Redox‐Active Crystalline Coordination Catalyst for Hybrid Electrocatalytic Methanol Oxidation and CO2 Reduction

Hybrid CO2 electroreduction (HCER) is recognized as an important strategy to improve the total value of redox products and energy conversion efficiency. In this work, a coordination catalyst model system (Ni8‐TET with active oxidation sites, Ni‐TPP with active reduction sites and PCN‐601 with redox‐...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 34; pp. e202207282 - n/a
Main Authors Sun, Sheng‐Nan, Dong, Long‐Zhang, Li, Jia‐Ru, Shi, Jing‐Wen, Liu, Jiang, Wang, Yi‐Rong, Huang, Qing, Lan, Ya‐Qian
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 22.08.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hybrid CO2 electroreduction (HCER) is recognized as an important strategy to improve the total value of redox products and energy conversion efficiency. In this work, a coordination catalyst model system (Ni8‐TET with active oxidation sites, Ni‐TPP with active reduction sites and PCN‐601 with redox‐active sites) for HCER was established for the first time. Especially, PCN‐601 can complete both anodic methanol oxidation and cathodic CO2 reduction with FEHCOOH and FECO over 90 %. The performance can be further improved with light irradiation (FE nearly 100 %). DFT calculations reveal that the transfer of electrons from NiII8 clusters to metalloporphyrins under electric fields results in the raised oxidizability of Ni8 clusters and the raised reducibility of metalloporphyrin, which then improves the electrocatalytic performance. This work serves as a well‐defined model system and puts forward a new design idea for establishing efficient catalysts for hybrid CO2 electroreduction. The transfer of electrons from electron‐rich metal clusters (oxidation active sites) to electron‐deficient metalloporphyrins (reduction active sites) leads to stronger oxidizability of Ni8 clusters and stronger reducibility of metalloporphyrin. The enhanced oxidizability of Ni8 and reducibility of metalloporphyrin, therefore, result in improved methanol electrooxidation and CO2 electroreduction with the bifunctional crystalline coordination catalyst.
AbstractList Hybrid CO2 electroreduction (HCER) is recognized as an important strategy to improve the total value of redox products and energy conversion efficiency. In this work, a coordination catalyst model system (Ni8‐TET with active oxidation sites, Ni‐TPP with active reduction sites and PCN‐601 with redox‐active sites) for HCER was established for the first time. Especially, PCN‐601 can complete both anodic methanol oxidation and cathodic CO2 reduction with FEHCOOH and FECO over 90 %. The performance can be further improved with light irradiation (FE nearly 100 %). DFT calculations reveal that the transfer of electrons from NiII8 clusters to metalloporphyrins under electric fields results in the raised oxidizability of Ni8 clusters and the raised reducibility of metalloporphyrin, which then improves the electrocatalytic performance. This work serves as a well‐defined model system and puts forward a new design idea for establishing efficient catalysts for hybrid CO2 electroreduction. The transfer of electrons from electron‐rich metal clusters (oxidation active sites) to electron‐deficient metalloporphyrins (reduction active sites) leads to stronger oxidizability of Ni8 clusters and stronger reducibility of metalloporphyrin. The enhanced oxidizability of Ni8 and reducibility of metalloporphyrin, therefore, result in improved methanol electrooxidation and CO2 electroreduction with the bifunctional crystalline coordination catalyst.
Hybrid CO2 electroreduction (HCER) is recognized as an important strategy to improve the total value of redox products and energy conversion efficiency. In this work, a coordination catalyst model system (Ni8‐TET with active oxidation sites, Ni‐TPP with active reduction sites and PCN‐601 with redox‐active sites) for HCER was established for the first time. Especially, PCN‐601 can complete both anodic methanol oxidation and cathodic CO2 reduction with FEHCOOH and FECO over 90 %. The performance can be further improved with light irradiation (FE nearly 100 %). DFT calculations reveal that the transfer of electrons from NiII8 clusters to metalloporphyrins under electric fields results in the raised oxidizability of Ni8 clusters and the raised reducibility of metalloporphyrin, which then improves the electrocatalytic performance. This work serves as a well‐defined model system and puts forward a new design idea for establishing efficient catalysts for hybrid CO2 electroreduction.
Hybrid CO2 electroreduction (HCER) is recognized as an important strategy to improve the total value of redox products and energy conversion efficiency. In this work, a coordination catalyst model system (Ni8 -TET with active oxidation sites, Ni-TPP with active reduction sites and PCN-601 with redox-active sites) for HCER was established for the first time. Especially, PCN-601 can complete both anodic methanol oxidation and cathodic CO2 reduction with FEHCOOH and FECO over 90 %. The performance can be further improved with light irradiation (FE nearly 100 %). DFT calculations reveal that the transfer of electrons from NiII 8 clusters to metalloporphyrins under electric fields results in the raised oxidizability of Ni8 clusters and the raised reducibility of metalloporphyrin, which then improves the electrocatalytic performance. This work serves as a well-defined model system and puts forward a new design idea for establishing efficient catalysts for hybrid CO2 electroreduction.Hybrid CO2 electroreduction (HCER) is recognized as an important strategy to improve the total value of redox products and energy conversion efficiency. In this work, a coordination catalyst model system (Ni8 -TET with active oxidation sites, Ni-TPP with active reduction sites and PCN-601 with redox-active sites) for HCER was established for the first time. Especially, PCN-601 can complete both anodic methanol oxidation and cathodic CO2 reduction with FEHCOOH and FECO over 90 %. The performance can be further improved with light irradiation (FE nearly 100 %). DFT calculations reveal that the transfer of electrons from NiII 8 clusters to metalloporphyrins under electric fields results in the raised oxidizability of Ni8 clusters and the raised reducibility of metalloporphyrin, which then improves the electrocatalytic performance. This work serves as a well-defined model system and puts forward a new design idea for establishing efficient catalysts for hybrid CO2 electroreduction.
Author Huang, Qing
Sun, Sheng‐Nan
Lan, Ya‐Qian
Liu, Jiang
Dong, Long‐Zhang
Shi, Jing‐Wen
Li, Jia‐Ru
Wang, Yi‐Rong
Author_xml – sequence: 1
  givenname: Sheng‐Nan
  surname: Sun
  fullname: Sun, Sheng‐Nan
  organization: South China Normal University
– sequence: 2
  givenname: Long‐Zhang
  surname: Dong
  fullname: Dong, Long‐Zhang
  organization: South China Normal University
– sequence: 3
  givenname: Jia‐Ru
  surname: Li
  fullname: Li, Jia‐Ru
  organization: South China Normal University
– sequence: 4
  givenname: Jing‐Wen
  surname: Shi
  fullname: Shi, Jing‐Wen
  organization: South China Normal University
– sequence: 5
  givenname: Jiang
  surname: Liu
  fullname: Liu, Jiang
  email: liuj0828@m.scnu.edu.cn
  organization: South China Normal University
– sequence: 6
  givenname: Yi‐Rong
  surname: Wang
  fullname: Wang, Yi‐Rong
  organization: South China Normal University
– sequence: 7
  givenname: Qing
  surname: Huang
  fullname: Huang, Qing
  organization: South China Normal University
– sequence: 8
  givenname: Ya‐Qian
  orcidid: 0000-0002-2140-7980
  surname: Lan
  fullname: Lan, Ya‐Qian
  email: yqlan@njnu.edu.cn, yqlan@m.scnu.edu.cn
  organization: South China Normal University
BookMark eNpdULtOxDAQtBBIwEFLbYmGJmCvk9gpT9HxkICTENSWY2-EUbAPJwdcxyfwjXwJOQ5RUO3szOxDs0-2QwxIyBFnp5wxODPB4ykwACZBwRbZ4wXwTEgptkecC5FJVfBdst_3T6NfKVbukZc7dPH96-Nzagf_irROq34wXefDiGNMzgcz-BhobUZ61GgbE71cNck7OuvQDinaH2nwlt7g8GhC7Oj83bvNnAmO1nOg452lXTMHZKc1XY-Hv3VCHs5n9_Vldj2_uKqn19kCyhIyISplmGtlg5LlZcVQtVXTtBVHXkpbmSZXrmgcIi9km5cFNzZ3CICNrDizYkJONnsXKb4ssR_0s-8tdp0JGJe9hlJxJgo-JjMhx_-sT3GZwvidBsmgFApg7ao2rjff4Uovkn82aaU50-v49Tp-_Re_nt5ezf468Q3ie39j
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202207282
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202207282
Genre article
GrantInformation_xml – fundername: Science and Technology Planning Project of Guangzhou City
  funderid: 202102020440
– fundername: the Excellent Youth Foundation of Jiangsu Natural Science Foundation
  funderid: BK20211593
– fundername: National Natural Science Foundation of China
  funderid: 92061101; 21871141; 21871142; 21901122; 22071109; 22105080; 22101089
– fundername: the Open Fund of Energy and Materials Chemistry Joint Laboratory of SCNU and TINCI
  funderid: SCNU-TINCI-202204
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2020A1515110836
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-p2662-3398a0df7be704690e8f9bbf91e167c9ab48d5bdee157f4651ac4de22eb7910c3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 00:11:42 EDT 2025
Fri Jul 25 12:08:15 EDT 2025
Wed Jan 22 16:24:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2662-3398a0df7be704690e8f9bbf91e167c9ab48d5bdee157f4651ac4de22eb7910c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2140-7980
PQID 2702638224
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2681035114
proquest_journals_2702638224
wiley_primary_10_1002_anie_202207282_ANIE202207282
PublicationCentury 2000
PublicationDate August 22, 2022
PublicationDateYYYYMMDD 2022-08-22
PublicationDate_xml – month: 08
  year: 2022
  text: August 22, 2022
  day: 22
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2017; 7
2019; 9
2019; 6
2017; 4
2022; 92
2019; 2
2020; 142
2019; 10
2019; 1
2019; 15
2020 2020; 59 132
2021; 281
2020; 11
2017 2017; 56 129
2020; 10
2021; 143
2004; 108
2013; 5
2019 2019; 58 131
2017; 139
2020; 8
2021; 14
2020; 7
2020; 6
2020; 5
2018; 8
2020; 3
2021; 11
2021; 33
2021; 596
2022; 5
2021; 412
2018 2018; 57 130
2010; 132
2021 2021; 60 133
2019; 119
2021; 372
2016; 138
2016; 29
References_xml – volume: 596
  start-page: 377
  year: 2021
  end-page: 383
  publication-title: Nature
– volume: 372
  start-page: 1074
  year: 2021
  end-page: 1078
  publication-title: Science
– volume: 1
  start-page: 1656
  year: 2019
  end-page: 1668
  publication-title: Matter
– volume: 59 132
  start-page: 23641 23849
  year: 2020 2020
  end-page: 23648 23856
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 119
  start-page: 7610
  year: 2019
  end-page: 7672
  publication-title: Chem. Rev.
– volume: 8
  year: 2021
  publication-title: Natl. Sci. Rev.
– volume: 281
  year: 2021
  publication-title: Appl. Catal. B
– volume: 7
  start-page: 606
  year: 2017
  end-page: 612
  publication-title: ACS Catal.
– volume: 10
  start-page: 5193
  year: 2019
  publication-title: Nat. Commun.
– volume: 142
  start-page: 10331
  year: 2020
  end-page: 10336
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 4647
  year: 2020
  publication-title: Nat. Commun.
– volume: 60 133
  start-page: 23394 23582
  year: 2021 2021
  end-page: 23402 23590
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 3214
  year: 2019
  end-page: 3226
  publication-title: ChemElectroChem
– volume: 3
  start-page: 8725
  year: 2020
  end-page: 8738
  publication-title: ACS Appl. Energ. Mater.
– volume: 58 131
  start-page: 12185 12313
  year: 2019 2019
  end-page: 12189 12317
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 300
  year: 2013
  end-page: 306
  publication-title: Nat. Chem.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 920
  year: 2019
  end-page: 931
  publication-title: ACS Catal.
– volume: 57 130
  start-page: 13163 13347
  year: 2018 2018
  end-page: 13166 13350
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 138
  start-page: 914
  year: 2016
  end-page: 919
  publication-title: J. Am. Chem. Soc.
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17892
  publication-title: J. Phys. Chem. B
– volume: 8
  start-page: 21947
  year: 2020
  end-page: 21960
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 150
  year: 2017
  end-page: 159
  publication-title: ChemElectroChem
– volume: 132
  start-page: 7902
  year: 2010
  end-page: 7904
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 3148 3185
  year: 2021 2021
  end-page: 3155 3192
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 4864 4914
  year: 2021 2021
  end-page: 4871 4921
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 648
  year: 2019
  end-page: 658
  publication-title: Nat. Catal.
– volume: 412
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 142
  start-page: 12515
  year: 2020
  end-page: 12523
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 22908 23090
  year: 2021 2021
  end-page: 22914 23096
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 53
  year: 2020
  end-page: 63
  publication-title: Natl. Sci. Rev.
– volume: 59 132
  start-page: 16974 17122
  year: 2020 2020
  end-page: 16981 17129
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 21464 21634
  year: 2021 2021
  end-page: 21472 21642
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 20826 21012
  year: 2020 2020
  end-page: 20830 21016
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 6895
  year: 2019
  end-page: 6906
  publication-title: J. Chem. Theory Comput.
– volume: 10
  start-page: 2711
  year: 2020
  end-page: 2720
  publication-title: Catal. Sci. Technol.
– volume: 14
  start-page: 1897
  year: 2021
  end-page: 1927
  publication-title: Energy Environ. Sci.
– volume: 139
  start-page: 15664
  year: 2017
  end-page: 15667
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 2974
  year: 2020
  end-page: 2993
  publication-title: Chem
– volume: 60 133
  start-page: 10577 10671
  year: 2021 2021
  end-page: 10582 10676
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 66
  year: 2022
  end-page: 73
  publication-title: Nat. Catal.
– volume: 92
  year: 2022
  publication-title: Nano Energy
– volume: 143
  start-page: 3808
  year: 2021
  end-page: 3816
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 486
  year: 2020
  end-page: 519
  publication-title: ACS Energy Lett.
– volume: 59 132
  start-page: 19215 19377
  year: 2020 2020
  end-page: 19221 19383
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  start-page: 29
  year: 2016
  end-page: 36
  publication-title: Nano Energy
– volume: 56 129
  start-page: 842 860
  year: 2017 2017
  end-page: 846 864
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 24605 24810
  year: 2021 2021
  end-page: 24611 24816
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
SSID ssj0028806
Score 2.6012127
Snippet Hybrid CO2 electroreduction (HCER) is recognized as an important strategy to improve the total value of redox products and energy conversion efficiency. In...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e202207282
SubjectTerms Anodizing
Bifunctional Crystalline Catalysts
Carbon dioxide
Catalysts
Clusters
Coordination
Crystalline Coordination Compounds
Electric fields
Electrowinning
Energy conversion
Energy conversion efficiency
Hybrid CO2 Electroreduction
Irradiation
Light irradiation
Methanol
Methanol Oxidation
Oxidation
Radiation
Title Redox‐Active Crystalline Coordination Catalyst for Hybrid Electrocatalytic Methanol Oxidation and CO2 Reduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202207282
https://www.proquest.com/docview/2702638224
https://www.proquest.com/docview/2681035114
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQL3BhR5RNRuKatrGbOjlWUVFBAqSKSr1FdmxLFSgpXaSWE5_AN_IlzMRtaDnCzYltZZmx_WbseUPIDW9qYwAGe6FRkde0suVJFXEviKQNtRZBqorTFo-tbr95PwgGa1H8jh-idLjhyCjmaxzgUk3qP6ShGIEN9h1jDQFmA0zCeGALUVGv5I9ioJwuvIhzD7PQr1gbG6y-2X0DX66j1GKZud0jcvWC7nTJS202VbX0_Rd343--YJ_sLjEobTulOSBbJjsk2_Eq9dsReesZnc-_Pj7bxWxI4_ECQCSyd0M5B3N16HyINEbnD9RRgL60u8DoL9pxiXUKv9ACnkAfDLrn81f6NB-6DE5UZprGT4z2kDgW7xyT_m3nOe56y9wM3giWdOZxHoWyoa1QRhQmtgltpJSNfOO3RBpJ1Qx1oEAR_EBYTLguU1ALxowSgFBSfkIqWZ6ZU0J92bJWC19xBWDIMgAQIXS2uuFLw5WokouVbJLlAJskGEYHUwcAkCq5LqvhN-F-h8xMPoM2yLWGG6XQhhWCSEaOwiNxZM0sQREkpQiS9uNdp7w6-0unc7KDZfQ6M3ZBKtPxzFwCbJmqq0I1vwF2wujP
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2idEE30Bfi1dZI7TIwsSfjZNHFKAyaKTBII5DYBTu2JdQq4TEjGFZ8Qn-lv9JP4Eu4N56kpctKLNglfiR-Xfv42vdcgM-ibaxFGBzEVidB26lOoHQigihRLjZGRrmublsMO_3j9reT6GQOftW2MJ4folG4kWRU8zUJOCmkt_-whpIJNm7wOG9J3DfM7lXu2ek17tquvg52sIu_cL7bO0r7wcyxQHCO6xEPhEhi1TJOaiur_aGNXaK1S0IbdmSeKN2OTaSxFmEkHXkLVznWiXOrJS6vucDvvoCXFEF0_TujhrGKozh4gyYhAvJ7X_NEtvj24_I-QrR_4-JqYdtdgt91k_j7LN-3JmO9ld_-wxb5rNrsNSzOYDbrerl4A3O2eAsLae3d7h1cjKwpb-7vfnarCZ-ll1PEyURQjs8llvPMq0lZSvotjGOI7ll_SgZurOd9B1Wqryn-gR1YOoEof7DDmzPvpIqpwrD0kLMRceNSyHs4fpIaL8N8URZ2BVioOs4ZGWqhEe85jhgpxszOtEJlhZarsFEPhmw2h1xlZCmIsyNirFXYbKKxmehIRxW2nGAaopOjs2BMw6uez849S0nm-ah5Rl2eNV2edYeDXvO29j-ZPsFC_-hgP9sfDPfW4RWFk5Kd8w2YH19O7AdEaWP9sZILBqdPPageAFv3SB8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_itaChgJjmkT58fJgcMqu6tdClu0olJvwY5tqWqVbNtd0eXEI_AovAqv0CfpTLwJlCNSD9wS_yT-G_vz2PMNwJsw0sYgDPZSozIvsjLxpMpCL86kTbUWcama2xaTZHQQvT-MD9fgZ2sL4_ghOoUbSUYzX5OAz7Td_U0aShbYuL_j3Be4bVhdq9wzy6-4aTt_N-5jD7_lfDj4nI-8lV8Bb4bLEffCMEulr61QRjTbQ5PaTCmbBSZIRJlJFaU6VliJIBaWnIXLEqvEuVECV9cyxO_egttR4mfkLKI_7QirOEqDs2cKQ4_c3rc0kT7fvV7ea4D2T1jcrGvDB_CrbRF3neV4ZzFXO-W3v8gi_6cmewj3VyCb9ZxUPII1Uz2Gu3nr2-4JnE6Nri8uv__oNdM9y8-WiJKJnhyfayznkVOSspy0WxjHENuz0ZLM29jAeQ5qFF9L_AP7aOj8oT5h-xdHzkUVk5Vm-T5nU2LGpZCncHAjNd6A9aquzDNggUys1SJQoUK0ZzkipBQzW-0H0oRKbMJ2OxaK1QxyXpCdIM6NiLA24XUXjc1EBzqyMvUC0xCZHJ0EYxredHwxcxwlhWOj5gV1edF1edGbjAfd29a_ZHoFdz71h8WH8WTvOdyjYNKwc74N6_OzhXmBEG2uXjZSweDLTY-pKyT2Rs4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redox%E2%80%90Active+Crystalline+Coordination+Catalyst+for+Hybrid+Electrocatalytic+Methanol+Oxidation+and+CO2+Reduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Sun%2C+Sheng%E2%80%90Nan&rft.au=Dong%2C+Long%E2%80%90Zhang&rft.au=Li%2C+Jia%E2%80%90Ru&rft.au=Shi%2C+Jing%E2%80%90Wen&rft.date=2022-08-22&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202207282&rft.externalDBID=10.1002%252Fanie.202207282&rft.externalDocID=ANIE202207282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon