Photo‐Assisted Li‐N2 Batteries with Enhanced Nitrogen Fixation and Energy Conversion

Li‐N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low activity and poor stability of cathode catalysts, the electrochemical performance of Li‐N2 batteries is suboptimal, and their electrochemical r...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 11; pp. e202319211 - n/a
Main Authors Li, Jian‐You, Du, Xing‐Yuan, Wang, Xiao‐Xue, Yuan, Xin‐Yuan, Guan, De‐Hui, Xu, Ji‐Jing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 11.03.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Li‐N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low activity and poor stability of cathode catalysts, the electrochemical performance of Li‐N2 batteries is suboptimal, and their electrochemical reversibility has rarely been proven. In this study, a novel bifunctional photo‐assisted Li‐N2 battery system was established by employing a plasmonic Au nanoparticles (NPs)‐modified defective carbon nitride (Au‐Nv‐C3N4) photocathode. The Au‐Nv‐C3N4 exhibits strong light‐harvesting, N2 adsorption, and N2 activation abilities, and the photogenerated electrons and hot electrons are remarkably beneficial for accelerating the discharge and charge reaction kinetics. These advantages enable the photo‐assisted Li‐N2 battery to achieve a low overpotential of 1.32 V, which is the lowest overpotential reported to date, as well as superior rate capability and prolonged cycle stability (≈500 h). Remarkably, a combination of theoretical and experimental results demonstrates the high reversibility of the photo‐assisted Li‐N2 battery. The proposed novel strategy for developing efficient cathode catalysts and fabricating photo‐assisted battery systems breaks through the overpotential bottleneck of Li‐N2 batteries, providing important insights into the mechanism underlying N2 fixation and storage. A novel bifunctional photo‐assisted Li‐N2 battery system is established by employing a plasmonic Au nanoparticles (NPs)‐modified defective carbon nitride (Au‐Nv‐C3N4) photocathode. Benefiting from the strong light‐harvesting, N2 adsorption, and N2 activation abilities of the Au‐Nv‐C3N4 cathode, the photo‐assisted Li‐N2 battery displays the highest round‐trip efficiency (56.2 %) to date, superior rate capability, and stable cycle life of over 500 h.
AbstractList Li‐N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low activity and poor stability of cathode catalysts, the electrochemical performance of Li‐N2 batteries is suboptimal, and their electrochemical reversibility has rarely been proven. In this study, a novel bifunctional photo‐assisted Li‐N2 battery system was established by employing a plasmonic Au nanoparticles (NPs)‐modified defective carbon nitride (Au‐Nv‐C3N4) photocathode. The Au‐Nv‐C3N4 exhibits strong light‐harvesting, N2 adsorption, and N2 activation abilities, and the photogenerated electrons and hot electrons are remarkably beneficial for accelerating the discharge and charge reaction kinetics. These advantages enable the photo‐assisted Li‐N2 battery to achieve a low overpotential of 1.32 V, which is the lowest overpotential reported to date, as well as superior rate capability and prolonged cycle stability (≈500 h). Remarkably, a combination of theoretical and experimental results demonstrates the high reversibility of the photo‐assisted Li‐N2 battery. The proposed novel strategy for developing efficient cathode catalysts and fabricating photo‐assisted battery systems breaks through the overpotential bottleneck of Li‐N2 batteries, providing important insights into the mechanism underlying N2 fixation and storage.
Li-N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low activity and poor stability of cathode catalysts, the electrochemical performance of Li-N2 batteries is suboptimal, and their electrochemical reversibility has rarely been proven. In this study, a novel bifunctional photo-assisted Li-N2 battery system was established by employing a plasmonic Au nanoparticles (NPs)-modified defective carbon nitride (Au-Nv -C3 N4 ) photocathode. The Au-Nv -C3 N4 exhibits strong light-harvesting, N2 adsorption, and N2 activation abilities, and the photogenerated electrons and hot electrons are remarkably beneficial for accelerating the discharge and charge reaction kinetics. These advantages enable the photo-assisted Li-N2 battery to achieve a low overpotential of 1.32 V, which is the lowest overpotential reported to date, as well as superior rate capability and prolonged cycle stability (≈500 h). Remarkably, a combination of theoretical and experimental results demonstrates the high reversibility of the photo-assisted Li-N2 battery. The proposed novel strategy for developing efficient cathode catalysts and fabricating photo-assisted battery systems breaks through the overpotential bottleneck of Li-N2 batteries, providing important insights into the mechanism underlying N2 fixation and storage.Li-N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low activity and poor stability of cathode catalysts, the electrochemical performance of Li-N2 batteries is suboptimal, and their electrochemical reversibility has rarely been proven. In this study, a novel bifunctional photo-assisted Li-N2 battery system was established by employing a plasmonic Au nanoparticles (NPs)-modified defective carbon nitride (Au-Nv -C3 N4 ) photocathode. The Au-Nv -C3 N4 exhibits strong light-harvesting, N2 adsorption, and N2 activation abilities, and the photogenerated electrons and hot electrons are remarkably beneficial for accelerating the discharge and charge reaction kinetics. These advantages enable the photo-assisted Li-N2 battery to achieve a low overpotential of 1.32 V, which is the lowest overpotential reported to date, as well as superior rate capability and prolonged cycle stability (≈500 h). Remarkably, a combination of theoretical and experimental results demonstrates the high reversibility of the photo-assisted Li-N2 battery. The proposed novel strategy for developing efficient cathode catalysts and fabricating photo-assisted battery systems breaks through the overpotential bottleneck of Li-N2 batteries, providing important insights into the mechanism underlying N2 fixation and storage.
Li‐N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low activity and poor stability of cathode catalysts, the electrochemical performance of Li‐N2 batteries is suboptimal, and their electrochemical reversibility has rarely been proven. In this study, a novel bifunctional photo‐assisted Li‐N2 battery system was established by employing a plasmonic Au nanoparticles (NPs)‐modified defective carbon nitride (Au‐Nv‐C3N4) photocathode. The Au‐Nv‐C3N4 exhibits strong light‐harvesting, N2 adsorption, and N2 activation abilities, and the photogenerated electrons and hot electrons are remarkably beneficial for accelerating the discharge and charge reaction kinetics. These advantages enable the photo‐assisted Li‐N2 battery to achieve a low overpotential of 1.32 V, which is the lowest overpotential reported to date, as well as superior rate capability and prolonged cycle stability (≈500 h). Remarkably, a combination of theoretical and experimental results demonstrates the high reversibility of the photo‐assisted Li‐N2 battery. The proposed novel strategy for developing efficient cathode catalysts and fabricating photo‐assisted battery systems breaks through the overpotential bottleneck of Li‐N2 batteries, providing important insights into the mechanism underlying N2 fixation and storage. A novel bifunctional photo‐assisted Li‐N2 battery system is established by employing a plasmonic Au nanoparticles (NPs)‐modified defective carbon nitride (Au‐Nv‐C3N4) photocathode. Benefiting from the strong light‐harvesting, N2 adsorption, and N2 activation abilities of the Au‐Nv‐C3N4 cathode, the photo‐assisted Li‐N2 battery displays the highest round‐trip efficiency (56.2 %) to date, superior rate capability, and stable cycle life of over 500 h.
Author Li, Jian‐You
Wang, Xiao‐Xue
Guan, De‐Hui
Du, Xing‐Yuan
Yuan, Xin‐Yuan
Xu, Ji‐Jing
Author_xml – sequence: 1
  givenname: Jian‐You
  surname: Li
  fullname: Li, Jian‐You
  organization: Jilin University
– sequence: 2
  givenname: Xing‐Yuan
  surname: Du
  fullname: Du, Xing‐Yuan
  organization: Jilin University
– sequence: 3
  givenname: Xiao‐Xue
  surname: Wang
  fullname: Wang, Xiao‐Xue
  organization: Jilin University
– sequence: 4
  givenname: Xin‐Yuan
  surname: Yuan
  fullname: Yuan, Xin‐Yuan
  organization: Jilin University
– sequence: 5
  givenname: De‐Hui
  surname: Guan
  fullname: Guan, De‐Hui
  organization: Jilin University
– sequence: 6
  givenname: Ji‐Jing
  orcidid: 0000-0002-6212-8224
  surname: Xu
  fullname: Xu, Ji‐Jing
  email: jijingxu@jlu.edu.cn
  organization: Jilin University
BookMark eNpdkM9OAjEQxhuDiYBePW_ixcti_-x2d45IQEkIetDEW1PYLpQsLbZF5OYj-Iw-iSUYDh4mM9_ML18mXwe1jDUKoWuCewRjeieNVj2KKSNACTlDbZJTkrKiYK04Z4ylRZmTC9TxfhX5ssS8jd6elzbYn6_vvvfaB1UlEx3VlCb3MgTltPLJTodlMjRLaebxPtXB2YUyyUh_yqCtSaSp4lm5xT4ZWPOhnI_bS3Rey8arq7_eRa-j4cvgMZ08PYwH_Um6oZyTFABmNacz4FJlkEnAhPBYFYUaCJWkjpphkAyqKi8zKqFmnHGYVTkoKlkX3R59N86-b5UPYq39XDWNNMpuvaBAGC5xEV266OYfurJbZ-J3kWIZZkBwFik4UjvdqL3YOL2Wbi8IFoeUxSFlcUpZ9Kfj4UmxXxGJdNw
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202319211
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202319211
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
– fundername: National Natural Science Foundation of China
  funderid: 51972141, 21835002, 21621001
– fundername: 111 Project
  funderid: B17020
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-p2661-999bf62b96ae494a90116011d29f912a1f116309a39dd5842a9f36369bd59e2a3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 17:03:22 EDT 2025
Fri Jul 25 11:41:13 EDT 2025
Wed Jan 22 16:14:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2661-999bf62b96ae494a90116011d29f912a1f116309a39dd5842a9f36369bd59e2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6212-8224
PQID 2934039104
PQPubID 946352
PageCount 11
ParticipantIDs proquest_miscellaneous_2913080716
proquest_journals_2934039104
wiley_primary_10_1002_anie_202319211_ANIE202319211
PublicationCentury 2000
PublicationDate March 11, 2024
PublicationDateYYYYMMDD 2024-03-11
PublicationDate_xml – month: 03
  year: 2024
  text: March 11, 2024
  day: 11
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2023; 54
2019; 7
2017; 7
2019; 9
2017; 1
2023; 13
2023; 35
2017; 2
2019; 3
2023; 14
2018; 360
2018; 140
2015; 3
2019; 31
2023; 18
2020; 120
2023; 6
2019; 2
2023; 123
2019; 58
2020; 59
2011; 10
1993; 140
1988; 100
2016; 128
2020; 13
2020; 243
2020; 11
2020; 32
2022; 435
2014; 43
2018; 24
2020; 8
2020; 7
2020; 6
2023; 62
2022; 61
2021; 118
2016; 352
2016; 116
2022; 604
2018; 57
References_xml – volume: 18
  start-page: 688
  year: 2023
  end-page: 691
  publication-title: Nat. Nanotechnol.
– volume: 116
  start-page: 7159
  year: 2016
  end-page: 7329
  publication-title: Chem. Rev.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 359
  year: 2017
  end-page: 370
  publication-title: Joule
– volume: 57
  start-page: 10246
  year: 2018
  end-page: 10250
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 1564
  year: 2020
  end-page: 1583
  publication-title: Nat. Sci. Rev.
– volume: 54
  start-page: 98
  year: 2023
  end-page: 119
  publication-title: Energy Storage Mater.
– volume: 140
  start-page: 2490
  year: 1993
  end-page: 2498
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 911
  year: 2011
  end-page: 921
  publication-title: Nat. Mater.
– volume: 14
  start-page: 2574
  year: 2023
  publication-title: Nat. Commun.
– volume: 59
  start-page: 19518
  year: 2020
  end-page: 19524
  publication-title: Angew. Chem. Int. Ed.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 140
  start-page: 8497
  year: 2018
  end-page: 8508
  publication-title: J. Am. Chem. Soc.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 885
  year: 2020
  end-page: 901
  publication-title: Chem
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 16218
  year: 2020
  end-page: 16231
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2023
  publication-title: Energy Environ. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 2
  start-page: 955
  year: 2019
  end-page: 970
  publication-title: Nat. Catal.
– volume: 7
  start-page: 2624
  year: 2017
  end-page: 2643
  publication-title: ACS Catal.
– volume: 6
  start-page: 119
  year: 2017
  end-page: 124
  publication-title: Energy Storage Mater.
– volume: 435
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 128
  start-page: 4010
  year: 2016
  end-page: 4014
  publication-title: Angew. Chem.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 604
  year: 2022
  publication-title: Appl. Surf. Sci.
– volume: 58
  start-page: 17782
  year: 2019
  end-page: 17787
  publication-title: Angew. Chem. Int. Ed.
– volume: 243
  year: 2020
  publication-title: Mater. Chem. Phys.
– volume: 13
  start-page: 3455
  year: 2020
  end-page: 3461
  publication-title: ChemSusChem
– volume: 7
  start-page: 19950
  year: 2019
  end-page: 19960
  publication-title: J. Mater. Chem. A
– volume: 43
  start-page: 547
  year: 2014
  end-page: 564
  publication-title: Chem. Soc. Rev.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 58
  start-page: 16644
  year: 2019
  end-page: 16650
  publication-title: Angew. Chem. Int. Ed.
– volume: 352
  start-page: 448
  year: 2016
  end-page: 450
  publication-title: Science
– volume: 123
  start-page: 1
  year: 2023
  end-page: 30
  publication-title: Chem. Rev.
– volume: 58
  start-page: 3698
  year: 2019
  end-page: 3706
  publication-title: Ind. Eng. Chem. Res.
– volume: 360
  year: 2018
  publication-title: Science
– volume: 3
  start-page: 23435
  year: 2015
  end-page: 23441
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 2191
  year: 2020
  publication-title: Nat. Commun.
– volume: 100
  start-page: 1116
  year: 1988
  end-page: 1118
  publication-title: Angew. Chem.
– volume: 9
  start-page: 5797
  year: 2019
  end-page: 5802
  publication-title: ACS Catal.
– volume: 120
  start-page: 5437
  year: 2020
  end-page: 5516
  publication-title: Chem. Rev.
– volume: 24
  start-page: 13815
  year: 2018
  end-page: 13820
  publication-title: Chem. Eur. J.
– volume: 2
  start-page: 525
  year: 2017
  end-page: 532
  publication-title: Chem
SSID ssj0028806
Score 2.5371115
Snippet Li‐N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low...
Li-N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e202319211
SubjectTerms Carbon nitride
Catalysts
Cathodes
Electrochemical analysis
Electrochemistry
Energy conversion
Energy storage
Fast Kinetics
Gold
Hot electrons
Li-N2 Batteries
Low Overpotential
Nanoparticles
Nitrogen fixation
Nitrogenation
Photo-Assisted
Photocathodes
Reaction kinetics
Stability
Title Photo‐Assisted Li‐N2 Batteries with Enhanced Nitrogen Fixation and Energy Conversion
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202319211
https://www.proquest.com/docview/2934039104
https://www.proquest.com/docview/2913080716
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEF6kF734L1arrOA1bbO7Sd1jKS1VNIhY6C1MshtahKS0KYgnH8Fn9EmcSdpoPeoty2YhmZnNfLOZ-YaxayL1NkJZR_jWOiqWsQPgxY6XSCM0uhRoU6HwQ-APR-pu7I1_VPGX_BDVgRvtjOJ7TRscokXrmzSUKrCb1PybGL0o_qGELUJFTxV_lEDjLMuLpHSoC_2atbEtWpvLN_DlT5RauJnBHoP1A5bZJS_NZR4147df3I3_eYN9trvCoLxbGs0B27LpIdvurVu_HbHx4yTLs8_3D1QemYHh91McBYKXdJwYXXM6wOX9dFJkEPBgms8ztEU-mL4WuuaQGpymwkLeo8z24ljumI0G_efe0Fm1YHBm5LkdhI9R4otI-2CVVkCFqhjCuajHRLsC3ATHsq1BamMQywjQifSlryPjaStAnrBamqX2lPFIAUabndjvmFhZjGsSrwOA9uDicgNxnTXWKghX-2gRIhhRxGHfVnV2VU2jNOi3BqQ2W9I96IdvECr5dSYKeYezkqkjLDmZRUiSDitJh93gtl-Nzv6y6Jzt4LWiZDTXbbBaPl_aC0QneXRZWOAXVc3dsQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB7xc4ALhQJqKD9biR4d4t210z30gEKiBIKFKpByM2vvWkSVbEQcQXvqI_AqvEofoU_SGTs2P0ckDhzX67XsnZmdH898A7BPoN6GS-tw31pHxiJ2tPZix0uE4QpVim5RofBp4Pcv5PHIG83BQ1ULU-JD1AE3kozivCYBp4D0wSNqKJVgN6n7N0F6ubO8yhP76xa9tsn3wRGS-Cvnve55p-_MGgs416SPHDSKosTnkfK1lUpqKr9Ex8TFt0uUy7Wb4Fi0lBbKGNTQXKtE-MJXkfGU5Vrgc-dhkdqIE1z_0Y8asYqjOJQFTUI41Pe-wols8YPn7_vMon1qFxeKrfcB_lZbUuaz_GxO86gZ_36BFvmu9mwVVmZmNjss5WIN5mz6EZY6VXe7dRidXWV59u_PPfIncbphwzGOAs5KxNGxnTCKUbNuelUkSbBgnN9kKG6sN74r2Jnp1OA01U6yDiXvF5HHDbh4kw_bhIU0S-0nYJHU6FC3Y79tYmnRdUu8ttbI8i4uNzpuwHZF83B2VExCtLckwfS3ZAO-1NO4G_TnRqc2m9I9aGp8Q2vQbwAvCBxel2AkYQk7zUOibFhTNjwMBt16tPWaRXuw1D8_HYbDQXDyGZbxuqTcO9fdhoX8Zmp30BjLo92C_RlcvjXv_AdSrjh7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEXoEDVpQVcCY7ZJrbjxYceqv1Rtz9Rhai0t-DEjrqqlKy6WfFz6iP0UfoqfYU-SWeSTaAckXrg6DiOEs-M_Y0z8w3ARyL1tlw6jyvnPJmK1DMmTL0wE5Zr3FKMT4nCx5HaP5UHk3CyAtdNLkzND9EeuJFlVOs1GfjMZju_SUMpA7tLxb-J0StYhlUeup_f0Wmb744HKOFPnI-GX_v73rKugDej7chDTJRkiidaGSe1NJR9iX5JgC-X6YCbIMO28LUR2lrcoLnRmVBC6cSG2nEj8LmP4LFUvqZiEYMvLWEVR2uo85mE8KjsfUMT6fOd--97D9D-CYurfW30Am6aGanDWc67izLppr_-Iov8n6bsJTxfgmy2V1vFGqy4_BU87Te17V7D5OSsKIvbyyvUTtJzy46m2Io4q_lGp27O6ISaDfOzKkSCRdPyokBjY6Ppj0qZmcktdlPmJOtT6H517vgGTh_kw9ZhNS9ytwEskQbd6V6qejaVDh23LOwZgwof4HBr0g5sNSKPlwvFPEa0JYmk35cd2G67cTbov43JXbGgexBofEYsqDrAK_nGs5qKJK5Jp3lMko1bycZ70XjYtt7-y6AP8ORkMIqPxtHhJjzDy5IC74JgC1bLi4V7h0isTN5Xys_g20Orzh1EIzcq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photo%E2%80%90Assisted+Li%E2%80%90N2+Batteries+with+Enhanced+Nitrogen+Fixation+and+Energy+Conversion&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jian%E2%80%90You+Li&rft.au=Xing%E2%80%90Yuan+Du&rft.au=Xiao%E2%80%90Xue+Wang&rft.au=Xin%E2%80%90Yuan+Yuan&rft.date=2024-03-11&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=11&rft_id=info:doi/10.1002%2Fanie.202319211&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon