Regulating the Topology of Covalent Organic Frameworks for Boosting Overall H2O2 Photogeneration

Photocatalytic oxygen reduction reactions and water oxidation reactions are extremely promising green approaches for massive H2O2 production. Nonetheless, constructing effective photocatalysts for H2O2 generation is critical and still challenging. Since the network topology has significant impacts o...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 24; pp. e202405763 - n/a
Main Authors Yue, Jie‐Yu, Luo, Jing‐Xian, Pan, Zi‐Xian, Zhang, Rui‐Zhi, Yang, Peng, Xu, Qing, Tang, Bo
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 10.06.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202405763

Cover

Loading…
Abstract Photocatalytic oxygen reduction reactions and water oxidation reactions are extremely promising green approaches for massive H2O2 production. Nonetheless, constructing effective photocatalysts for H2O2 generation is critical and still challenging. Since the network topology has significant impacts on the electronic properties of two dimensional (2D) polymers, herein, for the first time, we regulated the H2O2 photosynthetic activity of 2D covalent organic frameworks (COFs) by topology. Through designing the linking sites of the monomers, we synthesized a pair of novel COFs with similar chemical components on the backbones but distinct topologies. Without sacrificial agents, TBD‐COF with cpt topology exhibited superior H2O2 photoproduction performance (6085 and 5448 μmol g−1 h−1 in O2 and air) than TBC‐COF with hcb topology through the O2‐O2⋅−‐H2O2, O2‐O2⋅−‐O21‐H2O2, and H2O‐H2O2 three paths. Further experimental and theoretical investigations confirmed that during the H2O2 photosynthetic process, the charge carrier separation efficiency, O2⋅− generation and conversion, and the energy barrier of the rate determination steps in the three channels, related to the formation of *OOH, *O21, and *OH, can be well tuned by the topology of COFs. The current study enlightens the fabrication of high‐performance photocatalysts for H2O2 production by topological structure modulation. By linking site design, two novel two dimensional covalent organic frameworks (COFs) with similar chemical constitutions but different topologies were constructed. TBD‐COF with six‐arm cores and cpt topology exhibited better H2O2 photosynthetic activity than TBC‐COF with three‐arm cores and hcb topology through the O2‐O2.−‐H2O2, O2‐O2.−‐O21‐H2O2, and H2O‐H2O2 three channels, inspiring regulating the topology of COFs for boosting overall H2O2 photogeneration.
AbstractList Photocatalytic oxygen reduction reactions and water oxidation reactions are extremely promising green approaches for massive H2O2 production. Nonetheless, constructing effective photocatalysts for H2O2 generation is critical and still challenging. Since the network topology has significant impacts on the electronic properties of two dimensional (2D) polymers, herein, for the first time, we regulated the H2O2 photosynthetic activity of 2D covalent organic frameworks (COFs) by topology. Through designing the linking sites of the monomers, we synthesized a pair of novel COFs with similar chemical components on the backbones but distinct topologies. Without sacrificial agents, TBD‐COF with cpt topology exhibited superior H2O2 photoproduction performance (6085 and 5448 μmol g−1 h−1 in O2 and air) than TBC‐COF with hcb topology through the O2‐O2⋅−‐H2O2, O2‐O2⋅−‐O21‐H2O2, and H2O‐H2O2 three paths. Further experimental and theoretical investigations confirmed that during the H2O2 photosynthetic process, the charge carrier separation efficiency, O2⋅− generation and conversion, and the energy barrier of the rate determination steps in the three channels, related to the formation of *OOH, *O21, and *OH, can be well tuned by the topology of COFs. The current study enlightens the fabrication of high‐performance photocatalysts for H2O2 production by topological structure modulation.
Photocatalytic oxygen reduction reactions and water oxidation reactions are extremely promising green approaches for massive H2O2 production. Nonetheless, constructing effective photocatalysts for H2O2 generation is critical and still challenging. Since the network topology has significant impacts on the electronic properties of two dimensional (2D) polymers, herein, for the first time, we regulated the H2O2 photosynthetic activity of 2D covalent organic frameworks (COFs) by topology. Through designing the linking sites of the monomers, we synthesized a pair of novel COFs with similar chemical components on the backbones but distinct topologies. Without sacrificial agents, TBD-COF with cpt topology exhibited superior H2O2 photoproduction performance (6085 and 5448 μmol g-1 h-1 in O2 and air) than TBC-COF with hcb topology through the O2-O2⋅--H2O2, O2-O2⋅--O2 1-H2O2, and H2O-H2O2 three paths. Further experimental and theoretical investigations confirmed that during the H2O2 photosynthetic process, the charge carrier separation efficiency, O2⋅- generation and conversion, and the energy barrier of the rate determination steps in the three channels, related to the formation of *OOH, *O2 1, and *OH, can be well tuned by the topology of COFs. The current study enlightens the fabrication of high-performance photocatalysts for H2O2 production by topological structure modulation.Photocatalytic oxygen reduction reactions and water oxidation reactions are extremely promising green approaches for massive H2O2 production. Nonetheless, constructing effective photocatalysts for H2O2 generation is critical and still challenging. Since the network topology has significant impacts on the electronic properties of two dimensional (2D) polymers, herein, for the first time, we regulated the H2O2 photosynthetic activity of 2D covalent organic frameworks (COFs) by topology. Through designing the linking sites of the monomers, we synthesized a pair of novel COFs with similar chemical components on the backbones but distinct topologies. Without sacrificial agents, TBD-COF with cpt topology exhibited superior H2O2 photoproduction performance (6085 and 5448 μmol g-1 h-1 in O2 and air) than TBC-COF with hcb topology through the O2-O2⋅--H2O2, O2-O2⋅--O2 1-H2O2, and H2O-H2O2 three paths. Further experimental and theoretical investigations confirmed that during the H2O2 photosynthetic process, the charge carrier separation efficiency, O2⋅- generation and conversion, and the energy barrier of the rate determination steps in the three channels, related to the formation of *OOH, *O2 1, and *OH, can be well tuned by the topology of COFs. The current study enlightens the fabrication of high-performance photocatalysts for H2O2 production by topological structure modulation.
Photocatalytic oxygen reduction reactions and water oxidation reactions are extremely promising green approaches for massive H2O2 production. Nonetheless, constructing effective photocatalysts for H2O2 generation is critical and still challenging. Since the network topology has significant impacts on the electronic properties of two dimensional (2D) polymers, herein, for the first time, we regulated the H2O2 photosynthetic activity of 2D covalent organic frameworks (COFs) by topology. Through designing the linking sites of the monomers, we synthesized a pair of novel COFs with similar chemical components on the backbones but distinct topologies. Without sacrificial agents, TBD‐COF with cpt topology exhibited superior H2O2 photoproduction performance (6085 and 5448 μmol g−1 h−1 in O2 and air) than TBC‐COF with hcb topology through the O2‐O2⋅−‐H2O2, O2‐O2⋅−‐O21‐H2O2, and H2O‐H2O2 three paths. Further experimental and theoretical investigations confirmed that during the H2O2 photosynthetic process, the charge carrier separation efficiency, O2⋅− generation and conversion, and the energy barrier of the rate determination steps in the three channels, related to the formation of *OOH, *O21, and *OH, can be well tuned by the topology of COFs. The current study enlightens the fabrication of high‐performance photocatalysts for H2O2 production by topological structure modulation. By linking site design, two novel two dimensional covalent organic frameworks (COFs) with similar chemical constitutions but different topologies were constructed. TBD‐COF with six‐arm cores and cpt topology exhibited better H2O2 photosynthetic activity than TBC‐COF with three‐arm cores and hcb topology through the O2‐O2.−‐H2O2, O2‐O2.−‐O21‐H2O2, and H2O‐H2O2 three channels, inspiring regulating the topology of COFs for boosting overall H2O2 photogeneration.
Author Luo, Jing‐Xian
Yue, Jie‐Yu
Tang, Bo
Yang, Peng
Pan, Zi‐Xian
Xu, Qing
Zhang, Rui‐Zhi
Author_xml – sequence: 1
  givenname: Jie‐Yu
  surname: Yue
  fullname: Yue, Jie‐Yu
  email: yuejieyu@sdnu.edu.cn
  organization: Shandong Normal University
– sequence: 2
  givenname: Jing‐Xian
  surname: Luo
  fullname: Luo, Jing‐Xian
  organization: Shandong Normal University
– sequence: 3
  givenname: Zi‐Xian
  surname: Pan
  fullname: Pan, Zi‐Xian
  organization: Shandong Normal University
– sequence: 4
  givenname: Rui‐Zhi
  surname: Zhang
  fullname: Zhang, Rui‐Zhi
  organization: Shandong Normal University
– sequence: 5
  givenname: Peng
  surname: Yang
  fullname: Yang, Peng
  email: yangpeng@sdnu.edu.cn
  organization: Shandong Normal University
– sequence: 6
  givenname: Qing
  surname: Xu
  fullname: Xu, Qing
  email: xuqing@sari.ac.cn
  organization: Chinese Academy of Sciences (CAS)
– sequence: 7
  givenname: Bo
  orcidid: 0000-0002-8712-7025
  surname: Tang
  fullname: Tang, Bo
  email: tangb@sdnu.edu.cn
  organization: Laoshan Laboratory
BookMark eNpdkEtPAjEUhRuDiYBuXTdx42aw7e28lkhASIhjDK5rgXYYLC12Bgj_3iKGhav7yHfuPTkd1LLOKoTuKelRQtiTtJXqMcI4idMErlCbxoxGkKbQCj0HiNIspjeoU9frwGcZSdro812VOyObypa4WSk8c1tnXHnETuOB20ujbIMLX4bjCzzycqMOzn_VWDuPn52rf4XFXnlpDB6zguG3lWtcqWxYNZWzt-haS1Oru7_aRR-j4WwwjqbFy2TQn0ZbliTBWs5pnqQpmes8YQR0zuecL5UEoud5TFnKMr3IQHPKKPAlyTXIwLMgnC-kgi56PN_deve9U3UjNlW9UMZIq9yuFkAg4-EH4QF9-Ieu3c7b4C5QCUCSxzEEKj9Th8qoo9j6aiP9UVAiTmmLU9rikrbov06Glwl-AHyAdl0
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202405763
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202405763
Genre article
GrantInformation_xml – fundername: the Taishan Scholars Program of Shandong Province
  funderid: tsqn202306151
– fundername: the National Natural Science Foundation of China
  funderid: 22134004, 21804081, and 22278249)
– fundername: the Local Science and Technology Development Fund Guided by the Central Government of Shandong Province
  funderid: YDZX2022012
– fundername: the Natural Science Foundation of Shandong Province
  funderid: ZR2023MB063, ZR2021YQ13
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-p2663-794196770bf96203f94b44dea30fb9512728fc83f412134d09f3a6772794bcae3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 11:48:03 EDT 2025
Sun Jul 13 04:29:32 EDT 2025
Wed Jan 22 17:20:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2663-794196770bf96203f94b44dea30fb9512728fc83f412134d09f3a6772794bcae3
Notes These authors contributed equally to this work
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8712-7025
PQID 3063369553
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_3038441904
proquest_journals_3063369553
wiley_primary_10_1002_anie_202405763_ANIE202405763
PublicationCentury 2000
PublicationDate June 10, 2024
PublicationDateYYYYMMDD 2024-06-10
PublicationDate_xml – month: 06
  year: 2024
  text: June 10, 2024
  day: 10
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 23
2019; 5
2019; 31
2021; 421
2020; 142
2022; 94
2023; 6
2023; 145
2020; 59
2002; 4
2024; 34
2022; 21
2023; 2
2023; 3
2024
2020; 10
2017; 117
2022; 144
2023; 62
2018; 9
2010; 49
2021; 31
2020; 2
2014; 2
2022; 61
2024; 7
2019; 21
2023; 475
2023; 451
2022; 34
2020; 49
2022; 13
2024; 63
2022; 58
2008; 41
2022; 55
2022; 2
2021; 60
2006; 128
2016; 22
References_xml – volume: 34
  start-page: 5232
  year: 2022
  end-page: 5240
  publication-title: Chem. Mater.
– volume: 59
  start-page: 22828
  year: 2020
  end-page: 22839
  publication-title: Angew. Chem. Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 31
  start-page: 3051
  year: 2019
  end-page: 3065
  publication-title: Chem. Mater.
– volume: 58
  start-page: 5506
  year: 2022
  end-page: 5509
  publication-title: Chem. Commun.
– volume: 3
  year: 2023
  publication-title: Chem Catal.
– volume: 117
  start-page: 11302
  year: 2017
  end-page: 11336
  publication-title: Chem. Rev.
– volume: 2
  start-page: 8612
  year: 2014
  end-page: 8616
  publication-title: J. Mater. Chem. A
– volume: 23
  start-page: 1466
  year: 2021
  end-page: 1494
  publication-title: Green Chem.
– volume: 2
  start-page: 557
  year: 2023
  end-page: 563
  publication-title: Nat. Synth.
– start-page: 4728
  year: 2024
  end-page: 4737
  publication-title: ACS Catal.
– volume: 49
  start-page: 317
  year: 2010
  end-page: 322
  publication-title: Free Radical Biol. Med.
– volume: 94
  start-page: 11062
  year: 2022
  end-page: 11069
  publication-title: Anal. Chem.
– volume: 142
  start-page: 20107
  year: 2020
  end-page: 20116
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 17784
  year: 2016
  end-page: 17789
  publication-title: Chem. Eur. J.
– volume: 9
  start-page: 5274
  year: 2018
  publication-title: Nat. Commun.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 1734
  year: 2022
  end-page: 1747
  publication-title: Chem Catal.
– volume: 7
  start-page: 195
  year: 2024
  end-page: 206
  publication-title: Nat. Catal.
– volume: 128
  start-page: 7408
  year: 2006
  end-page: 7409
  publication-title: J. Am. Chem. Soc.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 451
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 21
  start-page: 275
  year: 2022
  end-page: 283
  publication-title: Nat. Mater.
– volume: 145
  start-page: 26900
  year: 2023
  end-page: 26907
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 2007
  year: 2020
  end-page: 2019
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 416
  year: 2020
  end-page: 427
  publication-title: Matter
– volume: 145
  start-page: 16704
  year: 2023
  end-page: 16710
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 4828
  year: 2022
  end-page: 4837
  publication-title: Chem. Sci.
– volume: 4
  start-page: 1731
  year: 2002
  end-page: 1733
  publication-title: Org. Lett.
– year: 2024
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– year: 2024
  publication-title: Angew. Chem. Int. Ed.
– volume: 60
  start-page: 23946
  year: 2021
  end-page: 23974
  publication-title: Angew. Chem. Int. Ed.
– volume: 421
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– year: 2024
  publication-title: Small
– volume: 41
  start-page: 1782
  year: 2008
  end-page: 1789
  publication-title: Acc. Chem. Res.
– volume: 144
  start-page: 21328
  year: 2022
  end-page: 21336
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 6374
  year: 2020
  publication-title: Appl. Sci.
– volume: 475
  year: 2023
  publication-title: Coord. Chem. Rev.
– volume: 6
  start-page: 553
  year: 2023
  end-page: 558
  publication-title: Nat. Catal.
– volume: 5
  start-page: 1295
  year: 2019
  end-page: 1300
  publication-title: ACS Cent. Sci.
– volume: 21
  start-page: 22344
  year: 2019
  end-page: 22350
  publication-title: Phys. Chem. Chem. Phys.
– volume: 55
  start-page: 795
  year: 2022
  end-page: 808
  publication-title: Acc. Chem. Res.
– volume: 63
  year: 2024
  publication-title: Angew. Chem. Int. Ed.
SSID ssj0028806
Score 2.6507635
Snippet Photocatalytic oxygen reduction reactions and water oxidation reactions are extremely promising green approaches for massive H2O2 production. Nonetheless,...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e202405763
SubjectTerms Charge efficiency
Chemical reduction
covalent organic frameworks
Current carriers
Fabrication
H2O2 photosynthesis
Hydrogen peroxide
Network topologies
Oxidation
Oxygen reduction reactions
Photocatalysis
Photocatalysts
Photoproduction
Photosynthesis
Polymers
singlet oxygen
superoxide anion
Topology
Title Regulating the Topology of Covalent Organic Frameworks for Boosting Overall H2O2 Photogeneration
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202405763
https://www.proquest.com/docview/3063369553
https://www.proquest.com/docview/3038441904
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT4MwEG7MXvTF38bpNDXxlY21pcDjXLZMHzazbMnekNJWEw0swkz0r_dKB24-6hsNvQSOu97XcvcdQrcsoEk3iLmTJLBXZQIwnPBhqDRRwhNCd5Myy3fMR3P2sPAWG1X8lh-iPnAznlGu18bBY5F3fkhDTQU27O-IQRzc0H2ahC2DiqY1fxQB47TlRZQ6pgt9xdroks62-Ba-3ESpZZgZHqC4ekCbXfLaXhWinXz94m78zxscov01BsU9azRHaEelx2i3X7V-O0FPU9uhHsIaBoCIZ7aTwifONO5nYJsQqbCt4kzwsErvyjEAYHyXZXkpOPkwx11veEQmBD--ZEX2XFJcG0s4RfPhYNYfOetWDM4SIjgoL2Tgqr7vCh1y4lIdMsGYVDF1tQCQRnwS6CSgmpUUcdINNY1hPgFBkcSKnqFGmqXqHGGPh57kgRRau0xwEXtdqbj0pBQS1mfdRK3qU0Rrf8oj2NhQCoIebaKb-jZoxfzeiFOVrcwcGgC4C13WRKTUe7S0jB2R5WYmkdF4VGs86o3vB_Xo4i9Cl2jPXJvcsa7bQo3ifaWuAKUU4rq0xG96KOBB
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT8IwEL4oPuCLv40oak18BUbbje0REQKKaAwkvs11bTXRMCJgon-915VN8VEfu_WS7XbX-9rdfQdwzn0W1_3Iq8Qx7lW5QAwnGjhUmirhCqHrcZrlO_C6I3714GbZhKYWxvJD5AduxjPS9do4uDmQrn2zhpoSbNzgUQM5PLYKa6att_HNy_ucQYqiedoCI8Yqpg99xtvo0Nqy_BLC_IlT00DT2QSRPaLNL3mpzmeiGn_-Ym_81ztswcYChpKmtZttWFHjHSi2su5vu_B4b5vUY2QjiBHJ0DZT-CCJJq0EzRODFbGFnDHpZBleU4IYmFwkyTQVvH03J16vpEtvKbl7TmbJU8pybYxhD0ad9rDVrSy6MVQmGMRRewFHb200HKEDjzpMB1xwLlXEHC0Qp9EG9XXsM81TljjpBJpFOJ-ioIgjxfahME7G6gCI6wWu9HwptHa48ETk1qXypCulkLhE6xKUs28RLlxqGuLehjEUdFkJzvLbqBXzhyMaq2Ru5jAf8V3g8BLQVPHhxJJ2hJaemYZG42Gu8bA56LXz0eFfhE6h2B3e9MN-b3B9BOvmukklqztlKMze5uoYQctMnKRm-QWH7eRa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4SMCFN2I8g8R1kCVp1h5hMI2HtmkCiVtpmgQk0DqxDQl-PU6zlsERjmljqXXt-HMafwY4FiFPa2Eiq2mKuapQiOFUHYfGMqMCpWwtzU_5tmXrXlw_BA9TVfyeH6LccHOeka_XzsEH2p5-k4a6CmzM75hDHJLPwryQNHTp10WvJJBiaJ2-vojzqmtDX9A2Unb6U_4HwJyGqXmcaa5AUjyhP17ycjIeqZP08xd5439eYRWWJyCUnHmrWYMZ01-HxUbR-20DHnu-RT3GNYIIkdz5VgofJLOkkaFxYqgivowzJc3ifNeQIAIm51k2zAU7726_65W0WIeR7nM2yp5yjmtnCptw37y8a7Sqk14M1QGGcFReJNBX63WqbCQZ5TYSSghtEk6tQpTG6iy0acityDniNI0sT3A-Q0GVJoZvwVw_65ttIIGMAi1DraylQkmVBDVtpA60VhoXaFuBveJTxBOHGsaY2XCOggGvwFF5G7Xi_m8kfZON3RweIrqLqKgAy_UeDzxlR-zJmVnsNB6XGo_P2leX5WjnL0KHsNC9aMa3V-2bXVhyl905shrdg7nR29jsI2IZqYPcKL8ABq_jEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+the+Topology+of+Covalent+Organic+Frameworks+for+Boosting+Overall+H2O2+Photogeneration&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jie%E2%80%90Yu+Yue&rft.au=Jing%E2%80%90Xian+Luo&rft.au=Zi%E2%80%90Xian+Pan&rft.au=Rui%E2%80%90Zhi+Zhang&rft.date=2024-06-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=24&rft_id=info:doi/10.1002%2Fanie.202405763&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon