Application of Nanostructured TiO2 in UV Photodetectors: A Review

As a wide‐bandgap semiconductor material, titanium dioxide (TiO2), which possesses three crystal polymorphs (i.e., rutile, anatase, and brookite), has gained tremendous attention as a cutting‐edge material for application in the environment and energy fields. Based on the strong attractiveness from...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 28; pp. e2109083 - n/a
Main Authors Li, Ziliang, Li, Ziqing, Zuo, Chaolei, Fang, Xiaosheng
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a wide‐bandgap semiconductor material, titanium dioxide (TiO2), which possesses three crystal polymorphs (i.e., rutile, anatase, and brookite), has gained tremendous attention as a cutting‐edge material for application in the environment and energy fields. Based on the strong attractiveness from its advantages such as high stability, excellent photoelectric properties, and low‐cost fabrication, the construction of high‐performance photodetectors (PDs) based on TiO2 nanostructures is being extensively developed. An elaborate microtopography and device configuration is the most widely used strategy to achieve efficient TiO2‐based PDs with high photoelectric performances; however, a deep understanding of all the key parameters that influence the behavior of photon‐generated carriers, is also highly required to achieve improved photoelectric performances, as well as their ultimate functional applications. Herein, an in‐depth illustration of the electrical and optical properties of TiO2 nanostructures in addition to the advances in the technological issues such as preparation, microdefects, p‐type doping, bandgap engineering, heterojunctions, and functional applications are presented. Finally, a future outlook for TiO2‐based PDs, particularly that of further functional applications is provided. This work will systematically illustrate the fundamentals of TiO2 and shed light on the preparation of more efficient TiO2 nanostructures and heterojunctions for future photoelectric applications. Nanostructured TiO2 application in UV photodetectors is been comprehensively reviewed. More importantly, an in‐depth illustration of optoelectronic properties and technological issues is discussed in detail. This review provides a roadmap for material design and functional application for high‐performance optoelectronic devices.
AbstractList As a wide‐bandgap semiconductor material, titanium dioxide (TiO2), which possesses three crystal polymorphs (i.e., rutile, anatase, and brookite), has gained tremendous attention as a cutting‐edge material for application in the environment and energy fields. Based on the strong attractiveness from its advantages such as high stability, excellent photoelectric properties, and low‐cost fabrication, the construction of high‐performance photodetectors (PDs) based on TiO2 nanostructures is being extensively developed. An elaborate microtopography and device configuration is the most widely used strategy to achieve efficient TiO2‐based PDs with high photoelectric performances; however, a deep understanding of all the key parameters that influence the behavior of photon‐generated carriers, is also highly required to achieve improved photoelectric performances, as well as their ultimate functional applications. Herein, an in‐depth illustration of the electrical and optical properties of TiO2 nanostructures in addition to the advances in the technological issues such as preparation, microdefects, p‐type doping, bandgap engineering, heterojunctions, and functional applications are presented. Finally, a future outlook for TiO2‐based PDs, particularly that of further functional applications is provided. This work will systematically illustrate the fundamentals of TiO2 and shed light on the preparation of more efficient TiO2 nanostructures and heterojunctions for future photoelectric applications. Nanostructured TiO2 application in UV photodetectors is been comprehensively reviewed. More importantly, an in‐depth illustration of optoelectronic properties and technological issues is discussed in detail. This review provides a roadmap for material design and functional application for high‐performance optoelectronic devices.
As a wide‐bandgap semiconductor material, titanium dioxide (TiO2), which possesses three crystal polymorphs (i.e., rutile, anatase, and brookite), has gained tremendous attention as a cutting‐edge material for application in the environment and energy fields. Based on the strong attractiveness from its advantages such as high stability, excellent photoelectric properties, and low‐cost fabrication, the construction of high‐performance photodetectors (PDs) based on TiO2 nanostructures is being extensively developed. An elaborate microtopography and device configuration is the most widely used strategy to achieve efficient TiO2‐based PDs with high photoelectric performances; however, a deep understanding of all the key parameters that influence the behavior of photon‐generated carriers, is also highly required to achieve improved photoelectric performances, as well as their ultimate functional applications. Herein, an in‐depth illustration of the electrical and optical properties of TiO2 nanostructures in addition to the advances in the technological issues such as preparation, microdefects, p‐type doping, bandgap engineering, heterojunctions, and functional applications are presented. Finally, a future outlook for TiO2‐based PDs, particularly that of further functional applications is provided. This work will systematically illustrate the fundamentals of TiO2 and shed light on the preparation of more efficient TiO2 nanostructures and heterojunctions for future photoelectric applications.
Author Li, Ziliang
Zuo, Chaolei
Fang, Xiaosheng
Li, Ziqing
Author_xml – sequence: 1
  givenname: Ziliang
  surname: Li
  fullname: Li, Ziliang
  organization: Fudan University
– sequence: 2
  givenname: Ziqing
  surname: Li
  fullname: Li, Ziqing
  organization: Fudan University
– sequence: 3
  givenname: Chaolei
  surname: Zuo
  fullname: Zuo, Chaolei
  organization: Fudan University
– sequence: 4
  givenname: Xiaosheng
  orcidid: 0000-0003-3387-4532
  surname: Fang
  fullname: Fang, Xiaosheng
  email: xshfang@fudan.edu.cn
  organization: Fudan University
BookMark eNpdkM9LwzAYhoNMcJtePQe8eOn8krQx8VbmT5hOZPMasibBjK6pTevYf2_HZAe_y8sHDy8vzwgNqlBZhC4JTAgAvdFmoycUKAEJgp2gIckoSVKQ2QANQbIskTwVZ2gU4xoAJAc-RHle16UvdOtDhYPDb7oKsW26ou0aa_DCzyn2FV5-4vev0AZjW1u0oYl3OMcf9sfb7Tk6dbqM9uIvx2j5-LCYPiez-dPLNJ8lNeWcJXZFZOqsAWEzljJ3q6FYCZJmaUZdwbXhIpViRagDuTKuACmcM5xknBrBLGNjdH3orZvw3dnYqo2PhS1LXdnQRUU5pVQIRmmPXv1D16Frqn5dT4n-Uk5lT8kDtfWl3am68Rvd7BQBtdep9jrVUafK71_z48d-AWr5a2Q
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202109083
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202109083
Genre reviewArticle
GrantInformation_xml – fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 21520712600; 19520744300
– fundername: National Key R&D Program of China
  funderid: 2018YFA0703700; 2017YFA0204600
– fundername: National Natural Science Foundation of China
  funderid: 51902057; 12061131009; 51872050
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-p2663-eb194fed08e5343f7a0cb8145452fc6ad68498b12f09bdfc098ffd61562d83e33
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Aug 16 11:36:12 EDT 2024
Thu Oct 10 15:28:42 EDT 2024
Sat Aug 24 01:03:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2663-eb194fed08e5343f7a0cb8145452fc6ad68498b12f09bdfc098ffd61562d83e33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0003-3387-4532
PQID 2688884629
PQPubID 2045203
PageCount 43
ParticipantIDs proquest_miscellaneous_2622288322
proquest_journals_2688884629
wiley_primary_10_1002_adma_202109083_ADMA202109083
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 64
2009 2011; 102 2
2019; 15
2019 2019; 8 11
2004; 3
1967; 158
2020; 12
2016 2018; 665 17
2018 2019; 6 59
2009 2010 2010 2011; 256 21 51 115
2018 2019; 561 10
2021; 75
2013 2006 2014; 3 18 43
2018 2019 2018; 112 40 6
2009; 94
2020 2020; 30 170
2013; 117
2016; 42
2019; 29
1997 2018 2012; 101 13 1
2008; 112
2012; 24
2016; 45
2015 2009 2020 2021; 6 21 30 31
2014; 314
2011; 2
2019; 31
1984; 47
2020; 141
2019; 30
2019; 33
2013; 93
2006; 110
2013; 103
2005; 87
2020; 32
2020; 827
2016; 16
2011; 5
2011 2014 2017 2021; 56 43 11 33
2016; 12
2014; 305
2016; 4
2016 2017; 26 13
2016; 3
2020; 30
2017; 57
2020; 391
2016 2018; 6 6
2020; 276
2012; 45
2016; 26
2016; 8
2013 2017; 103 5
2014; 615
2014; 616
2021; 481
2011 2015; 5 162
2018; 406
2020; 55
2012 2020 2015; 4 10 15
2008; 4
2018; 1953
2020; 8
2020; 7
2014; 601
2019; 60
2020; 3
2020; 2
2013; 13
2016; 119
1950; 72
2020; 9
2002; 106
2003; 4
2003; 82
2014; 8
2020; 816
2021 2000; 14 61
2018 2018 2020; 18 29 10
1964 2016
2005 2006; 105 90
2002; 37
2015 2018 2019; 25 2 34
2019 2020; 241 215
2013; 48
2015; 5
2021; 3
2006; 12
2012
2013; 46
2017; 28
2017; 27
2013; 42
2017 2021; 8 12
2019 2021 2020; 29 42 32
2014; 195
2016; 127
2015; 8
2015; 7
2020; 109
2017; 13
2017 2018; 4 343
2000 2014; 26 114
2009; 9
2019; 773
2007; 40
2020; 65
2008; 453
2010; 96
2008 2013; 62 264
2013; 3
2011 2018 2020; 44 30 529
2014; 26
2009; 113
2020 2021; 268 17
2014; 255
2013; 9
2017 2018 2019; 27 28 33
2017 2021; 27 21
2018; 6
2007 2004; 111 451
2010; 21
2014 2018; 26 12
2018; 8
2018; 3
2018; 2
2021; 279
2018 2020; 30 30
2010; 114
2006; 26
2013; 750
2014; 16
2011; 66
2020; 217
2018; 30
2009 2014; 25 114
2018; 33
2014; 120
2016 2020; 1
2019; 792
2019; 7
2018; 29
2018; 28
2010; 31
2016 2019; 26 9
2019; 9
2019; 4
2013 2019; 30 24
2012; 100
2015 2017; 5 188
2019; 1
2007; 90
2016; 97
2014; 40
2018; 20
2018; 18
2006; 45
1968 2015 2018 2019; 162 18 18 7
2002; 124
2018; 751
1995 2009 2011 2014; 51 22 56 6
1994; 92
2018; 11
2018; 10
1994; 98
2018; 14
2005; 14
2017; 426
2017; 5
2017; 7
2004; 126
2017; 3
2011; 11
2016; 73
2015; 106
2001 2001; 79 72
2012 2015; 10 115
2012; 51
2016 2022; 28 105
1995 1992; 51 45
2021; 31
2020 2020; 19 31
2021; 33
2011 2016 2021; 32 55 8
2008 2013 2019; 320 4 29
2019; 119
2019 2019; 8 125
2003; 125
1998; 120
2012; 63
2015; 200
2008; 19
2021; 867
2015; 11
2011 2013 2017; 4 20 508
2011; 32
2009; 131
2005; 49
2004; 108
2014; 114
2005; 44
2016; 57
2016 2017; 3 17
2021; 10
2021; 12
2021; 854
2017 2017; 46 5
2014 2018; 113 73
2003 2012 2021 2014; 48 125 3 114
2011; 46
2012; 6
2012; 159
2011; 49
1987; 28
2019 2019; 9 7
2007 2015 2020; 11 3 10
2019; 494
2013 2014 2015; 52 24 25
References_xml – volume: 26
  year: 2016
  publication-title: J. Micromech. Microeng.
– volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 26 9
  start-page: 1400
  year: 2016 2019
  publication-title: Adv. Funct. Mater. Sci. Rep.
– volume: 46
  start-page: 855
  year: 2011
  publication-title: J. Mater. Sci.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 209
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 26 12
  start-page: 2619
  year: 2014 2018
  publication-title: Adv. Mater. ACS Nano
– volume: 32 55 8
  start-page: 653 6574
  year: 2011 2016 2021
  publication-title: IEEE Electron Device Lett. Inorg. Chem. Appl. Phys. Rev.
– volume: 47
  start-page: 399
  year: 1984
  publication-title: Rep. Prog. Phys.
– volume: 12
  start-page: 2759
  year: 2016
  publication-title: Small
– volume: 561 10
  start-page: 88 1989
  year: 2018 2019
  publication-title: Nature Nat. Commun.
– volume: 33
  year: 2019
  publication-title: Appl. Organomet. Chem.
– volume: 6 21 30 31
  start-page: 3781 2034
  year: 2015 2009 2020 2021
  publication-title: J. Phys. Chem. Lett. Adv. Mater. Adv. Funct. Mater. Adv. Mater.
– volume: 158
  start-page: 388
  year: 1967
  publication-title: Science
– volume: 29
  year: 2018
  publication-title: Nanotechnology
– volume: 6 6
  start-page: 7265
  year: 2016 2018
  publication-title: RSC Adv. ACS Sustainable Chem. Eng.
– volume: 6 59
  year: 2018 2019
  publication-title: J. Mater. Chem. A Jpn. J. Appl. Phys.
– volume: 616
  start-page: 510
  year: 2014
  publication-title: J. Alloys Compd.
– volume: 73
  start-page: 29
  year: 2016
  publication-title: Mater. Res. Bull.
– volume: 9
  start-page: 2005
  year: 2013
  publication-title: Small
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2019
  publication-title: Nanotechnology
– volume: 112 40 6
  start-page: 1186
  year: 2018 2019 2018
  publication-title: Appl. Phys. Lett. IEEE Electron Device Lett. Adv. Opt. Mater.
– volume: 26
  start-page: 1527
  year: 2006
  publication-title: J. Eur. Ceram. Soc.
– volume: 3 17
  start-page: 504
  year: 2016 2017
  publication-title: Adv. Mater. Interfaces Cryst. Growth Des.
– volume: 112
  start-page: 5275
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 18 29 10
  start-page: 4898
  year: 2018 2018 2020
  publication-title: J. Nanosci. Nanotechnol. Nanotechnology Optik
– volume: 26 114
  start-page: 207 9559
  year: 2000 2014
  publication-title: Appl. Catal. B: Environ. Chem. Rev.
– volume: 3
  year: 2018
  publication-title: Adv. Mater. Technol.
– volume: 29 42 32
  year: 2019 2021 2020
  publication-title: Adv. Funct. Mater. J. Semicond. Adv. Mater.
– volume: 92
  start-page: 267
  year: 1994
  publication-title: Solid State Commun.
– volume: 40
  start-page: 793
  year: 2007
  publication-title: Acc. Chem. Res.
– volume: 19 31
  year: 2020 2020
  publication-title: Results Phys. Nanotechnology
– volume: 268 17
  year: 2020 2021
  publication-title: Appl. Catal. B: Environ. Small
– volume: 90
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 27
  start-page: 641
  year: 2017
  publication-title: Prog. Nat. Sci.: Mater. Int.
– volume: 11
  start-page: 624
  year: 2011
  publication-title: Nano Lett.
– volume: 93
  start-page: 80
  year: 2013
  publication-title: Electrochim. Acta
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 4 20 508
  start-page: 901 307 1
  year: 2011 2013 2017
  publication-title: Nano Res. Int. J. Miner., Metall. Mater. Phys. B
– volume: 8 125
  start-page: 1247 810
  year: 2019 2019
  publication-title: Nanophotonics Appl. Phys. A
– volume: 119
  year: 2016
  publication-title: J. Appl. Phys.
– volume: 125
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 56 43 11 33
  start-page: 175 2200
  year: 2011 2014 2017 2021
  publication-title: Prog. Mater. Sci. Chem. Soc. Rev. Laser Photonics Rev. Adv. Mater.
– volume: 110
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 7
  start-page: 3889
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 51 45
  start-page: 6842 3874
  year: 1995 1992
  publication-title: Phys. Rev. B Phys. Rev. B
– volume: 305
  start-page: 445
  year: 2014
  publication-title: Appl. Surf. Sci.
– volume: 3
  year: 2020
  publication-title: ACS Appl. Nano Mater.
– volume: 3
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 26
  start-page: 2084
  year: 2014
  publication-title: Adv. Mater.
– volume: 45
  start-page: 3414
  year: 2006
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 4332
  year: 2020
  publication-title: J. Mater. Sci.
– volume: 10
  start-page: 781
  year: 2018
  publication-title: Silicon
– volume: 10
  start-page: 3606
  year: 2018
  publication-title: Nanoscale
– volume: 10 115
  start-page: 989 8294
  year: 2012 2015
  publication-title: Open Chem. Chem. Rev.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 27 21
  start-page: 382
  year: 2017 2021
  publication-title: Adv. Funct. Mater. Nano Lett.
– volume: 117
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 1953
  year: 2018
  publication-title: AIP Conf. Proc.
– volume: 24
  start-page: 1697
  year: 2012
  publication-title: Adv. Mater.
– volume: 3
  year: 2013
  publication-title: RSC Adv.
– volume: 453
  start-page: 638
  year: 2008
  publication-title: Nature
– year: 1964 2016
– volume: 481
  year: 2021
  publication-title: J. Power Sources
– volume: 1
  start-page: 195
  year: 2016 2020
  end-page: 214
  publication-title: Nat. Rev. Mater.
– volume: 751
  start-page: 56
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 8 12
  start-page: 1664 2930
  year: 2017 2021
  publication-title: Nat. Commun. J. Phys. Chem. Lett.
– volume: 37
  start-page: 2171
  year: 2002
  publication-title: J. Mater. Sci.
– volume: 20
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 438
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 100
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 14 61
  start-page: 1645 7459
  year: 2021 2000
  publication-title: Materials Phys. Rev. B
– volume: 31
  start-page: 588
  year: 2010
  publication-title: IEEE Electron Device Lett.
– volume: 106
  year: 2002
  publication-title: J. Phys. Chem. B
– volume: 11
  start-page: 3241
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 108
  start-page: 3492
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 28
  year: 2017
  publication-title: Nanotechnology
– volume: 96
  start-page: 557
  year: 2010
  publication-title: Appl. Catal. B: Environ.
– volume: 5
  start-page: 5158
  year: 2011
  publication-title: ACS Nano
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 64
  start-page: 198
  year: 2021
  publication-title: Sci. China Mater.
– volume: 87
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 773
  start-page: 890
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 7
  start-page: 1702
  year: 2020
  publication-title: Natl. Sci. Rev.
– volume: 29
  year: 2018
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 51 22 56 6
  start-page: 1173 1639
  year: 1995 2009 2011 2014
  publication-title: Phys. Rev. B: Condens. Matter. Chem. Mater. Chin. Sci. Bull. Nanoscale
– volume: 12
  start-page: 2383
  year: 2006
  publication-title: Chem. – Eur. J.
– volume: 27 28 33
  year: 2017 2018 2019
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Mod. Phys. Lett. B
– volume: 2
  start-page: 577
  year: 2020
  publication-title: InfoMat
– volume: 12
  start-page: 6064
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 259
  year: 2020
  publication-title: Nanotechnol. Rev.
– volume: 82
  start-page: 3901
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 109
  year: 2020
  publication-title: Opt. Mater.
– volume: 2
  year: 2020
  publication-title: Eng. Res. Express
– volume: 8
  start-page: 4133
  year: 2014
  publication-title: ACS Nano
– volume: 241 215
  start-page: 514
  year: 2019 2020
  publication-title: Appl. Catal. B: Environ. Sol. Energy Mater. Solar C.
– volume: 391
  year: 2020
  publication-title: Surf. Coat. Technol.
– volume: 120
  start-page: 4682
  year: 1998
  publication-title: J. Am. Chem. Soc.
– volume: 141
  year: 2020
  publication-title: Superlattices Microstruct.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 5 188
  start-page: 52
  year: 2015 2017
  publication-title: Sci. Rep. Mater. Lett.
– volume: 114
  start-page: 9613
  year: 2014
  publication-title: Chem. Rev.
– volume: 4
  start-page: 20
  year: 2003
  publication-title: Geochem. Trans.
– volume: 124
  start-page: 2305
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 426
  start-page: 391
  year: 2017
  publication-title: Appl. Surf. Sci.
– volume: 45
  start-page: 3145
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 1851
  year: 2005
  publication-title: Chem. Commun.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 48
  start-page: 265
  year: 2013
  publication-title: Cryst. Res. Technol.
– volume: 52 24 25
  start-page: 3581 5719 445
  year: 2013 2014 2015
  publication-title: Ind. Eng. Chem. Res. Adv. Funct. Mater. Adv. Funct. Mater.
– volume: 494
  start-page: 575
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 4 10 15
  start-page: 4164 362 4059
  year: 2012 2020 2015
  publication-title: ACS Appl. Mater. Interfaces Nanomaterials Nano Lett.
– volume: 44
  start-page: 3466
  year: 2005
  publication-title: Angew. Chem., Int. Ed.
– volume: 750
  start-page: 301
  year: 2013
  publication-title: Adv. Mater. Res.
– volume: 8
  start-page: 91
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 452
  year: 2019
  publication-title: Nanoscale Horiz.
– volume: 406
  start-page: 118
  year: 2018
  publication-title: Opt. Commun.
– volume: 66
  start-page: 185
  year: 2011
  publication-title: Surf. Sci. Rep.
– volume: 45
  year: 2012
  publication-title: J. Phys. D: Appl. Phys.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 126
  start-page: 4943
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 120
  start-page: 219
  year: 2014
  publication-title: Mater. Lett.
– volume: 114
  start-page: 9662
  year: 2014
  publication-title: Chem. Rev.
– volume: 2
  start-page: 1847
  year: 2018
  publication-title: Mater. Chem. Front.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 49
  start-page: 889
  year: 2005
  publication-title: Solid‐State Electron.
– volume: 8 11
  start-page: 899
  year: 2019 2019
  publication-title: Nanophotonics Nanoscale
– volume: 276
  year: 2020
  publication-title: Mater. Lett.
– volume: 113 73
  start-page: 58
  year: 2014 2018
  publication-title: Phys. Rev. Lett. Surf. Sci. Rep.
– volume: 127
  start-page: 2806
  year: 2016
  publication-title: Optik
– volume: 18
  start-page: 4697
  year: 2018
  publication-title: Nano Lett.
– volume: 11
  start-page: 1059
  year: 2015
  publication-title: Electron. Mater. Lett.
– volume: 42
  start-page: 5858
  year: 2016
  publication-title: Ceram. Int.
– volume: 9
  start-page: 1260
  year: 2009
  publication-title: Nano Lett.
– volume: 26 13
  start-page: 7359
  year: 2016 2017
  publication-title: Adv. Funct. Mater. Small
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 5 162
  start-page: 8412 E251
  year: 2011 2015
  publication-title: ACS Nano J. Electrochem. Soc.
– volume: 63
  start-page: 481
  year: 2012
  publication-title: Intl. J. Adv. Manuf. Technol.
– volume: 159
  start-page: J132
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 25 2 34
  start-page: 5794 49
  year: 2015 2018 2019
  publication-title: Adv. Funct. Mater. Phy. Rev. Mater. J. Inorg. Mater.
– volume: 30 30
  year: 2018 2020
  publication-title: Adv. Mater. Adv. Funct. Mater.
– volume: 9
  start-page: 134
  year: 2019
  publication-title: Crystals
– volume: 32
  year: 2020
  publication-title: Nanotechnology
– volume: 7
  start-page: 1828
  year: 2020
  publication-title: Mater. Horiz.
– volume: 101 13 1
  start-page: 9342 92 640
  year: 1997 2018 2012
  publication-title: J. Phys. Chem. B Nanoscale Res. Lett. Nano Energy
– volume: 8
  start-page: 1353
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 4 343
  start-page: 708
  year: 2017 2018
  publication-title: Adv. Sci. Chem. Eng. J.
– volume: 11 3 10
  start-page: 401
  year: 2007 2015 2020
  publication-title: Renewable Sustainable Energy Rev. J. Mater. Chem. A Adv. Energy Mater.
– volume: 79 72
  start-page: 17 239
  year: 2001 2001
  publication-title: Sensors Actuators B: Chem. Sensors Actuators B: Chem.
– volume: 6
  start-page: 3334
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 33
  year: 2018
  publication-title: Semicond. Sci. Technol.
– volume: 792
  start-page: 968
  year: 2019
  publication-title: J. Alloy. Compd.
– volume: 40
  start-page: 149
  year: 2014
  publication-title: Tech. Phys. Lett.
– volume: 114
  start-page: 9455
  year: 2014
  publication-title: Chem. Rev.
– volume: 827
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 30 24
  start-page: 630 1870
  year: 2013 2019
  publication-title: Part. Part. Syst. Charact. Molecules
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 8
  start-page: 8170
  year: 2016
  publication-title: Nanoscale
– volume: 4
  start-page: 310
  year: 2008
  publication-title: Small
– volume: 867
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 615
  start-page: 440
  year: 2014
  publication-title: J. Alloys Compd.
– volume: 103
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 51
  year: 2012
  publication-title: Jpn. J. Appl. Phys.
– volume: 256 21 51 115
  start-page: 1530 3736
  year: 2009 2010 2010 2011
  publication-title: Appl. Surf. Sci. Nanotechnology Polymer J. Phys. Chem. C
– volume: 24
  year: 2012
  publication-title: J. Phys.: Condens. Mat.
– volume: 103 5
  year: 2013 2017
  publication-title: Appl. Phys. Lett. J. Mater. Chem. C
– volume: 114
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 217
  year: 2020
  publication-title: Phys. Status Solidi A
– volume: 75
  start-page: 39
  year: 2021
  publication-title: J. Mater. Sci. Technol.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 60
  start-page: 754
  year: 2019
  publication-title: Iraqi J. Sci.
– volume: 98
  start-page: 7748
  year: 1994
  publication-title: J. Phys. Chem.
– volume: 320 4 29
  start-page: 206 1987
  year: 2008 2013 2019
  publication-title: Science Nat. Commun. Adv. Funct. Mater.
– volume: 65
  start-page: 1371
  year: 2020
  publication-title: Sci. Bull.
– volume: 28 105
  start-page: 403 259
  year: 2016 2022
  publication-title: Adv. Mater. J. Mater. Sci. Technol.
– volume: 10
  year: 2021
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 2
  start-page: 1820
  year: 2011
  publication-title: J. Phys. Chem. Lett.
– volume: 816
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 49
  start-page: 741
  year: 2011
  publication-title: Carbon
– volume: 32
  start-page: 934
  year: 2011
  publication-title: IEEE Electron Device Lett.
– volume: 29
  start-page: 671
  year: 2018
  publication-title: Chin. Chem. Lett.
– volume: 97
  start-page: 303
  year: 2016
  publication-title: Superlattice Microstruct.
– volume: 8
  start-page: 9646
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 119
  start-page: 4819
  year: 2019
  publication-title: Chem. Rev.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 8
  year: 2018
  publication-title: RSC Adv.
– volume: 131
  start-page: 8485
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 9 7
  start-page: 5828 4748
  year: 2019 2019
  publication-title: Sci. Rep. J. Mater. Chem. C
– volume: 162 18 18 7
  start-page: 857 493 2072 381
  year: 1968 2015 2018 2019
  publication-title: Science Mater. Today Sensors Photonics Res.
– volume: 11
  start-page: 1722
  year: 2018
  publication-title: Nano Res.
– volume: 28
  start-page: 65
  year: 1987
  publication-title: Adv. Colloid Interface Sci.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 314
  start-page: 872
  year: 2014
  publication-title: Appl. Surf. Sci.
– volume: 46
  start-page: 1387
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 105 90
  start-page: 2647 1378
  year: 2005 2006
  publication-title: Chem. Rev. Curr. Sci. India
– volume: 665 17
  start-page: 418 285
  year: 2016 2018
  publication-title: J. Alloys Compd. IEEE Trans. Nanotechnol.
– volume: 21
  year: 2010
  publication-title: Nanotechnology
– volume: 46 5
  start-page: 1766 6224
  year: 2017 2017
  publication-title: Dalton Trans. J. Mater. Chem. C
– volume: 200
  start-page: 58
  year: 2015
  publication-title: Synth. Met.
– volume: 1
  start-page: 33
  year: 2019
  publication-title: InfoMat
– volume: 111 451
  start-page: 4969 86
  year: 2007 2004
  publication-title: J. Phys. Chem. C Thin Solid Films
– volume: 106
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 195
  start-page: 439
  year: 2014
  publication-title: Sens. Actuators, B
– volume: 16
  start-page: 2737
  year: 2016
  publication-title: J. Nanosci. Nanotechnol.
– volume: 8
  start-page: 2822
  year: 2015
  publication-title: Nano Res.
– volume: 72
  start-page: 4847
  year: 1950
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 127
  start-page: 7202
  year: 2016
  publication-title: Optik
– volume: 601
  start-page: 104
  year: 2014
  publication-title: J. Alloys Compd.
– volume: 12
  start-page: 9912
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 26
  start-page: 8545
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 255
  start-page: 16
  year: 2014
  publication-title: J. Power Sources
– volume: 854
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 13
  year: 2013
  publication-title: Sensors
– volume: 12
  start-page: 4299
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  start-page: 1527
  year: 2016
  publication-title: Small
– volume: 94
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 1047
  year: 2021
  publication-title: Nanoscale Adv.
– volume: 25 114
  start-page: 7623 9346
  year: 2009 2014
  publication-title: Langmuir Chem. Rev.
– year: 2012
– volume: 30 170
  year: 2020 2020
  publication-title: Adv. Funct. Mater. Water Res.
– volume: 3
  start-page: 891
  year: 2004
  publication-title: Nat. Mater.
– volume: 57
  start-page: 90
  year: 2017
  publication-title: Mater. Sci. Semicond. Process.
– volume: 19
  year: 2008
  publication-title: Nanotechnology
– volume: 6
  start-page: 2319
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 113
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 44 30 529
  year: 2011 2018 2020
  publication-title: J. Phys. D: Appl. Phys. Adv. Mater. Appl. Surf. Sci.
– volume: 3 18 43
  start-page: 1 2807 6920
  year: 2013 2006 2014
  publication-title: J. Nanostruct. Adv. Mater. Chem. Soc. Rev.
– volume: 6
  start-page: 6687
  year: 2012
  publication-title: ACS Nano
– volume: 279
  year: 2021
  publication-title: Chemosphere
– volume: 102 2
  start-page: 458
  year: 2009 2011
  publication-title: Phys. Rev. Lett. Nat. Commun.
– volume: 57
  start-page: 703
  year: 2016
  publication-title: Mater. Trans.
– volume: 48 125 3 114
  start-page: 53 331 9319
  year: 2003 2012 2021 2014
  publication-title: Surf. Sci. Rep. Appl. Catal. B: Environ. Appl. Surf. Sci. Adv. Chem. Rev.
– volume: 42
  start-page: 3502
  year: 2013
  publication-title: J. Electron. Mater.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 62 264
  start-page: 4563 737
  year: 2008 2013
  publication-title: Mater. Lett. Appl. Surf. Sci.
SSID ssj0009606
Score 2.714483
SecondaryResourceType review_article
Snippet As a wide‐bandgap semiconductor material, titanium dioxide (TiO2), which possesses three crystal polymorphs (i.e., rutile, anatase, and brookite), has gained...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2109083
SubjectTerms Anatase
Brookite
Energy gap
Heterojunctions
Nanostructure
nanostructures
Optical properties
photodetectors
Photoelectric effect
photoelectric performances
Photoelectricity
Photometers
Semiconductor materials
Titanium dioxide
Title Application of Nanostructured TiO2 in UV Photodetectors: A Review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202109083
https://www.proquest.com/docview/2688884629
https://search.proquest.com/docview/2622288322
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeD7KQHf4vTKRG8dmuTNEu9FecYgj-QTXYrSZPgENrhuot_vXnpfnrUY2kD6SPvvW-Sl08QugUKXBTnJgi1igCqbQKppQhCKeIuJTZSuS-QfeaDEXscx-ONU_w1H2K14Aae4eM1OLhUs84aGiq15wYRqCwUgPuMaBdqunpva34UyHMP26NxkHAmltTGkHS2m2_py02V6tNM_wDJZQfr6pLP9rxS7fz7F7vxP39wiPYXGhSn9aA5QjumOEZ7G2TCE5Sm641tXFrsgnBZo2bnX0bj4eSF4EmBR-_49aOsSm0qv_o_u8MprrcbTtGo_zC8HwSL2xaCqUvSNHBBO2HW6FCYmDJquzLMlYgYXEJucy41FywRKiI2TJS2eZgIa7UTRJxoQQ2lZ6hRlIU5R9hoolyay6XUbrZiTEK5ZdQwyYjSiusmai2tnS1cZpYR7ibjTg2RpIluVq_dYIcdDFmYcg7fwIIVBKEmIt602bSGcmQ1fplkYNRsZdQs7T2lq6eLvzS6RLsEjjz4Et0WajhbmysnRCp17QfbD7CE1T0
link.rule.ids 315,783,787,1378,27937,27938,46307,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8MgFMdfdB7Ug7-N06mYeO1sgXbUW-M0U-ePmM14a6BAXEzaxXUX_3qB7pce9di0JPSF9_jCe3wAOLcUuCDMlOdLEViotvK45MzzOQtbBOtAZK5A9jHq9OndWzitJrRnYSo-xGzDzXqGi9fWwe2G9MWcGsqlAwdhW1rIyDKsGJ8n1jfbL3OClBXoDrdHQi-OKJtyG3188bP9D4W5qFPdRHOzCWLaxaq-5KM5LkUz-_pFb_zXP2zBxkSGoqQaN9uwpPIdWF-AE-5Cksxz26jQyMThoqLNjj-VRL3BE0aDHPVf0fN7URZSlS4BMLpECaoyDnvQv7nuXXW8yYUL3tDM08QzcTumWkmfqZBQolvczwQLqL2HXGcRlxGjMRMB1n4spM78mGktjSaKsGREEbIPtbzI1QEgJbEwM13GuTQLFqViEmlKFOUUCykiWYfG1NzpxGtGKY7MetwIIhzX4Wz22ox3m8TguSrG9hu7Z2XjUB2ws206rLgcaUVgxqk1ajozapq0H5LZ0-FfGp3Caqf30E27t4_3R7CG7QkIV7HbgJqxuzo2uqQUJ27kfQMV-NlW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT8QgEMcnPhKjB9_G1VUx8VptgbLUW-O68bka4xpvDRSIG5N24-5e_PQC3adHPTYtCZ0MM39g-AFw5ihwUZzrIFQyclBtHQgleBAKHjcINpHMfYFsm9106N17_D5zir_iQ0wW3NzI8PHaDfCeMhdTaKhQnhuEXWUhJ4uwTJn1VyeLXqYAKafPPW2PxEHCKB9jG0N8Md9-TmDOylSfZ1obIMY9rMpLPs-HA3mef_-CN_7nFzZhfSRCUVp5zRYs6GIb1mbQhDuQptOdbVQaZKNwWbFmh19aodfuE0bdAnXe0PNHOSiVHvjl__4lSlG137ALndb169VNMLpuIejZLE0CG7UTarQKuY4JJaYhwlzyiLpbyE3OhGKcJlxG2ISJVCYPE26MsoqIYcWJJmQPloqy0PuAtMLS5rlcCGWnK1onhBlKNBUUSyWZqkF9bO1sNGb6GWZ2Nm7lEE5qcDp5bb3dbWGIQpdD941bsXJRqAbYmzbrVVSOrOIv48wZNZsYNUubj-nk6eAvjU5g5bnZyh5u2_eHsIrd8QdfrluHJWt2fWRFyUAee7_7AaUm2AU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Nanostructured+TiO2+in+UV+Photodetectors%3A+A+Review&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Ziliang&rft.au=Li%2C+Ziqing&rft.au=Zuo%2C+Chaolei&rft.au=Fang%2C+Xiaosheng&rft.date=2022-07-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=28&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202109083&rft.externalDBID=10.1002%252Fadma.202109083&rft.externalDocID=ADMA202109083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon