Redox‐Active Crystalline Coordination Catalyst for Hybrid Electrocatalytic Methanol Oxidation and CO2 Reduction
Hybrid CO2 electroreduction (HCER) is recognized as an important strategy to improve the total value of redox products and energy conversion efficiency. In this work, a coordination catalyst model system (Ni8‐TET with active oxidation sites, Ni‐TPP with active reduction sites and PCN‐601 with redox‐...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 34; pp. e202207282 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
22.08.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hybrid CO2 electroreduction (HCER) is recognized as an important strategy to improve the total value of redox products and energy conversion efficiency. In this work, a coordination catalyst model system (Ni8‐TET with active oxidation sites, Ni‐TPP with active reduction sites and PCN‐601 with redox‐active sites) for HCER was established for the first time. Especially, PCN‐601 can complete both anodic methanol oxidation and cathodic CO2 reduction with FEHCOOH and FECO over 90 %. The performance can be further improved with light irradiation (FE nearly 100 %). DFT calculations reveal that the transfer of electrons from NiII8 clusters to metalloporphyrins under electric fields results in the raised oxidizability of Ni8 clusters and the raised reducibility of metalloporphyrin, which then improves the electrocatalytic performance. This work serves as a well‐defined model system and puts forward a new design idea for establishing efficient catalysts for hybrid CO2 electroreduction.
The transfer of electrons from electron‐rich metal clusters (oxidation active sites) to electron‐deficient metalloporphyrins (reduction active sites) leads to stronger oxidizability of Ni8 clusters and stronger reducibility of metalloporphyrin. The enhanced oxidizability of Ni8 and reducibility of metalloporphyrin, therefore, result in improved methanol electrooxidation and CO2 electroreduction with the bifunctional crystalline coordination catalyst. |
---|---|
AbstractList | Hybrid CO2 electroreduction (HCER) is recognized as an important strategy to improve the total value of redox products and energy conversion efficiency. In this work, a coordination catalyst model system (Ni8‐TET with active oxidation sites, Ni‐TPP with active reduction sites and PCN‐601 with redox‐active sites) for HCER was established for the first time. Especially, PCN‐601 can complete both anodic methanol oxidation and cathodic CO2 reduction with FEHCOOH and FECO over 90 %. The performance can be further improved with light irradiation (FE nearly 100 %). DFT calculations reveal that the transfer of electrons from NiII8 clusters to metalloporphyrins under electric fields results in the raised oxidizability of Ni8 clusters and the raised reducibility of metalloporphyrin, which then improves the electrocatalytic performance. This work serves as a well‐defined model system and puts forward a new design idea for establishing efficient catalysts for hybrid CO2 electroreduction.
The transfer of electrons from electron‐rich metal clusters (oxidation active sites) to electron‐deficient metalloporphyrins (reduction active sites) leads to stronger oxidizability of Ni8 clusters and stronger reducibility of metalloporphyrin. The enhanced oxidizability of Ni8 and reducibility of metalloporphyrin, therefore, result in improved methanol electrooxidation and CO2 electroreduction with the bifunctional crystalline coordination catalyst. Hybrid CO2 electroreduction (HCER) is recognized as an important strategy to improve the total value of redox products and energy conversion efficiency. In this work, a coordination catalyst model system (Ni8‐TET with active oxidation sites, Ni‐TPP with active reduction sites and PCN‐601 with redox‐active sites) for HCER was established for the first time. Especially, PCN‐601 can complete both anodic methanol oxidation and cathodic CO2 reduction with FEHCOOH and FECO over 90 %. The performance can be further improved with light irradiation (FE nearly 100 %). DFT calculations reveal that the transfer of electrons from NiII8 clusters to metalloporphyrins under electric fields results in the raised oxidizability of Ni8 clusters and the raised reducibility of metalloporphyrin, which then improves the electrocatalytic performance. This work serves as a well‐defined model system and puts forward a new design idea for establishing efficient catalysts for hybrid CO2 electroreduction. Hybrid CO2 electroreduction (HCER) is recognized as an important strategy to improve the total value of redox products and energy conversion efficiency. In this work, a coordination catalyst model system (Ni8 -TET with active oxidation sites, Ni-TPP with active reduction sites and PCN-601 with redox-active sites) for HCER was established for the first time. Especially, PCN-601 can complete both anodic methanol oxidation and cathodic CO2 reduction with FEHCOOH and FECO over 90 %. The performance can be further improved with light irradiation (FE nearly 100 %). DFT calculations reveal that the transfer of electrons from NiII 8 clusters to metalloporphyrins under electric fields results in the raised oxidizability of Ni8 clusters and the raised reducibility of metalloporphyrin, which then improves the electrocatalytic performance. This work serves as a well-defined model system and puts forward a new design idea for establishing efficient catalysts for hybrid CO2 electroreduction.Hybrid CO2 electroreduction (HCER) is recognized as an important strategy to improve the total value of redox products and energy conversion efficiency. In this work, a coordination catalyst model system (Ni8 -TET with active oxidation sites, Ni-TPP with active reduction sites and PCN-601 with redox-active sites) for HCER was established for the first time. Especially, PCN-601 can complete both anodic methanol oxidation and cathodic CO2 reduction with FEHCOOH and FECO over 90 %. The performance can be further improved with light irradiation (FE nearly 100 %). DFT calculations reveal that the transfer of electrons from NiII 8 clusters to metalloporphyrins under electric fields results in the raised oxidizability of Ni8 clusters and the raised reducibility of metalloporphyrin, which then improves the electrocatalytic performance. This work serves as a well-defined model system and puts forward a new design idea for establishing efficient catalysts for hybrid CO2 electroreduction. |
Author | Huang, Qing Sun, Sheng‐Nan Lan, Ya‐Qian Liu, Jiang Dong, Long‐Zhang Shi, Jing‐Wen Li, Jia‐Ru Wang, Yi‐Rong |
Author_xml | – sequence: 1 givenname: Sheng‐Nan surname: Sun fullname: Sun, Sheng‐Nan organization: South China Normal University – sequence: 2 givenname: Long‐Zhang surname: Dong fullname: Dong, Long‐Zhang organization: South China Normal University – sequence: 3 givenname: Jia‐Ru surname: Li fullname: Li, Jia‐Ru organization: South China Normal University – sequence: 4 givenname: Jing‐Wen surname: Shi fullname: Shi, Jing‐Wen organization: South China Normal University – sequence: 5 givenname: Jiang surname: Liu fullname: Liu, Jiang email: liuj0828@m.scnu.edu.cn organization: South China Normal University – sequence: 6 givenname: Yi‐Rong surname: Wang fullname: Wang, Yi‐Rong organization: South China Normal University – sequence: 7 givenname: Qing surname: Huang fullname: Huang, Qing organization: South China Normal University – sequence: 8 givenname: Ya‐Qian orcidid: 0000-0002-2140-7980 surname: Lan fullname: Lan, Ya‐Qian email: yqlan@njnu.edu.cn, yqlan@m.scnu.edu.cn organization: South China Normal University |
BookMark | eNpdULtOxDAQtBBIwEFLbYmGJmCvk9gpT9HxkICTENSWY2-EUbAPJwdcxyfwjXwJOQ5RUO3szOxDs0-2QwxIyBFnp5wxODPB4ykwACZBwRbZ4wXwTEgptkecC5FJVfBdst_3T6NfKVbukZc7dPH96-Nzagf_irROq34wXefDiGNMzgcz-BhobUZ61GgbE71cNck7OuvQDinaH2nwlt7g8GhC7Oj83bvNnAmO1nOg452lXTMHZKc1XY-Hv3VCHs5n9_Vldj2_uKqn19kCyhIyISplmGtlg5LlZcVQtVXTtBVHXkpbmSZXrmgcIi9km5cFNzZ3CICNrDizYkJONnsXKb4ssR_0s-8tdp0JGJe9hlJxJgo-JjMhx_-sT3GZwvidBsmgFApg7ao2rjff4Uovkn82aaU50-v49Tp-_Re_nt5ezf468Q3ie39j |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202207282 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | ANIE202207282 |
Genre | article |
GrantInformation_xml | – fundername: Science and Technology Planning Project of Guangzhou City funderid: 202102020440 – fundername: the Excellent Youth Foundation of Jiangsu Natural Science Foundation funderid: BK20211593 – fundername: National Natural Science Foundation of China funderid: 92061101; 21871141; 21871142; 21901122; 22071109; 22105080; 22101089 – fundername: the Open Fund of Energy and Materials Chemistry Joint Laboratory of SCNU and TINCI funderid: SCNU-TINCI-202204 – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2020A1515110836 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 7X8 |
ID | FETCH-LOGICAL-p2662-3398a0df7be704690e8f9bbf91e167c9ab48d5bdee157f4651ac4de22eb7910c3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 00:11:42 EDT 2025 Fri Jul 25 12:08:15 EDT 2025 Wed Jan 22 16:24:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2662-3398a0df7be704690e8f9bbf91e167c9ab48d5bdee157f4651ac4de22eb7910c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2140-7980 |
PQID | 2702638224 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2681035114 proquest_journals_2702638224 wiley_primary_10_1002_anie_202207282_ANIE202207282 |
PublicationCentury | 2000 |
PublicationDate | August 22, 2022 |
PublicationDateYYYYMMDD | 2022-08-22 |
PublicationDate_xml | – month: 08 year: 2022 text: August 22, 2022 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2017; 7 2019; 9 2019; 6 2017; 4 2022; 92 2019; 2 2020; 142 2019; 10 2019; 1 2019; 15 2020 2020; 59 132 2021; 281 2020; 11 2017 2017; 56 129 2020; 10 2021; 143 2004; 108 2013; 5 2019 2019; 58 131 2017; 139 2020; 8 2021; 14 2020; 7 2020; 6 2020; 5 2018; 8 2020; 3 2021; 11 2021; 33 2021; 596 2022; 5 2021; 412 2018 2018; 57 130 2010; 132 2021 2021; 60 133 2019; 119 2021; 372 2016; 138 2016; 29 |
References_xml | – volume: 596 start-page: 377 year: 2021 end-page: 383 publication-title: Nature – volume: 372 start-page: 1074 year: 2021 end-page: 1078 publication-title: Science – volume: 1 start-page: 1656 year: 2019 end-page: 1668 publication-title: Matter – volume: 59 132 start-page: 23641 23849 year: 2020 2020 end-page: 23648 23856 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 119 start-page: 7610 year: 2019 end-page: 7672 publication-title: Chem. Rev. – volume: 8 year: 2021 publication-title: Natl. Sci. Rev. – volume: 281 year: 2021 publication-title: Appl. Catal. B – volume: 7 start-page: 606 year: 2017 end-page: 612 publication-title: ACS Catal. – volume: 10 start-page: 5193 year: 2019 publication-title: Nat. Commun. – volume: 142 start-page: 10331 year: 2020 end-page: 10336 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 4647 year: 2020 publication-title: Nat. Commun. – volume: 60 133 start-page: 23394 23582 year: 2021 2021 end-page: 23402 23590 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 3214 year: 2019 end-page: 3226 publication-title: ChemElectroChem – volume: 3 start-page: 8725 year: 2020 end-page: 8738 publication-title: ACS Appl. Energ. Mater. – volume: 58 131 start-page: 12185 12313 year: 2019 2019 end-page: 12189 12317 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 300 year: 2013 end-page: 306 publication-title: Nat. Chem. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 9 start-page: 920 year: 2019 end-page: 931 publication-title: ACS Catal. – volume: 57 130 start-page: 13163 13347 year: 2018 2018 end-page: 13166 13350 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 138 start-page: 914 year: 2016 end-page: 919 publication-title: J. Am. Chem. Soc. – volume: 108 start-page: 17886 year: 2004 end-page: 17892 publication-title: J. Phys. Chem. B – volume: 8 start-page: 21947 year: 2020 end-page: 21960 publication-title: J. Mater. Chem. A – volume: 4 start-page: 150 year: 2017 end-page: 159 publication-title: ChemElectroChem – volume: 132 start-page: 7902 year: 2010 end-page: 7904 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 3148 3185 year: 2021 2021 end-page: 3155 3192 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 4864 4914 year: 2021 2021 end-page: 4871 4921 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 648 year: 2019 end-page: 658 publication-title: Nat. Catal. – volume: 412 year: 2021 publication-title: Chem. Eng. J. – volume: 142 start-page: 12515 year: 2020 end-page: 12523 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 22908 23090 year: 2021 2021 end-page: 22914 23096 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 53 year: 2020 end-page: 63 publication-title: Natl. Sci. Rev. – volume: 59 132 start-page: 16974 17122 year: 2020 2020 end-page: 16981 17129 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 21464 21634 year: 2021 2021 end-page: 21472 21642 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 20826 21012 year: 2020 2020 end-page: 20830 21016 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 6895 year: 2019 end-page: 6906 publication-title: J. Chem. Theory Comput. – volume: 10 start-page: 2711 year: 2020 end-page: 2720 publication-title: Catal. Sci. Technol. – volume: 14 start-page: 1897 year: 2021 end-page: 1927 publication-title: Energy Environ. Sci. – volume: 139 start-page: 15664 year: 2017 end-page: 15667 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 2974 year: 2020 end-page: 2993 publication-title: Chem – volume: 60 133 start-page: 10577 10671 year: 2021 2021 end-page: 10582 10676 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 66 year: 2022 end-page: 73 publication-title: Nat. Catal. – volume: 92 year: 2022 publication-title: Nano Energy – volume: 143 start-page: 3808 year: 2021 end-page: 3816 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 486 year: 2020 end-page: 519 publication-title: ACS Energy Lett. – volume: 59 132 start-page: 19215 19377 year: 2020 2020 end-page: 19221 19383 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 start-page: 29 year: 2016 end-page: 36 publication-title: Nano Energy – volume: 56 129 start-page: 842 860 year: 2017 2017 end-page: 846 864 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 24605 24810 year: 2021 2021 end-page: 24611 24816 publication-title: Angew. Chem. Int. Ed. Angew. Chem. |
SSID | ssj0028806 |
Score | 2.6012127 |
Snippet | Hybrid CO2 electroreduction (HCER) is recognized as an important strategy to improve the total value of redox products and energy conversion efficiency. In... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e202207282 |
SubjectTerms | Anodizing Bifunctional Crystalline Catalysts Carbon dioxide Catalysts Clusters Coordination Crystalline Coordination Compounds Electric fields Electrowinning Energy conversion Energy conversion efficiency Hybrid CO2 Electroreduction Irradiation Light irradiation Methanol Methanol Oxidation Oxidation Radiation |
Title | Redox‐Active Crystalline Coordination Catalyst for Hybrid Electrocatalytic Methanol Oxidation and CO2 Reduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202207282 https://www.proquest.com/docview/2702638224 https://www.proquest.com/docview/2681035114 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQL3BhR5RNRuKatrGbOjlWUVFBAqSKSr1FdmxLFSgpXaSWE5_AN_IlzMRtaDnCzYltZZmx_WbseUPIDW9qYwAGe6FRkde0suVJFXEviKQNtRZBqorTFo-tbr95PwgGa1H8jh-idLjhyCjmaxzgUk3qP6ShGIEN9h1jDQFmA0zCeGALUVGv5I9ioJwuvIhzD7PQr1gbG6y-2X0DX66j1GKZud0jcvWC7nTJS202VbX0_Rd343--YJ_sLjEobTulOSBbJjsk2_Eq9dsReesZnc-_Pj7bxWxI4_ECQCSyd0M5B3N16HyINEbnD9RRgL60u8DoL9pxiXUKv9ACnkAfDLrn81f6NB-6DE5UZprGT4z2kDgW7xyT_m3nOe56y9wM3giWdOZxHoWyoa1QRhQmtgltpJSNfOO3RBpJ1Qx1oEAR_EBYTLguU1ALxowSgFBSfkIqWZ6ZU0J92bJWC19xBWDIMgAQIXS2uuFLw5WokouVbJLlAJskGEYHUwcAkCq5LqvhN-F-h8xMPoM2yLWGG6XQhhWCSEaOwiNxZM0sQREkpQiS9uNdp7w6-0unc7KDZfQ6M3ZBKtPxzFwCbJmqq0I1vwF2wujP |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2idEE30Bfi1dZI7TIwsSfjZNHFKAyaKTBII5DYBTu2JdQq4TEjGFZ8Qn-lv9JP4Eu4N56kpctKLNglfiR-Xfv42vdcgM-ibaxFGBzEVidB26lOoHQigihRLjZGRrmublsMO_3j9reT6GQOftW2MJ4folG4kWRU8zUJOCmkt_-whpIJNm7wOG9J3DfM7lXu2ek17tquvg52sIu_cL7bO0r7wcyxQHCO6xEPhEhi1TJOaiur_aGNXaK1S0IbdmSeKN2OTaSxFmEkHXkLVznWiXOrJS6vucDvvoCXFEF0_TujhrGKozh4gyYhAvJ7X_NEtvj24_I-QrR_4-JqYdtdgt91k_j7LN-3JmO9ld_-wxb5rNrsNSzOYDbrerl4A3O2eAsLae3d7h1cjKwpb-7vfnarCZ-ll1PEyURQjs8llvPMq0lZSvotjGOI7ll_SgZurOd9B1Wqryn-gR1YOoEof7DDmzPvpIqpwrD0kLMRceNSyHs4fpIaL8N8URZ2BVioOs4ZGWqhEe85jhgpxszOtEJlhZarsFEPhmw2h1xlZCmIsyNirFXYbKKxmehIRxW2nGAaopOjs2BMw6uez849S0nm-ah5Rl2eNV2edYeDXvO29j-ZPsFC_-hgP9sfDPfW4RWFk5Kd8w2YH19O7AdEaWP9sZILBqdPPageAFv3SB8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_itaChgJjmkT58fJgcMqu6tdClu0olJvwY5tqWqVbNtd0eXEI_AovAqv0CfpTLwJlCNSD9wS_yT-G_vz2PMNwJsw0sYgDPZSozIvsjLxpMpCL86kTbUWcama2xaTZHQQvT-MD9fgZ2sL4_ghOoUbSUYzX5OAz7Td_U0aShbYuL_j3Be4bVhdq9wzy6-4aTt_N-5jD7_lfDj4nI-8lV8Bb4bLEffCMEulr61QRjTbQ5PaTCmbBSZIRJlJFaU6VliJIBaWnIXLEqvEuVECV9cyxO_egttR4mfkLKI_7QirOEqDs2cKQ4_c3rc0kT7fvV7ea4D2T1jcrGvDB_CrbRF3neV4ZzFXO-W3v8gi_6cmewj3VyCb9ZxUPII1Uz2Gu3nr2-4JnE6Nri8uv__oNdM9y8-WiJKJnhyfayznkVOSspy0WxjHENuz0ZLM29jAeQ5qFF9L_AP7aOj8oT5h-xdHzkUVk5Vm-T5nU2LGpZCncHAjNd6A9aquzDNggUys1SJQoUK0ZzkipBQzW-0H0oRKbMJ2OxaK1QxyXpCdIM6NiLA24XUXjc1EBzqyMvUC0xCZHJ0EYxredHwxcxwlhWOj5gV1edF1edGbjAfd29a_ZHoFdz71h8WH8WTvOdyjYNKwc74N6_OzhXmBEG2uXjZSweDLTY-pKyT2Rs4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redox%E2%80%90Active+Crystalline+Coordination+Catalyst+for+Hybrid+Electrocatalytic+Methanol+Oxidation+and+CO2+Reduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Sun%2C+Sheng%E2%80%90Nan&rft.au=Dong%2C+Long%E2%80%90Zhang&rft.au=Li%2C+Jia%E2%80%90Ru&rft.au=Shi%2C+Jing%E2%80%90Wen&rft.date=2022-08-22&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202207282&rft.externalDBID=10.1002%252Fanie.202207282&rft.externalDocID=ANIE202207282 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |