Amino‐Functionalized Metal–Organic Frameworks Featuring Ultra‐Strong Ethane Nano‐Traps for Efficient C2H6/C2H4 Separation
Developing high‐performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their similar sizes and physicochemical properties. Herein, a new type of ultra‐strong C2H6 nano‐trap, CuIn(3‐ain)4 is presented, which utilizes multiple...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 45; pp. e2402382 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing high‐performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their similar sizes and physicochemical properties. Herein, a new type of ultra‐strong C2H6 nano‐trap, CuIn(3‐ain)4 is presented, which utilizes multiple guest‐host interactions to efficiently capture C2H6 molecules and separate mixtures of C2H6 and C2H4. The ultra‐strong C2H6 nano‐trap exhibits the high C2H6 (2.38 mmol g−1) uptake at 6.25 kPa and 298 K and demonstrates a remarkable selectivity of 3.42 for C2H6/C2H4 (10:90). Additionally, equimolar C2H6/C2H4 exhibited a superior high separation potential ∆Q (2286 mmol L−1) at 298 K. Kinetic adsorption tests demonstrated that CuIn(3‐ain)4 has a high adsorption rate for C2H6, establishing it as a new benchmark material for the capture of C2H6 and the separation of C2H6/C2H4. Notably, this exceptional performance is maintained even at a higher temperature of 333 K, a phenomenon not observed before. Theoretical simulations and single‐crystal X‐ray diffraction provide critical insights into how selective adsorption properties can be tuned by manipulating pore dimensions and geometry. The excellent separation performance of CuIn(3‐ain)4 has been confirmed through breakthrough experiments for C2H6/C2H4 gas mixtures.
This study successfully synthesized a new benchmark ethane‐selective adsorbent material, CuIn(3‐ain)4, by incorporating an amino group into the ligand. Due to its outstanding separation efficiency, durability, and cost‐effectiveness, CuIn(3‐ain)4 becomes a viable option for industrial applications. |
---|---|
AbstractList | Developing high-performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their similar sizes and physicochemical properties. Herein, a new type of ultra-strong C2H6 nano-trap, CuIn(3-ain)4 is presented, which utilizes multiple guest-host interactions to efficiently capture C2H6 molecules and separate mixtures of C2H6 and C2H4. The ultra-strong C2H6 nano-trap exhibits the high C2H6 (2.38 mmol g-1) uptake at 6.25 kPa and 298 K and demonstrates a remarkable selectivity of 3.42 for C2H6/C2H4 (10:90). Additionally, equimolar C2H6/C2H4 exhibited a superior high separation potential ∆Q (2286 mmol L-1) at 298 K. Kinetic adsorption tests demonstrated that CuIn(3-ain)4 has a high adsorption rate for C2H6, establishing it as a new benchmark material for the capture of C2H6 and the separation of C2H6/C2H4. Notably, this exceptional performance is maintained even at a higher temperature of 333 K, a phenomenon not observed before. Theoretical simulations and single-crystal X-ray diffraction provide critical insights into how selective adsorption properties can be tuned by manipulating pore dimensions and geometry. The excellent separation performance of CuIn(3-ain)4 has been confirmed through breakthrough experiments for C2H6/C2H4 gas mixtures.Developing high-performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their similar sizes and physicochemical properties. Herein, a new type of ultra-strong C2H6 nano-trap, CuIn(3-ain)4 is presented, which utilizes multiple guest-host interactions to efficiently capture C2H6 molecules and separate mixtures of C2H6 and C2H4. The ultra-strong C2H6 nano-trap exhibits the high C2H6 (2.38 mmol g-1) uptake at 6.25 kPa and 298 K and demonstrates a remarkable selectivity of 3.42 for C2H6/C2H4 (10:90). Additionally, equimolar C2H6/C2H4 exhibited a superior high separation potential ∆Q (2286 mmol L-1) at 298 K. Kinetic adsorption tests demonstrated that CuIn(3-ain)4 has a high adsorption rate for C2H6, establishing it as a new benchmark material for the capture of C2H6 and the separation of C2H6/C2H4. Notably, this exceptional performance is maintained even at a higher temperature of 333 K, a phenomenon not observed before. Theoretical simulations and single-crystal X-ray diffraction provide critical insights into how selective adsorption properties can be tuned by manipulating pore dimensions and geometry. The excellent separation performance of CuIn(3-ain)4 has been confirmed through breakthrough experiments for C2H6/C2H4 gas mixtures. Developing high‐performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their similar sizes and physicochemical properties. Herein, a new type of ultra‐strong C2H6 nano‐trap, CuIn(3‐ain)4 is presented, which utilizes multiple guest‐host interactions to efficiently capture C2H6 molecules and separate mixtures of C2H6 and C2H4. The ultra‐strong C2H6 nano‐trap exhibits the high C2H6 (2.38 mmol g−1) uptake at 6.25 kPa and 298 K and demonstrates a remarkable selectivity of 3.42 for C2H6/C2H4 (10:90). Additionally, equimolar C2H6/C2H4 exhibited a superior high separation potential ∆Q (2286 mmol L−1) at 298 K. Kinetic adsorption tests demonstrated that CuIn(3‐ain)4 has a high adsorption rate for C2H6, establishing it as a new benchmark material for the capture of C2H6 and the separation of C2H6/C2H4. Notably, this exceptional performance is maintained even at a higher temperature of 333 K, a phenomenon not observed before. Theoretical simulations and single‐crystal X‐ray diffraction provide critical insights into how selective adsorption properties can be tuned by manipulating pore dimensions and geometry. The excellent separation performance of CuIn(3‐ain)4 has been confirmed through breakthrough experiments for C2H6/C2H4 gas mixtures. Developing high‐performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their similar sizes and physicochemical properties. Herein, a new type of ultra‐strong C2H6 nano‐trap, CuIn(3‐ain)4 is presented, which utilizes multiple guest‐host interactions to efficiently capture C2H6 molecules and separate mixtures of C2H6 and C2H4. The ultra‐strong C2H6 nano‐trap exhibits the high C2H6 (2.38 mmol g−1) uptake at 6.25 kPa and 298 K and demonstrates a remarkable selectivity of 3.42 for C2H6/C2H4 (10:90). Additionally, equimolar C2H6/C2H4 exhibited a superior high separation potential ∆Q (2286 mmol L−1) at 298 K. Kinetic adsorption tests demonstrated that CuIn(3‐ain)4 has a high adsorption rate for C2H6, establishing it as a new benchmark material for the capture of C2H6 and the separation of C2H6/C2H4. Notably, this exceptional performance is maintained even at a higher temperature of 333 K, a phenomenon not observed before. Theoretical simulations and single‐crystal X‐ray diffraction provide critical insights into how selective adsorption properties can be tuned by manipulating pore dimensions and geometry. The excellent separation performance of CuIn(3‐ain)4 has been confirmed through breakthrough experiments for C2H6/C2H4 gas mixtures. This study successfully synthesized a new benchmark ethane‐selective adsorbent material, CuIn(3‐ain)4, by incorporating an amino group into the ligand. Due to its outstanding separation efficiency, durability, and cost‐effectiveness, CuIn(3‐ain)4 becomes a viable option for industrial applications. |
Author | Yang, Qing‐Yuan Liu, Hao‐Ran Guan, Guo‐Wei Li, Yi‐Tao Zheng, Su‐Tao Bai, Rui Zhang, Li‐Ping Jiang, Yu |
Author_xml | – sequence: 1 givenname: Li‐Ping surname: Zhang fullname: Zhang, Li‐Ping organization: Xi'an Jiaotong University – sequence: 2 givenname: Guo‐Wei surname: Guan fullname: Guan, Guo‐Wei organization: Xi'an Jiaotong University – sequence: 3 givenname: Yi‐Tao surname: Li fullname: Li, Yi‐Tao organization: Xi'an Jiaotong University – sequence: 4 givenname: Hao‐Ran surname: Liu fullname: Liu, Hao‐Ran organization: Xi'an Jiaotong University – sequence: 5 givenname: Su‐Tao surname: Zheng fullname: Zheng, Su‐Tao organization: Xi'an Jiaotong University – sequence: 6 givenname: Yu surname: Jiang fullname: Jiang, Yu organization: Xi'an Jiaotong University – sequence: 7 givenname: Rui surname: Bai fullname: Bai, Rui organization: Xi'an Jiaotong University – sequence: 8 givenname: Qing‐Yuan orcidid: 0000-0002-1742-2088 surname: Yang fullname: Yang, Qing‐Yuan email: qingyuan.yang@xjtu.edu.cn organization: Xi'an Jiaotong University |
BookMark | eNpdkbtOwzAUhi1UJFpgZbbEwlLwLU4yVlVLkVI6tMyRSWxwcexgJ6rKVN4AiTfkSUgBdWA5F-k7_zk6_wD0rLMSgAuMrjFC5CZUxlwTRBgiNCFHoI85pkOekLR3qDE6AYMQ1ghRTFjcB--jSlv3tfuYtrZotLPC6DdZwrlshPnafS78k7C6gFMvKrlx_iXAqRRN67V9gg-m8aKbXTbede2keRZWwnvxI7jyog5QOQ8nSulCS9vAMZnxmy4wuJS18GK_8AwcK2GCPP_Lp-BhOlmNZ8NscXs3HmXDmnBOhpQlUgqsWEk4SwvymDCZRhhHjDEVixIVZZyUqsAKI5VESfwY0SiNUoJozAnC9BRc_erW3r22MjR5pUMhjeludm3IKUpRyjjjvEMv_6Fr1_ruNR2FSURRJ7qn0l9qo43c5rXXlfDbHKN8b0e-tyM_2JEv51l26Og3zhqFuQ |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202402382 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL202402382 |
Genre | article |
GrantInformation_xml | – fundername: Shaanxi Fundamental Science Research Project for Chemistry and Biology funderid: 23JHQ007 – fundername: National Key R&D Program of China funderid: 2024YFE0101800 – fundername: China Tobacco Anhui Industrial Co., Ltd funderid: 2022162 – fundername: Shccig‐Qinling Program funderid: SMYJY20220582 – fundername: National Natural Science Foundation of China funderid: 22371221 – fundername: Qing‐Yuan Yang acknowledges the Programme of Introducing Talents of Discipline to Universities funderid: B23025 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-p2662-348eea1f4d2649c2b84e95115444f7ad0cd78dfc1f10f8587b535959203762013 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 16:07:28 EDT 2025 Fri Jul 25 11:56:43 EDT 2025 Wed Jan 22 17:15:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2662-348eea1f4d2649c2b84e95115444f7ad0cd78dfc1f10f8587b535959203762013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1742-2088 |
PQID | 3125302036 |
PQPubID | 1046358 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3090946466 proquest_journals_3125302036 wiley_primary_10_1002_smll_202402382_SMLL202402382 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 362 2021; 8 2019; 9 2015; 6 2006; 31 2018; 140 2019; 6 2021; 443 2023; 5 2019; 11 2023; 15 2023; 16 2023; 8 2020; 369 2023 2024 2021 2023 2023; 307 63 60 62 14 2021 2021 2018 2017; 60 8 175 251 2013 2020; 29 12 2012; 33 2020 2015; 56 51 2021; 13 2020; 6 2021; 33 2017 2016 2020 2021; 358 353 32 595 2001 2022; 61 2017; 16 2023; 652 2023; 473 2023 2021 2021 2022 2020 2022 2019 2021 2019 2018 2022; 304 143 276 14 387 34 212 276 141 10 144 2022; 15 2016; 533 2021; 231 2022 2022 2019; 61 24 62 2009; 38 2024 2021 2020 2021; 146 60 142 143 2020 2019; 8 7 |
References_xml | – volume: 304 143 276 14 387 34 212 276 141 10 144 start-page: 8654 307 51 5014 8366 2614 year: 2023 2021 2021 2022 2020 2022 2019 2021 2019 2018 2022 publication-title: Sep. Purif. Technol. J. Am. Chem. Soc. Sep. Purif. Technol. ACS. Appl. Mater. Interfaces. Chem. Eng. J. Chem. Mater. Sep. Purif. Technol. Sep. Purif. Technol. J. Am. Chem. Soc. ACS. Appl. Mater. Interfaces. J. Am. Chem. Soc. – volume: 231 start-page: 326 year: 2021 publication-title: Faraday Discuss. – volume: 146 60 142 143 start-page: 4153 9680 2222 1485 year: 2024 2021 2020 2021 publication-title: J. Am. Chem. Soc. Angew. Chem. Int. Ed. J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 533 start-page: 316 year: 2016 publication-title: Nature. – volume: 60 8 175 251 start-page: 1243 110 198 year: 2021 2021 2018 2017 publication-title: Inorg. Chem. Inorg. Chem. Front. Chem. Eng. Sci. J. Solid State Chem. – volume: 29 12 start-page: 8592 6105 year: 2013 2020 publication-title: Langmuir. ACS. Appl. Mater. Interfaces. – year: 2001 – volume: 362 start-page: 443 year: 2018 publication-title: Science. – volume: 13 year: 2021 publication-title: ACS. Appl. Mater. Interfaces. – volume: 652 start-page: 1093 year: 2023 publication-title: J. Colloid. Interf. Sci. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 16 start-page: 6587 year: 2023 publication-title: Mater. – volume: 33 start-page: 6193 year: 2021 publication-title: Chem. Mater. – volume: 31 start-page: 425 year: 2006 publication-title: Energy. – volume: 38 start-page: 1477 year: 2009 publication-title: Chem. Soc. Rev. – volume: 307 63 60 62 14 start-page: 6146 year: 2023 2024 2021 2023 2023 publication-title: Sep. Purif. Technol. Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. Nat. Commun. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 8592 year: 2019 publication-title: ACS Catal. – volume: 16 start-page: 16 year: 2017 publication-title: Nat. Mater. – volume: 33 start-page: 580 year: 2012 publication-title: J. Comput. Chem. – volume: 8 7 start-page: 3613 year: 2020 2019 publication-title: J. Mater. Chem. A. J. Mater. Chem. A. – volume: 369 start-page: 392 year: 2020 publication-title: Science. – volume: 6 start-page: 8697 year: 2015 publication-title: Nat. Commun. – volume: 15 start-page: 8229 year: 2022 publication-title: Energies. – volume: 6 start-page: 1152 year: 2019 publication-title: Inorg. Chem. Front. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 443 year: 2021 publication-title: Coord. Chem. Rev. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces. – volume: 15 start-page: 3387 year: 2023 publication-title: ACS. Appl. Mater. Interfaces. – volume: 56 51 start-page: 2714 year: 2020 2015 publication-title: Chem. Commun. Chem. Commun. – volume: 61 24 62 start-page: 1315 year: 2022 2022 2019 publication-title: Angew. Chem., Int. Ed. Mater. Today Chem. Sci. China Mater. – volume: 8 start-page: 1703 year: 2023 publication-title: Green Energy Environ. – volume: 473 year: 2023 publication-title: Chem. Eng. J. – volume: 5 year: 2023 publication-title: Energychem. – volume: 358 353 32 595 start-page: 1068 137 542 year: 2017 2016 2020 2021 publication-title: Science. Science. Adv. Mater. Nature. – volume: 8 year: 2021 publication-title: Adv. Sci. |
SSID | ssj0031247 |
Score | 2.4967124 |
Snippet | Developing high‐performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their... Developing high-performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2402382 |
SubjectTerms | Adsorption amino functionalization C2H6/C2H4 separation Ethane gas adsorption Gas mixtures Industrial development Metal-organic frameworks metal‐organic framework Porous materials Selective adsorption Separation temperature adaptability |
Title | Amino‐Functionalized Metal–Organic Frameworks Featuring Ultra‐Strong Ethane Nano‐Traps for Efficient C2H6/C2H4 Separation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202402382 https://www.proquest.com/docview/3125302036 https://www.proquest.com/docview/3090946466 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT8IwFG8MJz3434iiqYnXwei6PxwJYSEGPIgk3JZ17QwRBmFw4YTfwMRvyCfxvZVN8KiXZsvaZs3re-_Xvr5fCXnkkgk7lsKoiygyeCwaRoiF5FLZZux6UYjJyb1npzPgT0N7uJPFr_khig031IzMXqOChyKt_ZCGppMxhg4wOmB5aITxwBaiopeCP8oC55XdrgI-y0DirZy10WS1_eZ7-HIXpWZuxj8hYf6D-nTJe3W5ENVo9Yu78T8jOCXHWwxKm3rSnJEDlZyTox1mwgvy0ZyMkulm_emD39PbhaOVkrSnAKxv1l86hTOifn62K6UIJrOcRzoYL-YhtO3jNvsbbePuvKJgx7FDcI6zlAJUpu2MvQKcHm2xjlODgtO-0lzk0-SSDPz2a6tjbG9rMGbg5JlhcU-psB6D9B3eiJjwuAL4hmw_PHZDaUbS9WQc1eO6GXu25wobk4IbzAQbBzDEuiKlZJqoa0ItV3mhDdBC4gLGwVCoUKYlGKyfLOioTCq5tIKtyqUBCBtvQAKPXCYPxWdQFoyAwDCnS6hjNmA563AH6rBMNMFMk3oEmr6ZBSiUoBBK0O91u8XbzV8a3ZJDfNb5ixVSWsyX6g6AzELcZ5P1G_iV8Ao |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTuMwEB7xcwAO_C4Cll2MBMfQ1HF-euCAoFWBlgOlErdsHDsIAWlFWqHlxL7BSjwJr7KPwJPsTNyEnyMSBy6RktiW48z4m_F4PgNsCcWlmyhpVWUcWyKRNSuiixJKu3biB3FEycntE6_ZFUfn7vkYPBW5MIYfolxwI83I52tScFqQrrywhmY31xQ7oPCAE_DRvspj_fsOvbZs9_AAf_E254362X7TGh0sYPURj7jliEDrqJpgRz1Ri7kMhEZLg4hpROJHyo6VH6gkriZVOwncwJcu5a_WuI3qiIjpYLvjMEnHiBNd_8FpyVjlIFzm57kgSlpE9VXwRNq88ra_byza13ZxDmyNOfhXDInZz3K1MxzInfj-HVvklxqzeZgdmdlsz-jFAozpdBFmXpEvLsGfvZvLtPf88LeB0G5WRC_vtWJtjf7I88OjyVKNWaPYvpYxspfztE7WvR7cRli3Q5GEC1anAIRmCFXUIOJ_P2PoDbB6TtCBuM72edOr4EWwjjZ06730G3Q_ZQyWYSLtpXoFmOPrIHLRelLko3kU7ZXadiRHF9HBhlZhvRCPcDSrZCFKFx3yhEbHKmyWr3E-oCAPfmZviGXsGnrsnvCwDM9lIewb3pLQMFTzkIQgLIUg7LRbrfJu7SOVNmCqedZuha3Dk-PvME3PTbrmOkwMbof6B9ptA_kz1xQGvz5bzP4DJyRK0Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RKlXtoS39EbT8uFJ7DJt1nL9DD4jdaCm7qOp2JW5pHNsVArIrsquqnOgbIPEifRVegSdhJt4E6BGJQy-RktiW48z4m_F4PgN8FIpL3yjptGWeO8LI2MnoooTSvmvCKM8oOXmwF_RG4su-v78Af-tcGMsP0Sy4kWZU8zUp-ESZ1g1paHl8RKEDig54EZ9vq9zVv3-h01Z-3ungH_7EedL9vt1z5ucKOBOEI-54ItI6axvsZyDinMtIaDQ0iJdGmDBTbq7CSJm8bdquifwolD6lr8bcRW1EwPSw3UfwWARuTIdFdL41hFUeomV1nAuCpENMXzVNpMtbd_t7x6C9bRZXuJa8gMt6ROx2lsPN2VRu5qf_kEX-T0P2Ep7PjWy2ZbViCRZ08Qqe3aJefA1_to4PivHV2XmCwG7XQw9OtWIDjd7I1dmFzVHNWVJvXisZWctVUicbHU1PMqw7pDjCT9al8INmCFTUIKL_pGToC7BuRc-BqM62eS9o4UWwobZk6-PiDYweZAzewmIxLvQyMC_UUeaj7aTIQwso1iu160mODqKHDa3Aai0d6XxOKVMULjriCU2OFfjQvMbZgEI8-JnjGZZBkYxFIAIswytRSCeWtSS1_NQ8JSFIGyFIh4N-v7l7d59KG_DkaydJ-zt7u-_hKT22uZqrsDg9mek1NNqmcr3SEwY_HlrKrgHaQkmA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amino%E2%80%90Functionalized+Metal%E2%80%93Organic+Frameworks+Featuring+Ultra%E2%80%90Strong+Ethane+Nano%E2%80%90Traps+for+Efficient+C2H6%2FC2H4+Separation&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhang%2C+Li%E2%80%90Ping&rft.au=Guan%2C+Guo%E2%80%90Wei&rft.au=Li%2C+Yi%E2%80%90Tao&rft.au=Liu%2C+Hao%E2%80%90Ran&rft.date=2024-11-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=45&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202402382&rft.externalDBID=10.1002%252Fsmll.202402382&rft.externalDocID=SMLL202402382 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |