TiO2 nanostructures and heterojunctions for future photoelectric applications.
Nanostructured TiO2 application in UV photodetectors is been comprehensively reviewed. More importantly, an in‐depth illustration of optoelectronic properties and technological issues is discussed in detail. This review provides a roadmap for material design and functional application for high‐performance optoelectronic devices. |
---|---|
AbstractList | As a wide‐bandgap semiconductor material, titanium dioxide (TiO2), which possesses three crystal polymorphs (i.e., rutile, anatase, and brookite), has gained tremendous attention as a cutting‐edge material for application in the environment and energy fields. Based on the strong attractiveness from its advantages such as high stability, excellent photoelectric properties, and low‐cost fabrication, the construction of high‐performance photodetectors (PDs) based on TiO2 nanostructures is being extensively developed. An elaborate microtopography and device configuration is the most widely used strategy to achieve efficient TiO2‐based PDs with high photoelectric performances; however, a deep understanding of all the key parameters that influence the behavior of photon‐generated carriers, is also highly required to achieve improved photoelectric performances, as well as their ultimate functional applications. Herein, an in‐depth illustration of the electrical and optical properties of TiO2 nanostructures in addition to the advances in the technological issues such as preparation, microdefects, p‐type doping, bandgap engineering, heterojunctions, and functional applications are presented. Finally, a future outlook for TiO2‐based PDs, particularly that of further functional applications is provided. This work will systematically illustrate the fundamentals of TiO2 and shed light on the preparation of more efficient TiO2 nanostructures and heterojunctions for future photoelectric applications.
Nanostructured TiO2 application in UV photodetectors is been comprehensively reviewed. More importantly, an in‐depth illustration of optoelectronic properties and technological issues is discussed in detail. This review provides a roadmap for material design and functional application for high‐performance optoelectronic devices. As a wide‐bandgap semiconductor material, titanium dioxide (TiO2), which possesses three crystal polymorphs (i.e., rutile, anatase, and brookite), has gained tremendous attention as a cutting‐edge material for application in the environment and energy fields. Based on the strong attractiveness from its advantages such as high stability, excellent photoelectric properties, and low‐cost fabrication, the construction of high‐performance photodetectors (PDs) based on TiO2 nanostructures is being extensively developed. An elaborate microtopography and device configuration is the most widely used strategy to achieve efficient TiO2‐based PDs with high photoelectric performances; however, a deep understanding of all the key parameters that influence the behavior of photon‐generated carriers, is also highly required to achieve improved photoelectric performances, as well as their ultimate functional applications. Herein, an in‐depth illustration of the electrical and optical properties of TiO2 nanostructures in addition to the advances in the technological issues such as preparation, microdefects, p‐type doping, bandgap engineering, heterojunctions, and functional applications are presented. Finally, a future outlook for TiO2‐based PDs, particularly that of further functional applications is provided. This work will systematically illustrate the fundamentals of TiO2 and shed light on the preparation of more efficient TiO2 nanostructures and heterojunctions for future photoelectric applications. |
Author | Li, Ziliang Zuo, Chaolei Fang, Xiaosheng Li, Ziqing |
Author_xml | – sequence: 1 givenname: Ziliang surname: Li fullname: Li, Ziliang organization: Fudan University – sequence: 2 givenname: Ziqing surname: Li fullname: Li, Ziqing organization: Fudan University – sequence: 3 givenname: Chaolei surname: Zuo fullname: Zuo, Chaolei organization: Fudan University – sequence: 4 givenname: Xiaosheng orcidid: 0000-0003-3387-4532 surname: Fang fullname: Fang, Xiaosheng email: xshfang@fudan.edu.cn organization: Fudan University |
BookMark | eNpdkM9LwzAYhoNMcJtePQe8eOn8krQx8VbmT5hOZPMasibBjK6pTevYf2_HZAe_y8sHDy8vzwgNqlBZhC4JTAgAvdFmoycUKAEJgp2gIckoSVKQ2QANQbIskTwVZ2gU4xoAJAc-RHle16UvdOtDhYPDb7oKsW26ou0aa_DCzyn2FV5-4vev0AZjW1u0oYl3OMcf9sfb7Tk6dbqM9uIvx2j5-LCYPiez-dPLNJ8lNeWcJXZFZOqsAWEzljJ3q6FYCZJmaUZdwbXhIpViRagDuTKuACmcM5xknBrBLGNjdH3orZvw3dnYqo2PhS1LXdnQRUU5pVQIRmmPXv1D16Frqn5dT4n-Uk5lT8kDtfWl3am68Rvd7BQBtdep9jrVUafK71_z48d-AWr5a2Q |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202109083 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA202109083 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Science and Technology Commission of Shanghai Municipality funderid: 21520712600; 19520744300 – fundername: National Key R&D Program of China funderid: 2018YFA0703700; 2017YFA0204600 – fundername: National Natural Science Foundation of China funderid: 51902057; 12061131009; 51872050 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-p2663-eb194fed08e5343f7a0cb8145452fc6ad68498b12f09bdfc098ffd61562d83e33 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Fri Aug 16 11:36:12 EDT 2024 Thu Oct 10 15:28:42 EDT 2024 Sat Aug 24 01:03:26 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2663-eb194fed08e5343f7a0cb8145452fc6ad68498b12f09bdfc098ffd61562d83e33 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0003-3387-4532 |
PQID | 2688884629 |
PQPubID | 2045203 |
PageCount | 43 |
ParticipantIDs | proquest_miscellaneous_2622288322 proquest_journals_2688884629 wiley_primary_10_1002_adma_202109083_ADMA202109083 |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 64 2009 2011; 102 2 2019; 15 2019 2019; 8 11 2004; 3 1967; 158 2020; 12 2016 2018; 665 17 2018 2019; 6 59 2009 2010 2010 2011; 256 21 51 115 2018 2019; 561 10 2021; 75 2013 2006 2014; 3 18 43 2018 2019 2018; 112 40 6 2009; 94 2020 2020; 30 170 2013; 117 2016; 42 2019; 29 1997 2018 2012; 101 13 1 2008; 112 2012; 24 2016; 45 2015 2009 2020 2021; 6 21 30 31 2014; 314 2011; 2 2019; 31 1984; 47 2020; 141 2019; 30 2019; 33 2013; 93 2006; 110 2013; 103 2005; 87 2020; 32 2020; 827 2016; 16 2011; 5 2011 2014 2017 2021; 56 43 11 33 2016; 12 2014; 305 2016; 4 2016 2017; 26 13 2016; 3 2020; 30 2017; 57 2020; 391 2016 2018; 6 6 2020; 276 2012; 45 2016; 26 2016; 8 2013 2017; 103 5 2014; 615 2014; 616 2021; 481 2011 2015; 5 162 2018; 406 2020; 55 2012 2020 2015; 4 10 15 2008; 4 2018; 1953 2020; 8 2020; 7 2014; 601 2019; 60 2020; 3 2020; 2 2013; 13 2016; 119 1950; 72 2020; 9 2002; 106 2003; 4 2003; 82 2014; 8 2020; 816 2021 2000; 14 61 2018 2018 2020; 18 29 10 1964 2016 2005 2006; 105 90 2002; 37 2015 2018 2019; 25 2 34 2019 2020; 241 215 2013; 48 2015; 5 2021; 3 2006; 12 2012 2013; 46 2017; 28 2017; 27 2013; 42 2017 2021; 8 12 2019 2021 2020; 29 42 32 2014; 195 2016; 127 2015; 8 2015; 7 2020; 109 2017; 13 2017 2018; 4 343 2000 2014; 26 114 2009; 9 2019; 773 2007; 40 2020; 65 2008; 453 2010; 96 2008 2013; 62 264 2013; 3 2011 2018 2020; 44 30 529 2014; 26 2009; 113 2020 2021; 268 17 2014; 255 2013; 9 2017 2018 2019; 27 28 33 2017 2021; 27 21 2018; 6 2007 2004; 111 451 2010; 21 2014 2018; 26 12 2018; 8 2018; 3 2018; 2 2021; 279 2018 2020; 30 30 2010; 114 2006; 26 2013; 750 2014; 16 2011; 66 2020; 217 2018; 30 2009 2014; 25 114 2018; 33 2014; 120 2016 2020; 1 2019; 792 2019; 7 2018; 29 2018; 28 2010; 31 2016 2019; 26 9 2019; 9 2019; 4 2013 2019; 30 24 2012; 100 2015 2017; 5 188 2019; 1 2007; 90 2016; 97 2014; 40 2018; 20 2018; 18 2006; 45 1968 2015 2018 2019; 162 18 18 7 2002; 124 2018; 751 1995 2009 2011 2014; 51 22 56 6 1994; 92 2018; 11 2018; 10 1994; 98 2018; 14 2005; 14 2017; 426 2017; 5 2017; 7 2004; 126 2017; 3 2011; 11 2016; 73 2015; 106 2001 2001; 79 72 2012 2015; 10 115 2012; 51 2016 2022; 28 105 1995 1992; 51 45 2021; 31 2020 2020; 19 31 2021; 33 2011 2016 2021; 32 55 8 2008 2013 2019; 320 4 29 2019; 119 2019 2019; 8 125 2003; 125 1998; 120 2012; 63 2015; 200 2008; 19 2021; 867 2015; 11 2011 2013 2017; 4 20 508 2011; 32 2009; 131 2005; 49 2004; 108 2014; 114 2005; 44 2016; 57 2016 2017; 3 17 2021; 10 2021; 12 2021; 854 2017 2017; 46 5 2014 2018; 113 73 2003 2012 2021 2014; 48 125 3 114 2011; 46 2012; 6 2012; 159 2011; 49 1987; 28 2019 2019; 9 7 2007 2015 2020; 11 3 10 2019; 494 2013 2014 2015; 52 24 25 |
References_xml | – volume: 26 year: 2016 publication-title: J. Micromech. Microeng. – volume: 16 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 26 9 start-page: 1400 year: 2016 2019 publication-title: Adv. Funct. Mater. Sci. Rep. – volume: 46 start-page: 855 year: 2011 publication-title: J. Mater. Sci. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 209 year: 2020 publication-title: J. Mater. Chem. C – volume: 26 12 start-page: 2619 year: 2014 2018 publication-title: Adv. Mater. ACS Nano – volume: 32 55 8 start-page: 653 6574 year: 2011 2016 2021 publication-title: IEEE Electron Device Lett. Inorg. Chem. Appl. Phys. Rev. – volume: 47 start-page: 399 year: 1984 publication-title: Rep. Prog. Phys. – volume: 12 start-page: 2759 year: 2016 publication-title: Small – volume: 561 10 start-page: 88 1989 year: 2018 2019 publication-title: Nature Nat. Commun. – volume: 33 year: 2019 publication-title: Appl. Organomet. Chem. – volume: 6 21 30 31 start-page: 3781 2034 year: 2015 2009 2020 2021 publication-title: J. Phys. Chem. Lett. Adv. Mater. Adv. Funct. Mater. Adv. Mater. – volume: 158 start-page: 388 year: 1967 publication-title: Science – volume: 29 year: 2018 publication-title: Nanotechnology – volume: 6 6 start-page: 7265 year: 2016 2018 publication-title: RSC Adv. ACS Sustainable Chem. Eng. – volume: 6 59 year: 2018 2019 publication-title: J. Mater. Chem. A Jpn. J. Appl. Phys. – volume: 616 start-page: 510 year: 2014 publication-title: J. Alloys Compd. – volume: 73 start-page: 29 year: 2016 publication-title: Mater. Res. Bull. – volume: 9 start-page: 2005 year: 2013 publication-title: Small – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2019 publication-title: Nanotechnology – volume: 112 40 6 start-page: 1186 year: 2018 2019 2018 publication-title: Appl. Phys. Lett. IEEE Electron Device Lett. Adv. Opt. Mater. – volume: 26 start-page: 1527 year: 2006 publication-title: J. Eur. Ceram. Soc. – volume: 3 17 start-page: 504 year: 2016 2017 publication-title: Adv. Mater. Interfaces Cryst. Growth Des. – volume: 112 start-page: 5275 year: 2008 publication-title: J. Phys. Chem. C – volume: 18 29 10 start-page: 4898 year: 2018 2018 2020 publication-title: J. Nanosci. Nanotechnol. Nanotechnology Optik – volume: 26 114 start-page: 207 9559 year: 2000 2014 publication-title: Appl. Catal. B: Environ. Chem. Rev. – volume: 3 year: 2018 publication-title: Adv. Mater. Technol. – volume: 29 42 32 year: 2019 2021 2020 publication-title: Adv. Funct. Mater. J. Semicond. Adv. Mater. – volume: 92 start-page: 267 year: 1994 publication-title: Solid State Commun. – volume: 40 start-page: 793 year: 2007 publication-title: Acc. Chem. Res. – volume: 19 31 year: 2020 2020 publication-title: Results Phys. Nanotechnology – volume: 268 17 year: 2020 2021 publication-title: Appl. Catal. B: Environ. Small – volume: 90 year: 2007 publication-title: Appl. Phys. Lett. – volume: 27 start-page: 641 year: 2017 publication-title: Prog. Nat. Sci.: Mater. Int. – volume: 11 start-page: 624 year: 2011 publication-title: Nano Lett. – volume: 93 start-page: 80 year: 2013 publication-title: Electrochim. Acta – volume: 4 year: 2019 publication-title: Adv. Mater. Technol. – volume: 4 20 508 start-page: 901 307 1 year: 2011 2013 2017 publication-title: Nano Res. Int. J. Miner., Metall. Mater. Phys. B – volume: 8 125 start-page: 1247 810 year: 2019 2019 publication-title: Nanophotonics Appl. Phys. A – volume: 119 year: 2016 publication-title: J. Appl. Phys. – volume: 125 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 56 43 11 33 start-page: 175 2200 year: 2011 2014 2017 2021 publication-title: Prog. Mater. Sci. Chem. Soc. Rev. Laser Photonics Rev. Adv. Mater. – volume: 110 year: 2006 publication-title: J. Phys. Chem. B – volume: 7 start-page: 3889 year: 2019 publication-title: J. Mater. Chem. C – volume: 51 45 start-page: 6842 3874 year: 1995 1992 publication-title: Phys. Rev. B Phys. Rev. B – volume: 305 start-page: 445 year: 2014 publication-title: Appl. Surf. Sci. – volume: 3 year: 2020 publication-title: ACS Appl. Nano Mater. – volume: 3 year: 2017 publication-title: Adv. Electron. Mater. – volume: 26 start-page: 2084 year: 2014 publication-title: Adv. Mater. – volume: 45 start-page: 3414 year: 2006 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 4332 year: 2020 publication-title: J. Mater. Sci. – volume: 10 start-page: 781 year: 2018 publication-title: Silicon – volume: 10 start-page: 3606 year: 2018 publication-title: Nanoscale – volume: 10 115 start-page: 989 8294 year: 2012 2015 publication-title: Open Chem. Chem. Rev. – volume: 13 year: 2017 publication-title: Small – volume: 27 21 start-page: 382 year: 2017 2021 publication-title: Adv. Funct. Mater. Nano Lett. – volume: 117 year: 2013 publication-title: J. Phys. Chem. C – volume: 1953 year: 2018 publication-title: AIP Conf. Proc. – volume: 24 start-page: 1697 year: 2012 publication-title: Adv. Mater. – volume: 3 year: 2013 publication-title: RSC Adv. – volume: 453 start-page: 638 year: 2008 publication-title: Nature – year: 1964 2016 – volume: 481 year: 2021 publication-title: J. Power Sources – volume: 1 start-page: 195 year: 2016 2020 end-page: 214 publication-title: Nat. Rev. Mater. – volume: 751 start-page: 56 year: 2018 publication-title: J. Alloys Compd. – volume: 8 12 start-page: 1664 2930 year: 2017 2021 publication-title: Nat. Commun. J. Phys. Chem. Lett. – volume: 37 start-page: 2171 year: 2002 publication-title: J. Mater. Sci. – volume: 20 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 438 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 100 year: 2012 publication-title: Appl. Phys. Lett. – volume: 14 61 start-page: 1645 7459 year: 2021 2000 publication-title: Materials Phys. Rev. B – volume: 31 start-page: 588 year: 2010 publication-title: IEEE Electron Device Lett. – volume: 106 year: 2002 publication-title: J. Phys. Chem. B – volume: 11 start-page: 3241 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 108 start-page: 3492 year: 2004 publication-title: J. Phys. Chem. B – volume: 28 year: 2017 publication-title: Nanotechnology – volume: 96 start-page: 557 year: 2010 publication-title: Appl. Catal. B: Environ. – volume: 5 start-page: 5158 year: 2011 publication-title: ACS Nano – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 64 start-page: 198 year: 2021 publication-title: Sci. China Mater. – volume: 87 year: 2005 publication-title: Appl. Phys. Lett. – volume: 773 start-page: 890 year: 2019 publication-title: J. Alloys Compd. – volume: 7 start-page: 1702 year: 2020 publication-title: Natl. Sci. Rev. – volume: 29 year: 2018 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 51 22 56 6 start-page: 1173 1639 year: 1995 2009 2011 2014 publication-title: Phys. Rev. B: Condens. Matter. Chem. Mater. Chin. Sci. Bull. Nanoscale – volume: 12 start-page: 2383 year: 2006 publication-title: Chem. – Eur. J. – volume: 27 28 33 year: 2017 2018 2019 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Mod. Phys. Lett. B – volume: 2 start-page: 577 year: 2020 publication-title: InfoMat – volume: 12 start-page: 6064 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 259 year: 2020 publication-title: Nanotechnol. Rev. – volume: 82 start-page: 3901 year: 2003 publication-title: Appl. Phys. Lett. – volume: 109 year: 2020 publication-title: Opt. Mater. – volume: 2 year: 2020 publication-title: Eng. Res. Express – volume: 8 start-page: 4133 year: 2014 publication-title: ACS Nano – volume: 241 215 start-page: 514 year: 2019 2020 publication-title: Appl. Catal. B: Environ. Sol. Energy Mater. Solar C. – volume: 391 year: 2020 publication-title: Surf. Coat. Technol. – volume: 120 start-page: 4682 year: 1998 publication-title: J. Am. Chem. Soc. – volume: 141 year: 2020 publication-title: Superlattices Microstruct. – volume: 15 year: 2019 publication-title: Small – volume: 5 188 start-page: 52 year: 2015 2017 publication-title: Sci. Rep. Mater. Lett. – volume: 114 start-page: 9613 year: 2014 publication-title: Chem. Rev. – volume: 4 start-page: 20 year: 2003 publication-title: Geochem. Trans. – volume: 124 start-page: 2305 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 426 start-page: 391 year: 2017 publication-title: Appl. Surf. Sci. – volume: 45 start-page: 3145 year: 2016 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 1851 year: 2005 publication-title: Chem. Commun. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 48 start-page: 265 year: 2013 publication-title: Cryst. Res. Technol. – volume: 52 24 25 start-page: 3581 5719 445 year: 2013 2014 2015 publication-title: Ind. Eng. Chem. Res. Adv. Funct. Mater. Adv. Funct. Mater. – volume: 494 start-page: 575 year: 2019 publication-title: Appl. Surf. Sci. – volume: 4 10 15 start-page: 4164 362 4059 year: 2012 2020 2015 publication-title: ACS Appl. Mater. Interfaces Nanomaterials Nano Lett. – volume: 44 start-page: 3466 year: 2005 publication-title: Angew. Chem., Int. Ed. – volume: 750 start-page: 301 year: 2013 publication-title: Adv. Mater. Res. – volume: 8 start-page: 91 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 452 year: 2019 publication-title: Nanoscale Horiz. – volume: 406 start-page: 118 year: 2018 publication-title: Opt. Commun. – volume: 66 start-page: 185 year: 2011 publication-title: Surf. Sci. Rep. – volume: 45 year: 2012 publication-title: J. Phys. D: Appl. Phys. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 126 start-page: 4943 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 5 year: 2017 publication-title: J. Mater. Chem. C – volume: 4 year: 2016 publication-title: J. Mater. Chem. C – volume: 120 start-page: 219 year: 2014 publication-title: Mater. Lett. – volume: 114 start-page: 9662 year: 2014 publication-title: Chem. Rev. – volume: 2 start-page: 1847 year: 2018 publication-title: Mater. Chem. Front. – volume: 14 year: 2018 publication-title: Small – volume: 49 start-page: 889 year: 2005 publication-title: Solid‐State Electron. – volume: 8 11 start-page: 899 year: 2019 2019 publication-title: Nanophotonics Nanoscale – volume: 276 year: 2020 publication-title: Mater. Lett. – volume: 113 73 start-page: 58 year: 2014 2018 publication-title: Phys. Rev. Lett. Surf. Sci. Rep. – volume: 127 start-page: 2806 year: 2016 publication-title: Optik – volume: 18 start-page: 4697 year: 2018 publication-title: Nano Lett. – volume: 11 start-page: 1059 year: 2015 publication-title: Electron. Mater. Lett. – volume: 42 start-page: 5858 year: 2016 publication-title: Ceram. Int. – volume: 9 start-page: 1260 year: 2009 publication-title: Nano Lett. – volume: 26 13 start-page: 7359 year: 2016 2017 publication-title: Adv. Funct. Mater. Small – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 5 162 start-page: 8412 E251 year: 2011 2015 publication-title: ACS Nano J. Electrochem. Soc. – volume: 63 start-page: 481 year: 2012 publication-title: Intl. J. Adv. Manuf. Technol. – volume: 159 start-page: J132 year: 2012 publication-title: J. Electrochem. Soc. – volume: 25 2 34 start-page: 5794 49 year: 2015 2018 2019 publication-title: Adv. Funct. Mater. Phy. Rev. Mater. J. Inorg. Mater. – volume: 30 30 year: 2018 2020 publication-title: Adv. Mater. Adv. Funct. Mater. – volume: 9 start-page: 134 year: 2019 publication-title: Crystals – volume: 32 year: 2020 publication-title: Nanotechnology – volume: 7 start-page: 1828 year: 2020 publication-title: Mater. Horiz. – volume: 101 13 1 start-page: 9342 92 640 year: 1997 2018 2012 publication-title: J. Phys. Chem. B Nanoscale Res. Lett. Nano Energy – volume: 8 start-page: 1353 year: 2020 publication-title: J. Mater. Chem. C – volume: 4 343 start-page: 708 year: 2017 2018 publication-title: Adv. Sci. Chem. Eng. J. – volume: 11 3 10 start-page: 401 year: 2007 2015 2020 publication-title: Renewable Sustainable Energy Rev. J. Mater. Chem. A Adv. Energy Mater. – volume: 79 72 start-page: 17 239 year: 2001 2001 publication-title: Sensors Actuators B: Chem. Sensors Actuators B: Chem. – volume: 6 start-page: 3334 year: 2018 publication-title: J. Mater. Chem. C – volume: 33 year: 2018 publication-title: Semicond. Sci. Technol. – volume: 792 start-page: 968 year: 2019 publication-title: J. Alloy. Compd. – volume: 40 start-page: 149 year: 2014 publication-title: Tech. Phys. Lett. – volume: 114 start-page: 9455 year: 2014 publication-title: Chem. Rev. – volume: 827 year: 2020 publication-title: J. Alloys Compd. – volume: 30 24 start-page: 630 1870 year: 2013 2019 publication-title: Part. Part. Syst. Charact. Molecules – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 8 start-page: 8170 year: 2016 publication-title: Nanoscale – volume: 4 start-page: 310 year: 2008 publication-title: Small – volume: 867 year: 2021 publication-title: J. Alloys Compd. – volume: 615 start-page: 440 year: 2014 publication-title: J. Alloys Compd. – volume: 103 year: 2013 publication-title: Appl. Phys. Lett. – volume: 51 year: 2012 publication-title: Jpn. J. Appl. Phys. – volume: 256 21 51 115 start-page: 1530 3736 year: 2009 2010 2010 2011 publication-title: Appl. Surf. Sci. Nanotechnology Polymer J. Phys. Chem. C – volume: 24 year: 2012 publication-title: J. Phys.: Condens. Mat. – volume: 103 5 year: 2013 2017 publication-title: Appl. Phys. Lett. J. Mater. Chem. C – volume: 114 year: 2010 publication-title: J. Phys. Chem. C – volume: 217 year: 2020 publication-title: Phys. Status Solidi A – volume: 75 start-page: 39 year: 2021 publication-title: J. Mater. Sci. Technol. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 60 start-page: 754 year: 2019 publication-title: Iraqi J. Sci. – volume: 98 start-page: 7748 year: 1994 publication-title: J. Phys. Chem. – volume: 320 4 29 start-page: 206 1987 year: 2008 2013 2019 publication-title: Science Nat. Commun. Adv. Funct. Mater. – volume: 65 start-page: 1371 year: 2020 publication-title: Sci. Bull. – volume: 28 105 start-page: 403 259 year: 2016 2022 publication-title: Adv. Mater. J. Mater. Sci. Technol. – volume: 10 year: 2021 publication-title: ECS J. Solid State Sci. Technol. – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 2 start-page: 1820 year: 2011 publication-title: J. Phys. Chem. Lett. – volume: 816 year: 2020 publication-title: J. Alloys Compd. – volume: 49 start-page: 741 year: 2011 publication-title: Carbon – volume: 32 start-page: 934 year: 2011 publication-title: IEEE Electron Device Lett. – volume: 29 start-page: 671 year: 2018 publication-title: Chin. Chem. Lett. – volume: 97 start-page: 303 year: 2016 publication-title: Superlattice Microstruct. – volume: 8 start-page: 9646 year: 2020 publication-title: J. Mater. Chem. C – volume: 119 start-page: 4819 year: 2019 publication-title: Chem. Rev. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 8 year: 2018 publication-title: RSC Adv. – volume: 131 start-page: 8485 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 9 7 start-page: 5828 4748 year: 2019 2019 publication-title: Sci. Rep. J. Mater. Chem. C – volume: 162 18 18 7 start-page: 857 493 2072 381 year: 1968 2015 2018 2019 publication-title: Science Mater. Today Sensors Photonics Res. – volume: 11 start-page: 1722 year: 2018 publication-title: Nano Res. – volume: 28 start-page: 65 year: 1987 publication-title: Adv. Colloid Interface Sci. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 314 start-page: 872 year: 2014 publication-title: Appl. Surf. Sci. – volume: 46 start-page: 1387 year: 2013 publication-title: Acc. Chem. Res. – volume: 105 90 start-page: 2647 1378 year: 2005 2006 publication-title: Chem. Rev. Curr. Sci. India – volume: 665 17 start-page: 418 285 year: 2016 2018 publication-title: J. Alloys Compd. IEEE Trans. Nanotechnol. – volume: 21 year: 2010 publication-title: Nanotechnology – volume: 46 5 start-page: 1766 6224 year: 2017 2017 publication-title: Dalton Trans. J. Mater. Chem. C – volume: 200 start-page: 58 year: 2015 publication-title: Synth. Met. – volume: 1 start-page: 33 year: 2019 publication-title: InfoMat – volume: 111 451 start-page: 4969 86 year: 2007 2004 publication-title: J. Phys. Chem. C Thin Solid Films – volume: 106 year: 2015 publication-title: Appl. Phys. Lett. – volume: 195 start-page: 439 year: 2014 publication-title: Sens. Actuators, B – volume: 16 start-page: 2737 year: 2016 publication-title: J. Nanosci. Nanotechnol. – volume: 8 start-page: 2822 year: 2015 publication-title: Nano Res. – volume: 72 start-page: 4847 year: 1950 publication-title: J. Am. Chem. Soc. – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 127 start-page: 7202 year: 2016 publication-title: Optik – volume: 601 start-page: 104 year: 2014 publication-title: J. Alloys Compd. – volume: 12 start-page: 9912 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 26 start-page: 8545 year: 2016 publication-title: Adv. Funct. Mater. – volume: 255 start-page: 16 year: 2014 publication-title: J. Power Sources – volume: 854 year: 2021 publication-title: J. Alloys Compd. – volume: 13 year: 2013 publication-title: Sensors – volume: 12 start-page: 4299 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 1527 year: 2016 publication-title: Small – volume: 94 year: 2009 publication-title: Appl. Phys. Lett. – volume: 3 start-page: 1047 year: 2021 publication-title: Nanoscale Adv. – volume: 25 114 start-page: 7623 9346 year: 2009 2014 publication-title: Langmuir Chem. Rev. – year: 2012 – volume: 30 170 year: 2020 2020 publication-title: Adv. Funct. Mater. Water Res. – volume: 3 start-page: 891 year: 2004 publication-title: Nat. Mater. – volume: 57 start-page: 90 year: 2017 publication-title: Mater. Sci. Semicond. Process. – volume: 19 year: 2008 publication-title: Nanotechnology – volume: 6 start-page: 2319 year: 2018 publication-title: J. Mater. Chem. C – volume: 113 year: 2009 publication-title: J. Phys. Chem. C – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 44 30 529 year: 2011 2018 2020 publication-title: J. Phys. D: Appl. Phys. Adv. Mater. Appl. Surf. Sci. – volume: 3 18 43 start-page: 1 2807 6920 year: 2013 2006 2014 publication-title: J. Nanostruct. Adv. Mater. Chem. Soc. Rev. – volume: 6 start-page: 6687 year: 2012 publication-title: ACS Nano – volume: 279 year: 2021 publication-title: Chemosphere – volume: 102 2 start-page: 458 year: 2009 2011 publication-title: Phys. Rev. Lett. Nat. Commun. – volume: 57 start-page: 703 year: 2016 publication-title: Mater. Trans. – volume: 48 125 3 114 start-page: 53 331 9319 year: 2003 2012 2021 2014 publication-title: Surf. Sci. Rep. Appl. Catal. B: Environ. Appl. Surf. Sci. Adv. Chem. Rev. – volume: 42 start-page: 3502 year: 2013 publication-title: J. Electron. Mater. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 62 264 start-page: 4563 737 year: 2008 2013 publication-title: Mater. Lett. Appl. Surf. Sci. |
SSID | ssj0009606 |
Score | 2.714483 |
SecondaryResourceType | review_article |
Snippet | As a wide‐bandgap semiconductor material, titanium dioxide (TiO2), which possesses three crystal polymorphs (i.e., rutile, anatase, and brookite), has gained... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2109083 |
SubjectTerms | Anatase Brookite Energy gap Heterojunctions Nanostructure nanostructures Optical properties photodetectors Photoelectric effect photoelectric performances Photoelectricity Photometers Semiconductor materials Titanium dioxide |
Title | Application of Nanostructured TiO2 in UV Photodetectors: A Review |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202109083 https://www.proquest.com/docview/2688884629 https://search.proquest.com/docview/2622288322 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeD7KQHf4vTKRG8dmuTNEu9FecYgj-QTXYrSZPgENrhuot_vXnpfnrUY2kD6SPvvW-Sl08QugUKXBTnJgi1igCqbQKppQhCKeIuJTZSuS-QfeaDEXscx-ONU_w1H2K14Aae4eM1OLhUs84aGiq15wYRqCwUgPuMaBdqunpva34UyHMP26NxkHAmltTGkHS2m2_py02V6tNM_wDJZQfr6pLP9rxS7fz7F7vxP39wiPYXGhSn9aA5QjumOEZ7G2TCE5Sm641tXFrsgnBZo2bnX0bj4eSF4EmBR-_49aOsSm0qv_o_u8MprrcbTtGo_zC8HwSL2xaCqUvSNHBBO2HW6FCYmDJquzLMlYgYXEJucy41FywRKiI2TJS2eZgIa7UTRJxoQQ2lZ6hRlIU5R9hoolyay6XUbrZiTEK5ZdQwyYjSiusmai2tnS1cZpYR7ibjTg2RpIluVq_dYIcdDFmYcg7fwIIVBKEmIt602bSGcmQ1fplkYNRsZdQs7T2lq6eLvzS6RLsEjjz4Et0WajhbmysnRCp17QfbD7CE1T0 |
link.rule.ids | 315,783,787,1378,27937,27938,46307,46731 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8MgFMdfdB7Ug7-N06mYeO1sgXbUW-M0U-ePmM14a6BAXEzaxXUX_3qB7pce9di0JPSF9_jCe3wAOLcUuCDMlOdLEViotvK45MzzOQtbBOtAZK5A9jHq9OndWzitJrRnYSo-xGzDzXqGi9fWwe2G9MWcGsqlAwdhW1rIyDKsGJ8n1jfbL3OClBXoDrdHQi-OKJtyG3188bP9D4W5qFPdRHOzCWLaxaq-5KM5LkUz-_pFb_zXP2zBxkSGoqQaN9uwpPIdWF-AE-5Cksxz26jQyMThoqLNjj-VRL3BE0aDHPVf0fN7URZSlS4BMLpECaoyDnvQv7nuXXW8yYUL3tDM08QzcTumWkmfqZBQolvczwQLqL2HXGcRlxGjMRMB1n4spM78mGktjSaKsGREEbIPtbzI1QEgJbEwM13GuTQLFqViEmlKFOUUCykiWYfG1NzpxGtGKY7MetwIIhzX4Wz22ox3m8TguSrG9hu7Z2XjUB2ws206rLgcaUVgxqk1ajozapq0H5LZ0-FfGp3Caqf30E27t4_3R7CG7QkIV7HbgJqxuzo2uqQUJ27kfQMV-NlW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT8QgEMcnPhKjB9_G1VUx8VptgbLUW-O68bka4xpvDRSIG5N24-5e_PQC3adHPTYtCZ0MM39g-AFw5ihwUZzrIFQyclBtHQgleBAKHjcINpHMfYFsm9106N17_D5zir_iQ0wW3NzI8PHaDfCeMhdTaKhQnhuEXWUhJ4uwTJn1VyeLXqYAKafPPW2PxEHCKB9jG0N8Md9-TmDOylSfZ1obIMY9rMpLPs-HA3mef_-CN_7nFzZhfSRCUVp5zRYs6GIb1mbQhDuQptOdbVQaZKNwWbFmh19aodfuE0bdAnXe0PNHOSiVHvjl__4lSlG137ALndb169VNMLpuIejZLE0CG7UTarQKuY4JJaYhwlzyiLpbyE3OhGKcJlxG2ISJVCYPE26MsoqIYcWJJmQPloqy0PuAtMLS5rlcCGWnK1onhBlKNBUUSyWZqkF9bO1sNGb6GWZ2Nm7lEE5qcDp5bb3dbWGIQpdD941bsXJRqAbYmzbrVVSOrOIv48wZNZsYNUubj-nk6eAvjU5g5bnZyh5u2_eHsIrd8QdfrluHJWt2fWRFyUAee7_7AaUm2AU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Nanostructured+TiO2+in+UV+Photodetectors%3A+A+Review&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Ziliang&rft.au=Li%2C+Ziqing&rft.au=Zuo%2C+Chaolei&rft.au=Fang%2C+Xiaosheng&rft.date=2022-07-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=28&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202109083&rft.externalDBID=10.1002%252Fadma.202109083&rft.externalDocID=ADMA202109083 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |