Pyrazine‐Functionalized Donor–Acceptor Covalent Organic Frameworks for Enhanced Photocatalytic H2 Evolution with High Proton Transport
The well‐defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor–accepter (D–A) COF material, named PyPz‐COF, constructed from electron donor 4,4′,4″,4′″‐(pyrene‐1,3,6,8‐tetrayl)tetraan...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 23; pp. e2207421 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The well‐defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor–accepter (D–A) COF material, named PyPz‐COF, constructed from electron donor 4,4′,4″,4′″‐(pyrene‐1,3,6,8‐tetrayl)tetraaniline and electron accepter 4,4′‐(pyrazine‐2,5‐diyl)dibenzaldehyde with an ordered and stable π‐conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz‐COF a distinct optical, electrochemical, charge‐transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz‐COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g−1 h−1 with Pt as cocatalyst, also in clear contrast to that of PyTp‐COF without pyrazine introduction (1714 µmol g−1 h−1). Moreover, the abundant nitrogen sites of the pyrazine ring and the well‐defined 1D nanochannels enable the as‐prepared COFs to immobilize H3PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10−2 S cm−1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF‐based materials with both efficient photocatalysis and proton conduction performance in the future.
The introduction of a pyrazine into the synthesized donor–accepter covalent organic frameworks achieves an enhanced electron push–pull effect and narrower bandgap, thereby promoting internal charge transfer for higher photocatalytic hydrogen production performance. Meanwhile, the abundant N sites of pyrazine further anchor the phosphoric acid proton carriers to achieve high proton conductivity. |
---|---|
AbstractList | The well‐defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor–accepter (D–A) COF material, named PyPz‐COF, constructed from electron donor 4,4′,4″,4′″‐(pyrene‐1,3,6,8‐tetrayl)tetraaniline and electron accepter 4,4′‐(pyrazine‐2,5‐diyl)dibenzaldehyde with an ordered and stable π‐conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz‐COF a distinct optical, electrochemical, charge‐transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz‐COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g−1 h−1 with Pt as cocatalyst, also in clear contrast to that of PyTp‐COF without pyrazine introduction (1714 µmol g−1 h−1). Moreover, the abundant nitrogen sites of the pyrazine ring and the well‐defined 1D nanochannels enable the as‐prepared COFs to immobilize H3PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10−2 S cm−1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF‐based materials with both efficient photocatalysis and proton conduction performance in the future.
The introduction of a pyrazine into the synthesized donor–accepter covalent organic frameworks achieves an enhanced electron push–pull effect and narrower bandgap, thereby promoting internal charge transfer for higher photocatalytic hydrogen production performance. Meanwhile, the abundant N sites of pyrazine further anchor the phosphoric acid proton carriers to achieve high proton conductivity. The well-defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor-accepter (D-A) COF material, named PyPz-COF, constructed from electron donor 4,4',4″,4'″-(pyrene-1,3,6,8-tetrayl)tetraaniline and electron accepter 4,4'-(pyrazine-2,5-diyl)dibenzaldehyde with an ordered and stable π-conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz-COF a distinct optical, electrochemical, charge-transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz-COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g-1 h-1 with Pt as cocatalyst, also in clear contrast to that of PyTp-COF without pyrazine introduction (1714 µmol g-1 h-1 ). Moreover, the abundant nitrogen sites of the pyrazine ring and the well-defined 1D nanochannels enable the as-prepared COFs to immobilize H3 PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10-2 S cm-1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF-based materials with both efficient photocatalysis and proton conduction performance in the future.The well-defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor-accepter (D-A) COF material, named PyPz-COF, constructed from electron donor 4,4',4″,4'″-(pyrene-1,3,6,8-tetrayl)tetraaniline and electron accepter 4,4'-(pyrazine-2,5-diyl)dibenzaldehyde with an ordered and stable π-conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz-COF a distinct optical, electrochemical, charge-transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz-COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g-1 h-1 with Pt as cocatalyst, also in clear contrast to that of PyTp-COF without pyrazine introduction (1714 µmol g-1 h-1 ). Moreover, the abundant nitrogen sites of the pyrazine ring and the well-defined 1D nanochannels enable the as-prepared COFs to immobilize H3 PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10-2 S cm-1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF-based materials with both efficient photocatalysis and proton conduction performance in the future. The well‐defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor–accepter (D–A) COF material, named PyPz‐COF, constructed from electron donor 4,4′,4″,4′″‐(pyrene‐1,3,6,8‐tetrayl)tetraaniline and electron accepter 4,4′‐(pyrazine‐2,5‐diyl)dibenzaldehyde with an ordered and stable π‐conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz‐COF a distinct optical, electrochemical, charge‐transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz‐COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g−1 h−1 with Pt as cocatalyst, also in clear contrast to that of PyTp‐COF without pyrazine introduction (1714 µmol g−1 h−1). Moreover, the abundant nitrogen sites of the pyrazine ring and the well‐defined 1D nanochannels enable the as‐prepared COFs to immobilize H3PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10−2 S cm−1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF‐based materials with both efficient photocatalysis and proton conduction performance in the future. |
Author | Wang, Qing‐Lun Yang, Li‐Bin Rong, Yi Zhang, Chen‐Xi Yang, Li‐Juan Wang, Xin‐Xin Wang, Feng‐Dong Yan, Fang‐You |
Author_xml | – sequence: 1 givenname: Feng‐Dong surname: Wang fullname: Wang, Feng‐Dong organization: Tianjin University of Science and Technology – sequence: 2 givenname: Li‐Juan surname: Yang fullname: Yang, Li‐Juan organization: Tianjin University of Science and Technology – sequence: 3 givenname: Xin‐Xin surname: Wang fullname: Wang, Xin‐Xin organization: Tianjin University of Science and Technology – sequence: 4 givenname: Yi surname: Rong fullname: Rong, Yi organization: Tianjin University of Science and Technology – sequence: 5 givenname: Li‐Bin surname: Yang fullname: Yang, Li‐Bin organization: Tianjin University of Science and Technology – sequence: 6 givenname: Chen‐Xi orcidid: 0000-0003-3383-9112 surname: Zhang fullname: Zhang, Chen‐Xi email: zcx@tust.edu.cn organization: Tianjin University of Science and Technology – sequence: 7 givenname: Fang‐You surname: Yan fullname: Yan, Fang‐You email: yanfangyou@tust.edu.cn organization: Tianjin University of Science and Technology – sequence: 8 givenname: Qing‐Lun surname: Wang fullname: Wang, Qing‐Lun organization: Nankai University |
BookMark | eNpdkT1PwzAQhi0EEp8rsyUWloI_UiceUWkpUlErAXNk3As1uHawnVZlYmZC4h_2l5AK1IHp7nTPvcM9h2jXeQcInVJyQQlhl3Fu7QUjjJE8Y3QHHVBBeUcUTO5ue0r20WGML4RwyrL8AH1OVkG9Gwfrj69B43Qy3ilr3mGKr73zYf3xfaU11MkH3PMLZcElPA7PyhmNB0HNYenDa8RVu--7mXK6vZzMfPJaJWVXqcWGDPcX3jabbLw0aYaH5nmGJ6GlHH4IysXah3SM9iplI5z81SP0OOg_9Iad0fjmtnc16tRMCNrhQGSX5CCgoIyDVkoWT7KqpkRKySoxBZpVXZjmkFVCSyJzKoRUhDPKn2hG-RE6_82tg39rIKZybqIGa5UD38SS5UWXyoIUokXP_qEvvgntg1qqYEzyvMi7LSV_qaWxsCrrYOYqrEpKyo2XcuOl3Hop7-9Go-3EfwBxTYmp |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202207421 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL202207421 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21771111; 21371104; 20771081; 21101096; 21471084 – fundername: Shiyanjia Lab |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-p2661-3e09507e6e8123ecaa98b9ffd09992f6de14f5ed7e4f6c90971669a03213b1413 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 10:58:59 EDT 2025 Fri Jul 25 10:32:45 EDT 2025 Wed Jan 22 16:22:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2661-3e09507e6e8123ecaa98b9ffd09992f6de14f5ed7e4f6c90971669a03213b1413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3383-9112 |
PQID | 2822937875 |
PQPubID | 1046358 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2785198086 proquest_journals_2822937875 wiley_primary_10_1002_smll_202207421_SMLL202207421 |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 5 2021; 267 2021 2020; 12 13 2019 2019; 31 141 2019 2016; 58 4 2020; 16 2013 2019; 135 10 2021 2019; 33 7 2008; 104 2020; 11 2021 2014 2022 2020; 15 136 5 142 2020; 10 2021; 143 2019 2021; 11 27 1996; 77 2022; 144 2021 2022; 12 144 2021; 419 2022 2022; 61 13 2022 2019 2021; 144 847 40 2021; 12 2021 2018; 595 17 2015; 137 2021 2021; 143 33 2015; 44 1997; 19 2010; 132 2021 2019 2020 2020; 11 58 59 142 2018 2009; 8 2013; 135 2022; 32 2021; 60 2012; 4 1994; 50 2021 2020; 60 59 |
References_xml | – volume: 44 start-page: 5836 year: 2015 publication-title: Chem. Soc. Rev. – volume: 60 start-page: 4594 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 58 4 start-page: 675 year: 2019 2016 publication-title: Angew. Chem., Int. Ed. J. Mater. Chem. A – volume: 11 58 59 142 start-page: 345 5226 year: 2021 2019 2020 2020 publication-title: ACS Catal. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 33 7 start-page: 8863 2380 year: 2021 2019 publication-title: Chem. Mater. ACS Sustainable Chem. Eng. – volume: 144 847 40 start-page: 9101 828 year: 2022 2019 2021 publication-title: J. Am. Chem. Soc. J. Electroanal. Chem. Huanjing Huaxue (Environ. Chem.) – volume: 143 33 year: 2021 2021 publication-title: J. Am. Chem. Soc. Adv. Mater. – volume: 11 27 year: 2019 2021 publication-title: ACS Appl. Mater. Interfaces Chem. ‐ Eur. J. – volume: 12 start-page: 4782 year: 2021 publication-title: Nat. Commun. – volume: 11 start-page: 9138 year: 2020 publication-title: J. Phys. Chem. Lett. – volume: 61 13 start-page: 2357 year: 2022 2022 publication-title: Angew. Chem., Int. Ed. Nat. Commun. – volume: 11 start-page: 1981 year: 2020 publication-title: Nat. Commun. – volume: 8 start-page: 76 year: 2009 publication-title: Nat. Mater. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 31 141 year: 2019 2019 publication-title: Adv. Mater. J. Am. Chem. Soc. – year: 2018 – volume: 60 year: 2021 publication-title: Inorg. Chem. – volume: 137 start-page: 3241 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 60 59 start-page: 3678 year: 2021 2020 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 4 start-page: 432 year: 2012 publication-title: Nat. Chem. – volume: 15 136 5 142 start-page: 6570 1298 year: 2021 2014 2022 2020 publication-title: ACS Nano J. Am. Chem. Soc. ACS Appl. Energy Mater. J. Am. Chem. Soc. – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 16 year: 2020 publication-title: Small – volume: 10 start-page: 8717 year: 2020 publication-title: ACS Catal. – volume: 10 start-page: 5623 year: 2020 publication-title: ACS Catal. – volume: 144 start-page: 3653 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1632 year: 2019 publication-title: Chem – volume: 4 start-page: 461 year: 2012 publication-title: Nat. Chem. – volume: 267 year: 2021 publication-title: Comput. Phys. Commun. – volume: 60 start-page: 1869 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 12 144 start-page: 1982 6594 year: 2021 2022 publication-title: Nat. Commun. J. Am. Chem. Soc. – volume: 12 13 start-page: 6808 1725 year: 2021 2020 publication-title: Nat. Commun. ChemSusChem – volume: 135 10 start-page: 963 16 year: 2013 2019 publication-title: J. Am. Chem. Soc. Chem. Sci. – volume: 595 17 start-page: 361 827 year: 2021 2018 publication-title: Nature Nat. Mater. – volume: 19 start-page: 6575 year: 1997 publication-title: J. Am. Chem. Soc. – volume: 104 year: 2008 publication-title: J. Appl. Phys. – volume: 143 start-page: 8970 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 50 year: 1994 publication-title: Phys. Rev. B: Condens. Matter – volume: 419 year: 2021 publication-title: Chem. Eng. J. – volume: 132 year: 2010 publication-title: J. Chem. Phys. |
SSID | ssj0031247 |
Score | 2.5666904 |
Snippet | The well‐defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields.... The well-defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields.... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2207421 |
SubjectTerms | Charge transfer covalent organic frameworks donor–acceptors Hydrogen bonds Hydrogen production Nanochannels Nanotechnology Optical properties Photocatalysis Photoelectricity Proton conduction proton transport pyrazine‐functionalized |
Title | Pyrazine‐Functionalized Donor–Acceptor Covalent Organic Frameworks for Enhanced Photocatalytic H2 Evolution with High Proton Transport |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202207421 https://www.proquest.com/docview/2822937875 https://www.proquest.com/docview/2785198086 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YTnrwbUTRrInXQrt90B4JQohBQ3wk3Jrd7TYYtSUFTODE2ZOJ_5Bf4swWKnrUY9NuH5mZzjez335LyKXrR1AmmIHhc9M0HOlFhsBGvrCYcC3u-F6EDf2bW6_z6Fz33f7aKv5cH6JouGFk6P81BjgXo9q3aOjo9QWnDhjD6g7rHyRsISq6K_SjbEheencVyFkGCm-tVBtNVvs5_Ae-XEepOs20dwhfvWDOLnmuTsaiKme_tBv_8wW7ZHuJQWkjd5o9sqGSfbK1pkx4QN5700wLTy_mH21IfXnH8GmmInqVJmm2mH82JDJi0ow2U_BWyF00X9cpaXtF-BpRgMS0lQw0zYD2Buk41f2iKTyZdhhtvS09n2I_mCLphPYyuCqhher6IXlstx6aHWO5bYMxxGxv2Apgm1lXngLwYCvJeeCLII4jBKMs9iJlObGrorpyYk8GWsTKC7hpM8sWFiTVI1JK0kQdExq4rnB5JPFmkEWZALDDPCbrppR2LIIyqazMFi5jbxQiMRZAFxRiZXJRnIaowakQnqh0AtfUAWkGPtRzZcK0jcJhru4R5jrOLETrhIV1wvubbrc4OvnLoFOyiXvV5zyzCimNs4k6A0QzFufaa78A_0Dypg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB4FeoAeSoGipqXtVipHg71-xD70gPJQUhIUtSBxc73rtagKNnKSVuHEmRMSv6R_pT8hv6Qz60eBYyUOPdpeP7Se2flm9ttvAT64foxpghkYfmSahiO92BBUyBcWF64VOb4XU0F_dOj1j51PJ-5JA35Va2EKfYi64EaeocdrcnAqSO_9VQ2dnJ_R3AHnlN5ZJa_yQM1_YtY2-Tjo4C_e4bzXPWr3jXJjAeOC4pFhKwQWZkt5CsObrWQUBb4IkiQmuMQTL1aWk7gqbikn8WSgZZa8IDJtbtnCwmEfn7sET2gbcZLr73yuFatsDJd6PxeMkgZJfVU6kSbfu_-99xDtXVysA1tvDX5XXVLwWb7vzqZiV14-UIv8r_rsOTwrYTbbL_xiHRoq3YCnd8QXN-F6PM-1tvbi6qaH0b0oin67VDHrZGmWL65u9yWRfrKctTN0SAzPrFi6Klmv4rRNGKJ-1k1PNZOCjU-zaaZLYnN8M-tz1v1ROjejkjcjXg0b59gqZbWw_As4fpTO2ILlNEvVS2CB6wo3iiU9DIECF4jnuMdly5TSTkTQhO3KTsJyeJmExP1FXIm5ZhPe15dxYKDZnihV2QzbtBBMBz6mrE3g2ijCi0LAJCykqnlI1hDW1hB-GQ2H9dGrf7npHaz0j0bDcDg4PHgNq3jeLmh127A8zWfqDQK4qXirXYbB18e2tz94jU87 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2iVKraBX2rAxRcqV0GEifxxIsuEDPRAAMatUVil8aPiKolGWVmQMOKdVeV-BF-pb_Al3DtPApdVmLRZRLnIede33Ovj48B3oeRwjTB5U6Uuq4TSKYcYQr5wqMi9NIgYsoU9PcP2OAw2D0KjxbgqlkLU-lDtAU34xl2vDYOPlbZ5h_R0MnJDzN1QKnJ7ryaVrmn52eYtE0-7vTwD3-gNO5_2R449b4CztiEI8fXiCvcrmYao5uvZZrySPAsUwYt0Ywp7QVZqFVXBxmT3KosMZ66PvV84eGoj899AA8D5nKzWUTvUytY5WO0tNu5YJB0jNJXIxPp0s2733sH0N6GxTauxU_hd9MjFZ3l-8ZsKjbk-V9ikf9Tlz2DpRpkk63KK57Dgs5fwJNb0osv4edoXlpl7euLXzHG9qok-u1cK9Ir8qK8vrjckobyU5Rku0B3xOBMqoWrksQNo21CEPOTfn5seRRkdFxMC1sQm-ObyYCS_mnt2sQUvIlh1ZBRia1y0srKv4LDe-mM17CYF7l-A4SHoQhTJc3DECZQgWiOMiq7rpR-JngHVhszSerBZZIY5i-iSsw0O_CuvYzDgpnrSXNdzLBNF6E0jzBh7QC1NpGMK_mSpBKqpomxhqS1huTz_nDYHi3_y03r8GjUi5PhzsHeCjzG037FqVuFxWk5028RvU3FmnUYAl_v29xuACL0Teo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyrazine%E2%80%90Functionalized+Donor%E2%80%93Acceptor+Covalent+Organic+Frameworks+for+Enhanced+Photocatalytic+H2+Evolution+with+High+Proton+Transport&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Feng%E2%80%90Dong&rft.au=Yang%2C+Li%E2%80%90Juan&rft.au=Wang%2C+Xin%E2%80%90Xin&rft.au=Rong%2C+Yi&rft.date=2023-06-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202207421&rft.externalDBID=10.1002%252Fsmll.202207421&rft.externalDocID=SMLL202207421 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |