Magnetic and Optical Field Multi‐Assisted Li–O2 Batteries with Ultrahigh Energy Efficiency and Cycle Stability

The photoassisted lithium–oxygen (Li–O2) system has emerged as an important direction for future development by effectively reducing the large overpotential in Li–O2 batteries. However, the advancement is greatly hindered by the rapidly recombined photoexcited electrons and holes upon the dischargin...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 2; pp. e2104792 - n/a
Main Authors Wang, Xiao‐Xue, Guan, De‐Hui, Li, Fei, Li, Ma‐Lin, Zheng, Li‐Jun, Xu, Ji‐Jing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The photoassisted lithium–oxygen (Li–O2) system has emerged as an important direction for future development by effectively reducing the large overpotential in Li–O2 batteries. However, the advancement is greatly hindered by the rapidly recombined photoexcited electrons and holes upon the discharging and charging processes. Herein, a breakthrough is made in overcoming these challenges by developing a new magnetic and optical field multi‐assisted Li–O2 battery with 3D porous NiO nanosheets on the Ni foam (NiO/FNi) as a photoelectrode. Under illumination, the photogenerated electrons and holes of the NiO/FNi photoelectrode play a key role in reducing the overpotential during discharging and charging, respectively. By introducing the external magnetic field, the Lorentz force acts oppositely on the photogenerated electrons and holes, thereby suppressing the recombination of charge carriers. The magnetic and optical field multi‐assisted Li–O2 battery achieves an ultralow charge potential of 2.73 V, a high energy efficiency of 96.7%, and good cycling stability. This external magnetic and optical field multi‐assisted technology paves a new way of developing high‐performance Li–O2 batteries and other energy storage systems. A renewable magnetic and optical field multi‐assisted Li–O2 battery is developed with porous NiO on the Ni foam as a photoelectrode. The battery achieves an ultralow charge potential of 2.73 V, a high energy efficiency of 96.7%, and good cycling stability. The effect mechanism of the improved battery performance with magnetic field and optical field is revealed.
AbstractList The photoassisted lithium-oxygen (Li-O2 ) system has emerged as an important direction for future development by effectively reducing the large overpotential in Li-O2 batteries. However, the advancement is greatly hindered by the rapidly recombined photoexcited electrons and holes upon the discharging and charging processes. Herein, a breakthrough is made in overcoming these challenges by developing a new magnetic and optical field multi-assisted Li-O2 battery with 3D porous NiO nanosheets on the Ni foam (NiO/FNi) as a photoelectrode. Under illumination, the photogenerated electrons and holes of the NiO/FNi photoelectrode play a key role in reducing the overpotential during discharging and charging, respectively. By introducing the external magnetic field, the Lorentz force acts oppositely on the photogenerated electrons and holes, thereby suppressing the recombination of charge carriers. The magnetic and optical field multi-assisted Li-O2 battery achieves an ultralow charge potential of 2.73 V, a high energy efficiency of 96.7%, and good cycling stability. This external magnetic and optical field multi-assisted technology paves a new way of developing high-performance Li-O2 batteries and other energy storage systems.The photoassisted lithium-oxygen (Li-O2 ) system has emerged as an important direction for future development by effectively reducing the large overpotential in Li-O2 batteries. However, the advancement is greatly hindered by the rapidly recombined photoexcited electrons and holes upon the discharging and charging processes. Herein, a breakthrough is made in overcoming these challenges by developing a new magnetic and optical field multi-assisted Li-O2 battery with 3D porous NiO nanosheets on the Ni foam (NiO/FNi) as a photoelectrode. Under illumination, the photogenerated electrons and holes of the NiO/FNi photoelectrode play a key role in reducing the overpotential during discharging and charging, respectively. By introducing the external magnetic field, the Lorentz force acts oppositely on the photogenerated electrons and holes, thereby suppressing the recombination of charge carriers. The magnetic and optical field multi-assisted Li-O2 battery achieves an ultralow charge potential of 2.73 V, a high energy efficiency of 96.7%, and good cycling stability. This external magnetic and optical field multi-assisted technology paves a new way of developing high-performance Li-O2 batteries and other energy storage systems.
The photoassisted lithium–oxygen (Li–O2) system has emerged as an important direction for future development by effectively reducing the large overpotential in Li–O2 batteries. However, the advancement is greatly hindered by the rapidly recombined photoexcited electrons and holes upon the discharging and charging processes. Herein, a breakthrough is made in overcoming these challenges by developing a new magnetic and optical field multi‐assisted Li–O2 battery with 3D porous NiO nanosheets on the Ni foam (NiO/FNi) as a photoelectrode. Under illumination, the photogenerated electrons and holes of the NiO/FNi photoelectrode play a key role in reducing the overpotential during discharging and charging, respectively. By introducing the external magnetic field, the Lorentz force acts oppositely on the photogenerated electrons and holes, thereby suppressing the recombination of charge carriers. The magnetic and optical field multi‐assisted Li–O2 battery achieves an ultralow charge potential of 2.73 V, a high energy efficiency of 96.7%, and good cycling stability. This external magnetic and optical field multi‐assisted technology paves a new way of developing high‐performance Li–O2 batteries and other energy storage systems.
The photoassisted lithium–oxygen (Li–O2) system has emerged as an important direction for future development by effectively reducing the large overpotential in Li–O2 batteries. However, the advancement is greatly hindered by the rapidly recombined photoexcited electrons and holes upon the discharging and charging processes. Herein, a breakthrough is made in overcoming these challenges by developing a new magnetic and optical field multi‐assisted Li–O2 battery with 3D porous NiO nanosheets on the Ni foam (NiO/FNi) as a photoelectrode. Under illumination, the photogenerated electrons and holes of the NiO/FNi photoelectrode play a key role in reducing the overpotential during discharging and charging, respectively. By introducing the external magnetic field, the Lorentz force acts oppositely on the photogenerated electrons and holes, thereby suppressing the recombination of charge carriers. The magnetic and optical field multi‐assisted Li–O2 battery achieves an ultralow charge potential of 2.73 V, a high energy efficiency of 96.7%, and good cycling stability. This external magnetic and optical field multi‐assisted technology paves a new way of developing high‐performance Li–O2 batteries and other energy storage systems. A renewable magnetic and optical field multi‐assisted Li–O2 battery is developed with porous NiO on the Ni foam as a photoelectrode. The battery achieves an ultralow charge potential of 2.73 V, a high energy efficiency of 96.7%, and good cycling stability. The effect mechanism of the improved battery performance with magnetic field and optical field is revealed.
Author Zheng, Li‐Jun
Wang, Xiao‐Xue
Guan, De‐Hui
Li, Fei
Li, Ma‐Lin
Xu, Ji‐Jing
Author_xml – sequence: 1
  givenname: Xiao‐Xue
  surname: Wang
  fullname: Wang, Xiao‐Xue
  organization: Jilin University
– sequence: 2
  givenname: De‐Hui
  surname: Guan
  fullname: Guan, De‐Hui
  organization: Jilin University
– sequence: 3
  givenname: Fei
  surname: Li
  fullname: Li, Fei
  organization: Jilin University
– sequence: 4
  givenname: Ma‐Lin
  surname: Li
  fullname: Li, Ma‐Lin
  organization: Jilin University
– sequence: 5
  givenname: Li‐Jun
  surname: Zheng
  fullname: Zheng, Li‐Jun
  organization: Jilin University
– sequence: 6
  givenname: Ji‐Jing
  orcidid: 0000-0002-6212-8224
  surname: Xu
  fullname: Xu, Ji‐Jing
  email: jijingxu@jlu.edu.cn
  organization: Jilin University
BookMark eNpdkEFPwjAUxxuDiYBePTfx4mX42q7ddkQENYFwUM5Lu3VQUjZcS8hufgQTv6GfxAGGg6f3_snv_fPy66FOWZUaoVsCAwJAH2S-kQMKlEAYJfQCdQmnJAgh4R3UhYTxIBFhfIV6zq0BIBEguqieyWWpvcmwLHM837abtHhitM3xbGe9-fn8GjpnnNc5nrbpe07xo_Re10Y7vDd-hRfW13Jllis8LnW9bPC4KExmdJk1x9ZRk1mN37xUxhrfXKPLQlqnb_5mHy0m4_fRSzCdP7-OhtNgS4WgAYt0DBGXoCORC6EEYUXIYhVLJgvBATgJi0gxKJTgjIJUEAOToIgiLAbF-uj-1Lutq4-ddj7dGJdpa2Wpq51LqSAJD4G313109w9dV7u6bL87UoRxFkFLJSdqb6xu0m1tNrJuUgLpwX968J-e_afDp9nwnNgv9u5-Ag
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2022 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2022 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202104792
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202104792
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51771177; 51972141; 21835002; 21621001
– fundername: Fundamental Research Funds for the Central Universities
– fundername: 111 Project
  funderid: B17020
– fundername: Jilin Province Science and Technology Development Program
  funderid: 20190303104SF
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-p2662-37e8075a0e76d66b613f438b8a3af6500514f7b30fb65320ab0803a0b1b1380b3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 03:49:42 EDT 2025
Sun Jul 13 04:50:02 EDT 2025
Wed Jan 22 16:26:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2662-37e8075a0e76d66b613f438b8a3af6500514f7b30fb65320ab0803a0b1b1380b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6212-8224
PQID 2619135370
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2619540565
proquest_journals_2619135370
wiley_primary_10_1002_adma_202104792_ADMA202104792
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 2
2019; 7
2019; 9
2019; 4
2019; 6
2015; 3
2015; 347
2020; 120
2019; 10
2019; 15
2019; 58
2021; 404
2019; 19
2020; 59
2020; 11
2020; 32
2013; 5
2015; 8
2018; 47
2017; 139
2016; 55
2016; 4
2018; 9
2016; 7
2014; 5
2014; 4
2015; 258
2020; 71
2020; 28
2018; 30
2018; 12
2012; 337
2019; 131
References_xml – volume: 28
  start-page: 235
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 3078
  year: 2020
  publication-title: Nat. Commun.
– volume: 11
  start-page: 456
  year: 2020
  publication-title: Nat. Commun.
– volume: 131
  start-page: 2367
  year: 2019
  publication-title: Angew. Chem.
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 4
  start-page: 7413
  year: 2014
  publication-title: Sci. Rep.
– volume: 19
  start-page: 148
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 9
  start-page: 4036
  year: 2018
  publication-title: Nat. Commun.
– volume: 8
  start-page: 2664
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 258
  start-page: 634
  year: 2015
  publication-title: Catal. Today
– volume: 5
  start-page: 489
  year: 2013
  publication-title: Nat. Chem.
– volume: 120
  start-page: 6558
  year: 2020
  publication-title: Chem. Rev.
– volume: 337
  start-page: 563
  year: 2012
  publication-title: Science
– volume: 7
  start-page: 5931
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 71
  year: 2020
  publication-title: Nano Energy
– volume: 12
  start-page: 3351
  year: 2018
  publication-title: ACS Nano
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 4767
  year: 2019
  publication-title: Nat. Commun.
– volume: 139
  start-page: 4290
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 5
  start-page: 5111
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 347
  start-page: 970
  year: 2015
  publication-title: Science
– volume: 2
  year: 2015
  publication-title: Adv. Sci.
– volume: 404
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 47
  start-page: 2921
  year: 2018
  publication-title: Chem. Soc. Rev.
SSID ssj0009606
Score 2.6405845
Snippet The photoassisted lithium–oxygen (Li–O2) system has emerged as an important direction for future development by effectively reducing the large overpotential in...
The photoassisted lithium-oxygen (Li-O2 ) system has emerged as an important direction for future development by effectively reducing the large overpotential...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2104792
SubjectTerms 3D porous photoelectrodes
Charging
Current carriers
Discharge
Electrons
Energy efficiency
Energy storage
Lithium
Li–O 2 batteries
Lorentz force
Materials science
Metal foams
Nickel oxides
self‐regulation
Stability
Storage batteries
Storage systems
ultralow polarization
Title Magnetic and Optical Field Multi‐Assisted Li–O2 Batteries with Ultrahigh Energy Efficiency and Cycle Stability
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202104792
https://www.proquest.com/docview/2619135370
https://www.proquest.com/docview/2619540565
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4YTnrwbUTR1MTrwtLuiyNBCDEiiZGE26alXQ-ahcBywJM_wcR_6C9xpgsLeNRj0-0-Mo9-nZ35BuDWEzpKtOc6iauE42kjHInIwfGFwQ0_5CNjuzX0HoPuwLsf-sONKv6cH6IIuJFlWH9NBi7VrLYmDZXa8gZx4hpokBOmhC1CRU9r_iiC55ZsT_hOI_CiFWujy2vby7fw5SZKtdtM5wDk6gXz7JLX6jxT1dH7L-7G_3zBIewvMShr5kpzBDsmPYa9DWbCE5j25EtK9Y1Mppr1JzbizTqU7sZsze73xydKlnREswccffU5y7k68ejNKLrLBm8ZejI8_LO2LTBkbUtXQbWe9q6tBT6dIdq1-bmLUxh02s-trrNsz-BMcFfn6JoMMRlL14SBDgKFwCDxRKQiKWSCwI-Y1ZNQCTdRAbWfkArRqZCuqqu6iFA1zqCUjlNzDgznBRGrSXQ4no9OJVGqUec6rJtQy5CXobIST7y0sVlMZz_q2hG6ZbgpptE66JeHTM14nl9DmDTwy8CtLOJJzuIR53zNPCYpxIUU4uZdr1mMLv6y6BJ2OdVI2DhNBUrZdG6uELlk6tpq5w-2yuYr
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctBAMw8EYUChiJNW1q59Wx6kMFmlZCrcQW2bXDAEqr0g5l4iMg8Q35JNw5TdoywhglzkNnn_---H5HyK3DVRArx7ZiW3LLUZpbApSD5XINE77PhtpUawi7Xnvg3D-52W5CzIVJ-RB5wA1HhvHXOMAxIF1eUkOFMuAghrCBKnjhLSzrjfj8xuOSIIUC3eD2uGtVPSfIuI02K6-3X1OYqzrVTDStfSKzV0z3l7yUZlNZGr7_ojf-6xsOyN5ChtJa2m8OyYZOjsjuCpzwmExC8ZxgiiMViaK9sQl60xbueKMmbff74xOMi91E0Q4cffUYTXGdsPqmGOClg9cpODNY_9OmyTGkTUOswHRPc9f6HJ5OQfCaLbrzEzJoNfv1trWo0GCNYWJn4J00woyFrX1PeZ4EbRA7PJCB4CIG7Ydw9diX3I6lhxUohASByoUtK7LCA-gdp2QzGSX6jFA4z5GtJsDnOC74lVjKaoUpv6J9JXxWIMXMPtFimL1FuPzDwh2-XSA3-WkYIPjXQyR6NEuvQVnquQXCjDGicQryiFJkM4vQClFuhajWCGv50flfGl2T7XY_7ESdu-7DBdlhmDJhwjZFsjmdzPQlCJmpvDJd9QcpYOpH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LTwIxEMcbg4nRg28jiloTrwtLuy-OBNig8jBGEm6blnY9aBaCcMCTH8HEb-gncaYLC3jUY9PtPjLt9N9u5zeE3DhcBbFybCu2JbccpbklQDlYLtcw4ftsoE22hnbHa_acu77bX4niT_kQ2YYbjgzjr3GAj1RcWkJDhTLcIIasgQo44U3HsyuYvKH-uARIoT43tD3uWhXPCRbYRpuV1tuvCcxVmWrmmXCPiMUbpsdLXorTiSwO3n_BG__zCftkdy5CaTXtNQdkQyeHZGcFTXhExm3xnGCAIxWJot2R2fKmIZ53oyZo9_vjE0yLnUTRFpS-uoymsE5Ye1Pc3qW91wm4Mlj904aJMKQNw6vAYE9z19oMnk5B7poDurNj0gsbT7WmNc_PYI1gWmfgmzSijIWtfU95ngRlEDs8kIHgIgblh2j12JfcjqWH-SeEBHnKhS3LsswD6BsnJJcME31KKNRzJKsJ8DiOC14llrJSZsova18Jn-VJYWGeaD7I3iJc_GHaDt_Ok-usGoYH_vMQiR5O02tQlHpunjBji2iUYjyiFNjMIrRClFkhqtbb1ax09pdGV2TroR5GrdvO_TnZZhgvYfZsCiQ3GU_1BaiYibw0HfUHeQLo9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+and+Optical+Field+Multi-Assisted+Li-O2+Batteries+with+Ultrahigh+Energy+Efficiency+and+Cycle+Stability&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Xiao-Xue&rft.au=Guan%2C+De-Hui&rft.au=Li%2C+Fei&rft.au=Li%2C+Ma-Lin&rft.date=2022-01-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=2&rft.spage=e2104792&rft_id=info:doi/10.1002%2Fadma.202104792&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon