Amino‐Functionalized Metal–Organic Frameworks Featuring Ultra‐Strong Ethane Nano‐Traps for Efficient C2H6/C2H4 Separation

Developing high‐performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their similar sizes and physicochemical properties. Herein, a new type of ultra‐strong C2H6 nano‐trap, CuIn(3‐ain)4 is presented, which utilizes multiple...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 45; pp. e2402382 - n/a
Main Authors Zhang, Li‐Ping, Guan, Guo‐Wei, Li, Yi‐Tao, Liu, Hao‐Ran, Zheng, Su‐Tao, Jiang, Yu, Bai, Rui, Yang, Qing‐Yuan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing high‐performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their similar sizes and physicochemical properties. Herein, a new type of ultra‐strong C2H6 nano‐trap, CuIn(3‐ain)4 is presented, which utilizes multiple guest‐host interactions to efficiently capture C2H6 molecules and separate mixtures of C2H6 and C2H4. The ultra‐strong C2H6 nano‐trap exhibits the high C2H6 (2.38 mmol g−1) uptake at 6.25 kPa and 298 K and demonstrates a remarkable selectivity of 3.42 for C2H6/C2H4 (10:90). Additionally, equimolar C2H6/C2H4 exhibited a superior high separation potential ∆Q (2286 mmol L−1) at 298 K. Kinetic adsorption tests demonstrated that CuIn(3‐ain)4 has a high adsorption rate for C2H6, establishing it as a new benchmark material for the capture of C2H6 and the separation of C2H6/C2H4. Notably, this exceptional performance is maintained even at a higher temperature of 333 K, a phenomenon not observed before. Theoretical simulations and single‐crystal X‐ray diffraction provide critical insights into how selective adsorption properties can be tuned by manipulating pore dimensions and geometry. The excellent separation performance of CuIn(3‐ain)4 has been confirmed through breakthrough experiments for C2H6/C2H4 gas mixtures. This study successfully synthesized a new benchmark ethane‐selective adsorbent material, CuIn(3‐ain)4, by incorporating an amino group into the ligand. Due to its outstanding separation efficiency, durability, and cost‐effectiveness, CuIn(3‐ain)4 becomes a viable option for industrial applications.
AbstractList Developing high-performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their similar sizes and physicochemical properties. Herein, a new type of ultra-strong C2H6 nano-trap, CuIn(3-ain)4 is presented, which utilizes multiple guest-host interactions to efficiently capture C2H6 molecules and separate mixtures of C2H6 and C2H4. The ultra-strong C2H6 nano-trap exhibits the high C2H6 (2.38 mmol g-1) uptake at 6.25 kPa and 298 K and demonstrates a remarkable selectivity of 3.42 for C2H6/C2H4 (10:90). Additionally, equimolar C2H6/C2H4 exhibited a superior high separation potential ∆Q (2286 mmol L-1) at 298 K. Kinetic adsorption tests demonstrated that CuIn(3-ain)4 has a high adsorption rate for C2H6, establishing it as a new benchmark material for the capture of C2H6 and the separation of C2H6/C2H4. Notably, this exceptional performance is maintained even at a higher temperature of 333 K, a phenomenon not observed before. Theoretical simulations and single-crystal X-ray diffraction provide critical insights into how selective adsorption properties can be tuned by manipulating pore dimensions and geometry. The excellent separation performance of CuIn(3-ain)4 has been confirmed through breakthrough experiments for C2H6/C2H4 gas mixtures.Developing high-performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their similar sizes and physicochemical properties. Herein, a new type of ultra-strong C2H6 nano-trap, CuIn(3-ain)4 is presented, which utilizes multiple guest-host interactions to efficiently capture C2H6 molecules and separate mixtures of C2H6 and C2H4. The ultra-strong C2H6 nano-trap exhibits the high C2H6 (2.38 mmol g-1) uptake at 6.25 kPa and 298 K and demonstrates a remarkable selectivity of 3.42 for C2H6/C2H4 (10:90). Additionally, equimolar C2H6/C2H4 exhibited a superior high separation potential ∆Q (2286 mmol L-1) at 298 K. Kinetic adsorption tests demonstrated that CuIn(3-ain)4 has a high adsorption rate for C2H6, establishing it as a new benchmark material for the capture of C2H6 and the separation of C2H6/C2H4. Notably, this exceptional performance is maintained even at a higher temperature of 333 K, a phenomenon not observed before. Theoretical simulations and single-crystal X-ray diffraction provide critical insights into how selective adsorption properties can be tuned by manipulating pore dimensions and geometry. The excellent separation performance of CuIn(3-ain)4 has been confirmed through breakthrough experiments for C2H6/C2H4 gas mixtures.
Developing high‐performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their similar sizes and physicochemical properties. Herein, a new type of ultra‐strong C2H6 nano‐trap, CuIn(3‐ain)4 is presented, which utilizes multiple guest‐host interactions to efficiently capture C2H6 molecules and separate mixtures of C2H6 and C2H4. The ultra‐strong C2H6 nano‐trap exhibits the high C2H6 (2.38 mmol g−1) uptake at 6.25 kPa and 298 K and demonstrates a remarkable selectivity of 3.42 for C2H6/C2H4 (10:90). Additionally, equimolar C2H6/C2H4 exhibited a superior high separation potential ∆Q (2286 mmol L−1) at 298 K. Kinetic adsorption tests demonstrated that CuIn(3‐ain)4 has a high adsorption rate for C2H6, establishing it as a new benchmark material for the capture of C2H6 and the separation of C2H6/C2H4. Notably, this exceptional performance is maintained even at a higher temperature of 333 K, a phenomenon not observed before. Theoretical simulations and single‐crystal X‐ray diffraction provide critical insights into how selective adsorption properties can be tuned by manipulating pore dimensions and geometry. The excellent separation performance of CuIn(3‐ain)4 has been confirmed through breakthrough experiments for C2H6/C2H4 gas mixtures.
Developing high‐performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their similar sizes and physicochemical properties. Herein, a new type of ultra‐strong C2H6 nano‐trap, CuIn(3‐ain)4 is presented, which utilizes multiple guest‐host interactions to efficiently capture C2H6 molecules and separate mixtures of C2H6 and C2H4. The ultra‐strong C2H6 nano‐trap exhibits the high C2H6 (2.38 mmol g−1) uptake at 6.25 kPa and 298 K and demonstrates a remarkable selectivity of 3.42 for C2H6/C2H4 (10:90). Additionally, equimolar C2H6/C2H4 exhibited a superior high separation potential ∆Q (2286 mmol L−1) at 298 K. Kinetic adsorption tests demonstrated that CuIn(3‐ain)4 has a high adsorption rate for C2H6, establishing it as a new benchmark material for the capture of C2H6 and the separation of C2H6/C2H4. Notably, this exceptional performance is maintained even at a higher temperature of 333 K, a phenomenon not observed before. Theoretical simulations and single‐crystal X‐ray diffraction provide critical insights into how selective adsorption properties can be tuned by manipulating pore dimensions and geometry. The excellent separation performance of CuIn(3‐ain)4 has been confirmed through breakthrough experiments for C2H6/C2H4 gas mixtures. This study successfully synthesized a new benchmark ethane‐selective adsorbent material, CuIn(3‐ain)4, by incorporating an amino group into the ligand. Due to its outstanding separation efficiency, durability, and cost‐effectiveness, CuIn(3‐ain)4 becomes a viable option for industrial applications.
Author Yang, Qing‐Yuan
Liu, Hao‐Ran
Guan, Guo‐Wei
Li, Yi‐Tao
Zheng, Su‐Tao
Bai, Rui
Zhang, Li‐Ping
Jiang, Yu
Author_xml – sequence: 1
  givenname: Li‐Ping
  surname: Zhang
  fullname: Zhang, Li‐Ping
  organization: Xi'an Jiaotong University
– sequence: 2
  givenname: Guo‐Wei
  surname: Guan
  fullname: Guan, Guo‐Wei
  organization: Xi'an Jiaotong University
– sequence: 3
  givenname: Yi‐Tao
  surname: Li
  fullname: Li, Yi‐Tao
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Hao‐Ran
  surname: Liu
  fullname: Liu, Hao‐Ran
  organization: Xi'an Jiaotong University
– sequence: 5
  givenname: Su‐Tao
  surname: Zheng
  fullname: Zheng, Su‐Tao
  organization: Xi'an Jiaotong University
– sequence: 6
  givenname: Yu
  surname: Jiang
  fullname: Jiang, Yu
  organization: Xi'an Jiaotong University
– sequence: 7
  givenname: Rui
  surname: Bai
  fullname: Bai, Rui
  organization: Xi'an Jiaotong University
– sequence: 8
  givenname: Qing‐Yuan
  orcidid: 0000-0002-1742-2088
  surname: Yang
  fullname: Yang, Qing‐Yuan
  email: qingyuan.yang@xjtu.edu.cn
  organization: Xi'an Jiaotong University
BookMark eNpdkbtOwzAUhi1UJFpgZbbEwlLwLU4yVlVLkVI6tMyRSWxwcexgJ6rKVN4AiTfkSUgBdWA5F-k7_zk6_wD0rLMSgAuMrjFC5CZUxlwTRBgiNCFHoI85pkOekLR3qDE6AYMQ1ghRTFjcB--jSlv3tfuYtrZotLPC6DdZwrlshPnafS78k7C6gFMvKrlx_iXAqRRN67V9gg-m8aKbXTbede2keRZWwnvxI7jyog5QOQ8nSulCS9vAMZnxmy4wuJS18GK_8AwcK2GCPP_Lp-BhOlmNZ8NscXs3HmXDmnBOhpQlUgqsWEk4SwvymDCZRhhHjDEVixIVZZyUqsAKI5VESfwY0SiNUoJozAnC9BRc_erW3r22MjR5pUMhjeludm3IKUpRyjjjvEMv_6Fr1_ruNR2FSURRJ7qn0l9qo43c5rXXlfDbHKN8b0e-tyM_2JEv51l26Og3zhqFuQ
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202402382
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202402382
Genre article
GrantInformation_xml – fundername: Shaanxi Fundamental Science Research Project for Chemistry and Biology
  funderid: 23JHQ007
– fundername: National Key R&D Program of China
  funderid: 2024YFE0101800
– fundername: China Tobacco Anhui Industrial Co., Ltd
  funderid: 2022162
– fundername: Shccig‐Qinling Program
  funderid: SMYJY20220582
– fundername: National Natural Science Foundation of China
  funderid: 22371221
– fundername: Qing‐Yuan Yang acknowledges the Programme of Introducing Talents of Discipline to Universities
  funderid: B23025
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-p2662-348eea1f4d2649c2b84e95115444f7ad0cd78dfc1f10f8587b535959203762013
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 16:07:28 EDT 2025
Fri Jul 25 11:56:43 EDT 2025
Wed Jan 22 17:15:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2662-348eea1f4d2649c2b84e95115444f7ad0cd78dfc1f10f8587b535959203762013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1742-2088
PQID 3125302036
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_miscellaneous_3090946466
proquest_journals_3125302036
wiley_primary_10_1002_smll_202402382_SMLL202402382
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 362
2021; 8
2019; 9
2015; 6
2006; 31
2018; 140
2019; 6
2021; 443
2023; 5
2019; 11
2023; 15
2023; 16
2023; 8
2020; 369
2023 2024 2021 2023 2023; 307 63 60 62 14
2021 2021 2018 2017; 60 8 175 251
2013 2020; 29 12
2012; 33
2020 2015; 56 51
2021; 13
2020; 6
2021; 33
2017 2016 2020 2021; 358 353 32 595
2001
2022; 61
2017; 16
2023; 652
2023; 473
2023 2021 2021 2022 2020 2022 2019 2021 2019 2018 2022; 304 143 276 14 387 34 212 276 141 10 144
2022; 15
2016; 533
2021; 231
2022 2022 2019; 61 24 62
2009; 38
2024 2021 2020 2021; 146 60 142 143
2020 2019; 8 7
References_xml – volume: 304 143 276 14 387 34 212 276 141 10 144
  start-page: 8654 307 51 5014 8366 2614
  year: 2023 2021 2021 2022 2020 2022 2019 2021 2019 2018 2022
  publication-title: Sep. Purif. Technol. J. Am. Chem. Soc. Sep. Purif. Technol. ACS. Appl. Mater. Interfaces. Chem. Eng. J. Chem. Mater. Sep. Purif. Technol. Sep. Purif. Technol. J. Am. Chem. Soc. ACS. Appl. Mater. Interfaces. J. Am. Chem. Soc.
– volume: 231
  start-page: 326
  year: 2021
  publication-title: Faraday Discuss.
– volume: 146 60 142 143
  start-page: 4153 9680 2222 1485
  year: 2024 2021 2020 2021
  publication-title: J. Am. Chem. Soc. Angew. Chem. Int. Ed. J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 533
  start-page: 316
  year: 2016
  publication-title: Nature.
– volume: 60 8 175 251
  start-page: 1243 110 198
  year: 2021 2021 2018 2017
  publication-title: Inorg. Chem. Inorg. Chem. Front. Chem. Eng. Sci. J. Solid State Chem.
– volume: 29 12
  start-page: 8592 6105
  year: 2013 2020
  publication-title: Langmuir. ACS. Appl. Mater. Interfaces.
– year: 2001
– volume: 362
  start-page: 443
  year: 2018
  publication-title: Science.
– volume: 13
  year: 2021
  publication-title: ACS. Appl. Mater. Interfaces.
– volume: 652
  start-page: 1093
  year: 2023
  publication-title: J. Colloid. Interf. Sci.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 16
  start-page: 6587
  year: 2023
  publication-title: Mater.
– volume: 33
  start-page: 6193
  year: 2021
  publication-title: Chem. Mater.
– volume: 31
  start-page: 425
  year: 2006
  publication-title: Energy.
– volume: 38
  start-page: 1477
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 307 63 60 62 14
  start-page: 6146
  year: 2023 2024 2021 2023 2023
  publication-title: Sep. Purif. Technol. Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. Nat. Commun.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 8592
  year: 2019
  publication-title: ACS Catal.
– volume: 16
  start-page: 16
  year: 2017
  publication-title: Nat. Mater.
– volume: 33
  start-page: 580
  year: 2012
  publication-title: J. Comput. Chem.
– volume: 8 7
  start-page: 3613
  year: 2020 2019
  publication-title: J. Mater. Chem. A. J. Mater. Chem. A.
– volume: 369
  start-page: 392
  year: 2020
  publication-title: Science.
– volume: 6
  start-page: 8697
  year: 2015
  publication-title: Nat. Commun.
– volume: 15
  start-page: 8229
  year: 2022
  publication-title: Energies.
– volume: 6
  start-page: 1152
  year: 2019
  publication-title: Inorg. Chem. Front.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 443
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 15
  start-page: 3387
  year: 2023
  publication-title: ACS. Appl. Mater. Interfaces.
– volume: 56 51
  start-page: 2714
  year: 2020 2015
  publication-title: Chem. Commun. Chem. Commun.
– volume: 61 24 62
  start-page: 1315
  year: 2022 2022 2019
  publication-title: Angew. Chem., Int. Ed. Mater. Today Chem. Sci. China Mater.
– volume: 8
  start-page: 1703
  year: 2023
  publication-title: Green Energy Environ.
– volume: 473
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 5
  year: 2023
  publication-title: Energychem.
– volume: 358 353 32 595
  start-page: 1068 137 542
  year: 2017 2016 2020 2021
  publication-title: Science. Science. Adv. Mater. Nature.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
SSID ssj0031247
Score 2.4967124
Snippet Developing high‐performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their...
Developing high-performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2402382
SubjectTerms Adsorption
amino functionalization
C2H6/C2H4 separation
Ethane
gas adsorption
Gas mixtures
Industrial development
Metal-organic frameworks
metal‐organic framework
Porous materials
Selective adsorption
Separation
temperature adaptability
Title Amino‐Functionalized Metal–Organic Frameworks Featuring Ultra‐Strong Ethane Nano‐Traps for Efficient C2H6/C2H4 Separation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202402382
https://www.proquest.com/docview/3125302036
https://www.proquest.com/docview/3090946466
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT8IwFG8MJz3434iiqYnXwei6PxwJYSEGPIgk3JZ17QwRBmFw4YTfwMRvyCfxvZVN8KiXZsvaZs3re-_Xvr5fCXnkkgk7lsKoiygyeCwaRoiF5FLZZux6UYjJyb1npzPgT0N7uJPFr_khig031IzMXqOChyKt_ZCGppMxhg4wOmB5aITxwBaiopeCP8oC55XdrgI-y0DirZy10WS1_eZ7-HIXpWZuxj8hYf6D-nTJe3W5ENVo9Yu78T8jOCXHWwxKm3rSnJEDlZyTox1mwgvy0ZyMkulm_emD39PbhaOVkrSnAKxv1l86hTOifn62K6UIJrOcRzoYL-YhtO3jNvsbbePuvKJgx7FDcI6zlAJUpu2MvQKcHm2xjlODgtO-0lzk0-SSDPz2a6tjbG9rMGbg5JlhcU-psB6D9B3eiJjwuAL4hmw_PHZDaUbS9WQc1eO6GXu25wobk4IbzAQbBzDEuiKlZJqoa0ItV3mhDdBC4gLGwVCoUKYlGKyfLOioTCq5tIKtyqUBCBtvQAKPXCYPxWdQFoyAwDCnS6hjNmA563AH6rBMNMFMk3oEmr6ZBSiUoBBK0O91u8XbzV8a3ZJDfNb5ixVSWsyX6g6AzELcZ5P1G_iV8Ao
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTuMwEB7xcwAO_C4Cll2MBMfQ1HF-euCAoFWBlgOlErdsHDsIAWlFWqHlxL7BSjwJr7KPwJPsTNyEnyMSBy6RktiW48z4m_F4PgNsCcWlmyhpVWUcWyKRNSuiixJKu3biB3FEycntE6_ZFUfn7vkYPBW5MIYfolxwI83I52tScFqQrrywhmY31xQ7oPCAE_DRvspj_fsOvbZs9_AAf_E254362X7TGh0sYPURj7jliEDrqJpgRz1Ri7kMhEZLg4hpROJHyo6VH6gkriZVOwncwJcu5a_WuI3qiIjpYLvjMEnHiBNd_8FpyVjlIFzm57kgSlpE9VXwRNq88ra_byza13ZxDmyNOfhXDInZz3K1MxzInfj-HVvklxqzeZgdmdlsz-jFAozpdBFmXpEvLsGfvZvLtPf88LeB0G5WRC_vtWJtjf7I88OjyVKNWaPYvpYxspfztE7WvR7cRli3Q5GEC1anAIRmCFXUIOJ_P2PoDbB6TtCBuM72edOr4EWwjjZ06730G3Q_ZQyWYSLtpXoFmOPrIHLRelLko3kU7ZXadiRHF9HBhlZhvRCPcDSrZCFKFx3yhEbHKmyWr3E-oCAPfmZviGXsGnrsnvCwDM9lIewb3pLQMFTzkIQgLIUg7LRbrfJu7SOVNmCqedZuha3Dk-PvME3PTbrmOkwMbof6B9ptA_kz1xQGvz5bzP4DJyRK0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RKlXtoS39EbT8uFJ7DJt1nL9DD4jdaCm7qOp2JW5pHNsVArIrsquqnOgbIPEifRVegSdhJt4E6BGJQy-RktiW48z4m_F4PgN8FIpL3yjptGWeO8LI2MnoooTSvmvCKM8oOXmwF_RG4su-v78Af-tcGMsP0Sy4kWZU8zUp-ESZ1g1paHl8RKEDig54EZ9vq9zVv3-h01Z-3ungH_7EedL9vt1z5ucKOBOEI-54ItI6axvsZyDinMtIaDQ0iJdGmDBTbq7CSJm8bdquifwolD6lr8bcRW1EwPSw3UfwWARuTIdFdL41hFUeomV1nAuCpENMXzVNpMtbd_t7x6C9bRZXuJa8gMt6ROx2lsPN2VRu5qf_kEX-T0P2Ep7PjWy2ZbViCRZ08Qqe3aJefA1_to4PivHV2XmCwG7XQw9OtWIDjd7I1dmFzVHNWVJvXisZWctVUicbHU1PMqw7pDjCT9al8INmCFTUIKL_pGToC7BuRc-BqM62eS9o4UWwobZk6-PiDYweZAzewmIxLvQyMC_UUeaj7aTIQwso1iu160mODqKHDa3Aai0d6XxOKVMULjriCU2OFfjQvMbZgEI8-JnjGZZBkYxFIAIswytRSCeWtSS1_NQ8JSFIGyFIh4N-v7l7d59KG_DkaydJ-zt7u-_hKT22uZqrsDg9mek1NNqmcr3SEwY_HlrKrgHaQkmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amino%E2%80%90Functionalized+Metal%E2%80%93Organic+Frameworks+Featuring+Ultra%E2%80%90Strong+Ethane+Nano%E2%80%90Traps+for+Efficient+C2H6%2FC2H4+Separation&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhang%2C+Li%E2%80%90Ping&rft.au=Guan%2C+Guo%E2%80%90Wei&rft.au=Li%2C+Yi%E2%80%90Tao&rft.au=Liu%2C+Hao%E2%80%90Ran&rft.date=2024-11-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=45&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202402382&rft.externalDBID=10.1002%252Fsmll.202402382&rft.externalDocID=SMLL202402382
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon