A Renewable Light‐Promoted Flexible Li‐CO2 Battery with Ultrahigh Energy Efficiency of 97.9
Directly converting and storing abundant solar energy in next‐generation energy storage devices is of central importance to build a sustainable society. Herein, a new prototype of a light‐promoted rechargeable and flexible Li‐CO2 battery with a TiO2/carbon cloth (CC) cathode is reported for the dire...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 26; pp. e2100642 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Directly converting and storing abundant solar energy in next‐generation energy storage devices is of central importance to build a sustainable society. Herein, a new prototype of a light‐promoted rechargeable and flexible Li‐CO2 battery with a TiO2/carbon cloth (CC) cathode is reported for the direct utilization of solar energy to promote the kinetics of the carbon dioxide reduction reaction and carbon dioxide evolution reaction (CO2ER). Under illumination, photoelectrons are generated in the conduction band of TiO2/CC, followed by the enhancing diffusion of electrons and lithium ions during the discharge process. The photoelectrons on the cathode surface can regulate the morphology of the discharge product Li2CO3, contributing to boosting the kinetics of the subsequent CO2ER process. In the reverse charge process, photogenerated holes can favor the decomposition of Li2CO3, leading to a negative charge potential of 2.88 V without increased polarization over ≈60 h of cycling. Owing to an ultralow overpotential of 0.06 V between the discharge and charge process, an ultrahigh energy efficiency of 97.9% is attained under illumination. The introduction of a light‐promoted flexible Li‐CO2 battery can pave the way toward developing the use of solar energy to address the charging overpotential of conventional Li‐CO2 batteries.
A renewable light‐promoted flexible Li‐CO2 battery is developed inspired by the photoenergy conversion and utilization concept. The utilization of solar light can effectively alleviate the charge polarization and promote the Li+ diffusion and mass transfer, resulting in considerable improvement of the kinetics of the carbon dioxide reduction reaction and carbon dioxide evolution reaction processes in the Li‐CO2 battery. |
---|---|
AbstractList | Directly converting and storing abundant solar energy in next‐generation energy storage devices is of central importance to build a sustainable society. Herein, a new prototype of a light‐promoted rechargeable and flexible Li‐CO2 battery with a TiO2/carbon cloth (CC) cathode is reported for the direct utilization of solar energy to promote the kinetics of the carbon dioxide reduction reaction and carbon dioxide evolution reaction (CO2ER). Under illumination, photoelectrons are generated in the conduction band of TiO2/CC, followed by the enhancing diffusion of electrons and lithium ions during the discharge process. The photoelectrons on the cathode surface can regulate the morphology of the discharge product Li2CO3, contributing to boosting the kinetics of the subsequent CO2ER process. In the reverse charge process, photogenerated holes can favor the decomposition of Li2CO3, leading to a negative charge potential of 2.88 V without increased polarization over ≈60 h of cycling. Owing to an ultralow overpotential of 0.06 V between the discharge and charge process, an ultrahigh energy efficiency of 97.9% is attained under illumination. The introduction of a light‐promoted flexible Li‐CO2 battery can pave the way toward developing the use of solar energy to address the charging overpotential of conventional Li‐CO2 batteries. Directly converting and storing abundant solar energy in next-generation energy storage devices is of central importance to build a sustainable society. Herein, a new prototype of a light-promoted rechargeable and flexible Li-CO2 battery with a TiO2 /carbon cloth (CC) cathode is reported for the direct utilization of solar energy to promote the kinetics of the carbon dioxide reduction reaction and carbon dioxide evolution reaction (CO2 ER). Under illumination, photoelectrons are generated in the conduction band of TiO2 /CC, followed by the enhancing diffusion of electrons and lithium ions during the discharge process. The photoelectrons on the cathode surface can regulate the morphology of the discharge product Li2 CO3 , contributing to boosting the kinetics of the subsequent CO2 ER process. In the reverse charge process, photogenerated holes can favor the decomposition of Li2 CO3 , leading to a negative charge potential of 2.88 V without increased polarization over ≈60 h of cycling. Owing to an ultralow overpotential of 0.06 V between the discharge and charge process, an ultrahigh energy efficiency of 97.9% is attained under illumination. The introduction of a light-promoted flexible Li-CO2 battery can pave the way toward developing the use of solar energy to address the charging overpotential of conventional Li-CO2 batteries.Directly converting and storing abundant solar energy in next-generation energy storage devices is of central importance to build a sustainable society. Herein, a new prototype of a light-promoted rechargeable and flexible Li-CO2 battery with a TiO2 /carbon cloth (CC) cathode is reported for the direct utilization of solar energy to promote the kinetics of the carbon dioxide reduction reaction and carbon dioxide evolution reaction (CO2 ER). Under illumination, photoelectrons are generated in the conduction band of TiO2 /CC, followed by the enhancing diffusion of electrons and lithium ions during the discharge process. The photoelectrons on the cathode surface can regulate the morphology of the discharge product Li2 CO3 , contributing to boosting the kinetics of the subsequent CO2 ER process. In the reverse charge process, photogenerated holes can favor the decomposition of Li2 CO3 , leading to a negative charge potential of 2.88 V without increased polarization over ≈60 h of cycling. Owing to an ultralow overpotential of 0.06 V between the discharge and charge process, an ultrahigh energy efficiency of 97.9% is attained under illumination. The introduction of a light-promoted flexible Li-CO2 battery can pave the way toward developing the use of solar energy to address the charging overpotential of conventional Li-CO2 batteries. Directly converting and storing abundant solar energy in next‐generation energy storage devices is of central importance to build a sustainable society. Herein, a new prototype of a light‐promoted rechargeable and flexible Li‐CO2 battery with a TiO2/carbon cloth (CC) cathode is reported for the direct utilization of solar energy to promote the kinetics of the carbon dioxide reduction reaction and carbon dioxide evolution reaction (CO2ER). Under illumination, photoelectrons are generated in the conduction band of TiO2/CC, followed by the enhancing diffusion of electrons and lithium ions during the discharge process. The photoelectrons on the cathode surface can regulate the morphology of the discharge product Li2CO3, contributing to boosting the kinetics of the subsequent CO2ER process. In the reverse charge process, photogenerated holes can favor the decomposition of Li2CO3, leading to a negative charge potential of 2.88 V without increased polarization over ≈60 h of cycling. Owing to an ultralow overpotential of 0.06 V between the discharge and charge process, an ultrahigh energy efficiency of 97.9% is attained under illumination. The introduction of a light‐promoted flexible Li‐CO2 battery can pave the way toward developing the use of solar energy to address the charging overpotential of conventional Li‐CO2 batteries. A renewable light‐promoted flexible Li‐CO2 battery is developed inspired by the photoenergy conversion and utilization concept. The utilization of solar light can effectively alleviate the charge polarization and promote the Li+ diffusion and mass transfer, resulting in considerable improvement of the kinetics of the carbon dioxide reduction reaction and carbon dioxide evolution reaction processes in the Li‐CO2 battery. |
Author | Zheng, Li‐Jun Wang, Xiao‐Xue Guan, De‐Hui Li, Fei Li, Ma‐Lin Xu, Ji‐Jing |
Author_xml | – sequence: 1 givenname: Xiao‐Xue surname: Wang fullname: Wang, Xiao‐Xue organization: Jilin University – sequence: 2 givenname: De‐Hui surname: Guan fullname: Guan, De‐Hui organization: Jilin University – sequence: 3 givenname: Fei surname: Li fullname: Li, Fei organization: Jilin University – sequence: 4 givenname: Ma‐Lin surname: Li fullname: Li, Ma‐Lin organization: Jilin University – sequence: 5 givenname: Li‐Jun surname: Zheng fullname: Zheng, Li‐Jun organization: Jilin University – sequence: 6 givenname: Ji‐Jing orcidid: 0000-0002-6212-8224 surname: Xu fullname: Xu, Ji‐Jing email: jijingxu@jlu.edu.cn organization: Jilin University |
BookMark | eNpdkMFOwkAQhjcGEwG9et7Ei5fizrZsu0ckoCY1GJXzZrtMYcnS4rYEe_MRfEafxBIMB08z_8w3fyZ_j3SKskBCroENgDF-V22cG3DGWyEifka6ICAMRMJl59QDuyC9qlozFgKP4i5RI_qKBe515pCmdrmqf76-X3y5KWtc0KnDT3vctOPxjNN7XdfoG7q39YrOXe31qj2ikwL9sqGTPLfGYmEaWuZUxgN5Sc5z7Sq8-qt9Mp9O3sePQTp7eBqP0mDLheCB1BkOcw2xYFpncQ4IEiMU2QJCwGEigAkdoc5EFjFAvkhkoo00hhuToDFhn9wefbe-_NhhVauNrQw6pwssd5Xiw1AkDCCWLXrzD12XO1-037VUFHMGccJbSh6pvXXYqK23G-0bBUwdwlaHsNUpbPX2nKYnFf4Cxl54VQ |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202100642 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL202100642 |
Genre | article |
GrantInformation_xml | – fundername: Education Department of Jilin Province funderid: JJKH20190113KJ – fundername: Jilin Province/Jilin University Co‐construction Project‐Funds for New Materials funderid: SXGJSF2017‐3 – fundername: National Natural Science Foundation of China funderid: 51771177; 51972141; 21835002; 21621001 – fundername: 111 Project funderid: B17020 – fundername: Jilin Province Science and Technology Development Program funderid: 20190303104SF |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-p2662-9abe5fa1760aab7f1e19e4e6bd131e586106a4eab6b401e2d898ac9cc2cc8ecc3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 10:31:35 EDT 2025 Fri Jul 25 12:19:28 EDT 2025 Wed Jan 22 16:57:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2662-9abe5fa1760aab7f1e19e4e6bd131e586106a4eab6b401e2d898ac9cc2cc8ecc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6212-8224 |
PQID | 2547201782 |
PQPubID | 1046358 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2536801179 proquest_journals_2547201782 wiley_primary_10_1002_smll_202100642_SMLL202100642 |
PublicationCentury | 2000 |
PublicationDate | July 1, 2021 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 1, 2021 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2015; 15 2017; 8 2019; 9 2018; 8 2015; 6 2018; 2 2018; 4 2019; 31 2015; 347 2013; 13 2019; 10 2019; 58 2013; 52 2015; 8 2014; 136 2018; 15 2018; 13 2017; 118 |
References_xml | – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 347 year: 2015 publication-title: Science – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 13 start-page: 49 year: 2018 publication-title: Energy Storage Mater. – volume: 2 start-page: 2649 year: 2018 publication-title: Joule – volume: 6 start-page: 7892 year: 2015 publication-title: Nat. Commun. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 10 start-page: 4946 year: 2019 publication-title: Nat. Commun. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 4767 year: 2019 publication-title: Nat. Commun. – volume: 13 start-page: 4679 year: 2013 publication-title: Nano Lett. – volume: 118 start-page: 139 year: 2017 publication-title: Carbon – volume: 8 start-page: 2664 year: 2015 publication-title: Energy Environ. Sci. – volume: 52 start-page: 7372 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 136 start-page: 8438 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 3899 year: 2015 publication-title: Nano Lett. – volume: 15 start-page: 291 year: 2018 publication-title: Energy Storage Mater. – volume: 8 start-page: 182 year: 2015 publication-title: Energy Environ. Sci. – volume: 4 start-page: 162 year: 2018 publication-title: Chem – volume: 2 year: 2018 publication-title: Adv. Sustainable Syst. – volume: 2 year: 2018 publication-title: Small Methods – volume: 7 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 31 year: 2019 publication-title: Adv. Mater. |
SSID | ssj0031247 |
Score | 2.5597577 |
Snippet | Directly converting and storing abundant solar energy in next‐generation energy storage devices is of central importance to build a sustainable society.... Directly converting and storing abundant solar energy in next-generation energy storage devices is of central importance to build a sustainable society.... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2100642 |
SubjectTerms | Carbon dioxide Cathodes Charging Chemical reduction Cloth Conduction bands Discharge Electrode polarization Energy conversion efficiency Energy efficiency Energy storage enhanced kinetics flexible Li‐CO 2 batteries Illumination Kinetics Light Lithium Lithium ions Morphology Nanotechnology oxidization of Li 2CO 3 Photoelectrons Rechargeable batteries Solar energy Titanium dioxide |
Title | A Renewable Light‐Promoted Flexible Li‐CO2 Battery with Ultrahigh Energy Efficiency of 97.9 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202100642 https://www.proquest.com/docview/2547201782 https://www.proquest.com/docview/2536801179 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT8IwFG8MJz3434iiqYnXwtZ13XYkBEIMqEFJuDVt113EQQRi9ORH8DP6SXztYIJHvW3rmqzd-_N77Xu_InTNUl8GjKZEeUwRlmlN4oAzIlmYAiANVeiKwvq3vDtkN6NwtFbFX_BDlAtuVjOcvbYKLtWs8UMaOnse260DCFkshgYjbBO2LCoalPxRATgvd7oK-CxiibdWrI0ebWx238CX6yjVuZnOHpKrDyyyS57qi7mq6_df3I3_GcE-2l1iUNwshOYAbZn8EO2sMRMeIdHEA7CCr7awCvdsAP_18XnvUvdMijuWRbNogcetO4oLms43bJd18XA8BxMGnXDbVRbituOpsEWeeJLhJKonx2jYaT-2umR5FgOZggunJJHKhJn0I-5JqaLMN35imOEq9QPfhDGgMC6ZkYoriNgMTeMkljrRmmodg5gEJ6iST3JzijDYDOpzpXiagXwknsyiWDLODdM8BQtURbXVvxBLhZoJiGMjwCqAZ6roqmwGVbD7GzI3k4V9J-Cx47irIuomXkwLyg5RkDNTYadclFMuHvq9Xnl39pdO52jbXhcJvDVUmb8szAXAlLm6dKL4DXVb4W8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwEB5BOQCH5V906YKRuKbbOI6THKuqVYG0oNJK3CzbcS5b2mrbagWnfYR9xn2SnXHabMsRjrFjKbHn5xt75jPAJ1GEOhK8CExHmECU1gZpJEWgRVwgII1N7IvCRmM5nIkvP-N9NiHVwlT8EPWGG2mGt9ek4LQhfX7PGrr-NaezA4xZCEQ_hEd0rbePqiY1g1SE7svfr4JeKyDqrT1vY4efH48_QpiHONU7msEzMPtPrPJLLtrbjWnbP3-xN_7XPzyHkx0MZd1Kbl7AA7d4CU8PyAlfgeqyCRrCK6qtYjnF8LfXN9999p4r2ICINKsebO5946xi6vzNaGeXzeYbtGI4iPV9cSHre6oKqvNky5JlSTt7DbNBf9obBrvrGIIVenEeZNq4uNRhIjtam6QMXZg54aQpwih0cYpATGrhtJEGgzbHizRLtc2s5damKCnRG2gslgv3FhiaDR5KY2RRoohkHV0mqRZSOmFlgUaoCa39YqidTq0VhrIJwhWENE34WHejNtARh1645ZbeiWTqae6awP3Mq1XF2qEqfmauaMpVPeXqxyjP66fTfxn0AR4Pp6Nc5Z_HX9_BE2qv8nlb0Nhcbt0ZopaNee_l8g6VreWK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-MwFH5ikRAchnU0HQoYiWtK4jhOckS0FUtZVKjUm-Utl2HaClqNZk7zE_iN_BKenTYUjnCMHUvJ81u-Z_t9BjhiJpIxoyZQIVMBK7QOspizQLLEICBNVOKLwq6u-VmPXfST_lwVf8kPUS24Ocvw_toZ-MgUx2-koU-_H9zWAaYsDkMvwjLjYeb0utmtCKRijF7-ehUMWoFj3prRNob0-P34dwBzHqb6ONNeBzn7wvJ4ya_GZKwa-t8H8sav_MIGfJuCUHJSas0mLNjBFqzNURNugzghXXSDf1xlFem4DP7l__OtP7tnDWk7Gs2yB5tPbygpeTr_EreuS3oPY_RhOIi0fGkhaXmiClflSYYFydNGvgO9duv-9CyYXsYQjDCG0yCXyiaFjFIeSqnSIrJRbpnlykRxZJMMYRiXzErFFaZslposz6TOtaZaZ6gn8XdYGgwH9gcQdBo04kpxU6CC5KEs0kwyzi3T3KALqkF9NhdialFPAhPZFMEKApoaHFbdaAtug0MO7HDi3ol55knuakC94MWo5OwQJTszFU7kohK5uLvqdKqnn58ZdAArt8226JxfX-7CqmsuD_PWYWn8OLF7CFnGat9r5SsTvuRC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Renewable+Light%E2%80%90Promoted+Flexible+Li%E2%80%90CO2+Battery+with+Ultrahigh+Energy+Efficiency+of+97.9&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Xiao%E2%80%90Xue&rft.au=Guan%2C+De%E2%80%90Hui&rft.au=Li%2C+Fei&rft.au=Li%2C+Ma%E2%80%90Lin&rft.date=2021-07-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=26&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202100642&rft.externalDBID=10.1002%252Fsmll.202100642&rft.externalDocID=SMLL202100642 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |