Pyrazine‐Functionalized Donor–Acceptor Covalent Organic Frameworks for Enhanced Photocatalytic H2 Evolution with High Proton Transport

The well‐defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor–accepter (D–A) COF material, named PyPz‐COF, constructed from electron donor 4,4′,4″,4′″‐(pyrene‐1,3,6,8‐tetrayl)tetraan...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 23; pp. e2207421 - n/a
Main Authors Wang, Feng‐Dong, Yang, Li‐Juan, Wang, Xin‐Xin, Rong, Yi, Yang, Li‐Bin, Zhang, Chen‐Xi, Yan, Fang‐You, Wang, Qing‐Lun
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The well‐defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor–accepter (D–A) COF material, named PyPz‐COF, constructed from electron donor 4,4′,4″,4′″‐(pyrene‐1,3,6,8‐tetrayl)tetraaniline and electron accepter 4,4′‐(pyrazine‐2,5‐diyl)dibenzaldehyde with an ordered and stable π‐conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz‐COF a distinct optical, electrochemical, charge‐transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz‐COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g−1 h−1 with Pt as cocatalyst, also in clear contrast to that of PyTp‐COF without pyrazine introduction (1714 µmol g−1 h−1). Moreover, the abundant nitrogen sites of the pyrazine ring and the well‐defined 1D nanochannels enable the as‐prepared COFs to immobilize H3PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10−2 S cm−1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF‐based materials with both efficient photocatalysis and proton conduction performance in the future. The introduction of a pyrazine into the synthesized donor–accepter covalent organic frameworks achieves an enhanced electron push–pull effect and narrower bandgap, thereby promoting internal charge transfer for higher photocatalytic hydrogen production performance. Meanwhile, the abundant N sites of pyrazine further anchor the phosphoric acid proton carriers to achieve high proton conductivity.
AbstractList The well‐defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor–accepter (D–A) COF material, named PyPz‐COF, constructed from electron donor 4,4′,4″,4′″‐(pyrene‐1,3,6,8‐tetrayl)tetraaniline and electron accepter 4,4′‐(pyrazine‐2,5‐diyl)dibenzaldehyde with an ordered and stable π‐conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz‐COF a distinct optical, electrochemical, charge‐transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz‐COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g−1 h−1 with Pt as cocatalyst, also in clear contrast to that of PyTp‐COF without pyrazine introduction (1714 µmol g−1 h−1). Moreover, the abundant nitrogen sites of the pyrazine ring and the well‐defined 1D nanochannels enable the as‐prepared COFs to immobilize H3PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10−2 S cm−1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF‐based materials with both efficient photocatalysis and proton conduction performance in the future. The introduction of a pyrazine into the synthesized donor–accepter covalent organic frameworks achieves an enhanced electron push–pull effect and narrower bandgap, thereby promoting internal charge transfer for higher photocatalytic hydrogen production performance. Meanwhile, the abundant N sites of pyrazine further anchor the phosphoric acid proton carriers to achieve high proton conductivity.
The well-defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor-accepter (D-A) COF material, named PyPz-COF, constructed from electron donor 4,4',4″,4'″-(pyrene-1,3,6,8-tetrayl)tetraaniline and electron accepter 4,4'-(pyrazine-2,5-diyl)dibenzaldehyde with an ordered and stable π-conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz-COF a distinct optical, electrochemical, charge-transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz-COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g-1 h-1 with Pt as cocatalyst, also in clear contrast to that of PyTp-COF without pyrazine introduction (1714 µmol g-1 h-1 ). Moreover, the abundant nitrogen sites of the pyrazine ring and the well-defined 1D nanochannels enable the as-prepared COFs to immobilize H3 PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10-2 S cm-1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF-based materials with both efficient photocatalysis and proton conduction performance in the future.The well-defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor-accepter (D-A) COF material, named PyPz-COF, constructed from electron donor 4,4',4″,4'″-(pyrene-1,3,6,8-tetrayl)tetraaniline and electron accepter 4,4'-(pyrazine-2,5-diyl)dibenzaldehyde with an ordered and stable π-conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz-COF a distinct optical, electrochemical, charge-transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz-COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g-1 h-1 with Pt as cocatalyst, also in clear contrast to that of PyTp-COF without pyrazine introduction (1714 µmol g-1 h-1 ). Moreover, the abundant nitrogen sites of the pyrazine ring and the well-defined 1D nanochannels enable the as-prepared COFs to immobilize H3 PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10-2 S cm-1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF-based materials with both efficient photocatalysis and proton conduction performance in the future.
The well‐defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor–accepter (D–A) COF material, named PyPz‐COF, constructed from electron donor 4,4′,4″,4′″‐(pyrene‐1,3,6,8‐tetrayl)tetraaniline and electron accepter 4,4′‐(pyrazine‐2,5‐diyl)dibenzaldehyde with an ordered and stable π‐conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz‐COF a distinct optical, electrochemical, charge‐transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz‐COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g−1 h−1 with Pt as cocatalyst, also in clear contrast to that of PyTp‐COF without pyrazine introduction (1714 µmol g−1 h−1). Moreover, the abundant nitrogen sites of the pyrazine ring and the well‐defined 1D nanochannels enable the as‐prepared COFs to immobilize H3PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10−2 S cm−1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF‐based materials with both efficient photocatalysis and proton conduction performance in the future.
Author Wang, Qing‐Lun
Yang, Li‐Bin
Rong, Yi
Zhang, Chen‐Xi
Yang, Li‐Juan
Wang, Xin‐Xin
Wang, Feng‐Dong
Yan, Fang‐You
Author_xml – sequence: 1
  givenname: Feng‐Dong
  surname: Wang
  fullname: Wang, Feng‐Dong
  organization: Tianjin University of Science and Technology
– sequence: 2
  givenname: Li‐Juan
  surname: Yang
  fullname: Yang, Li‐Juan
  organization: Tianjin University of Science and Technology
– sequence: 3
  givenname: Xin‐Xin
  surname: Wang
  fullname: Wang, Xin‐Xin
  organization: Tianjin University of Science and Technology
– sequence: 4
  givenname: Yi
  surname: Rong
  fullname: Rong, Yi
  organization: Tianjin University of Science and Technology
– sequence: 5
  givenname: Li‐Bin
  surname: Yang
  fullname: Yang, Li‐Bin
  organization: Tianjin University of Science and Technology
– sequence: 6
  givenname: Chen‐Xi
  orcidid: 0000-0003-3383-9112
  surname: Zhang
  fullname: Zhang, Chen‐Xi
  email: zcx@tust.edu.cn
  organization: Tianjin University of Science and Technology
– sequence: 7
  givenname: Fang‐You
  surname: Yan
  fullname: Yan, Fang‐You
  email: yanfangyou@tust.edu.cn
  organization: Tianjin University of Science and Technology
– sequence: 8
  givenname: Qing‐Lun
  surname: Wang
  fullname: Wang, Qing‐Lun
  organization: Nankai University
BookMark eNpdkT1PwzAQhi0EEp8rsyUWloI_UiceUWkpUlErAXNk3As1uHawnVZlYmZC4h_2l5AK1IHp7nTPvcM9h2jXeQcInVJyQQlhl3Fu7QUjjJE8Y3QHHVBBeUcUTO5ue0r20WGML4RwyrL8AH1OVkG9Gwfrj69B43Qy3ilr3mGKr73zYf3xfaU11MkH3PMLZcElPA7PyhmNB0HNYenDa8RVu--7mXK6vZzMfPJaJWVXqcWGDPcX3jabbLw0aYaH5nmGJ6GlHH4IysXah3SM9iplI5z81SP0OOg_9Iad0fjmtnc16tRMCNrhQGSX5CCgoIyDVkoWT7KqpkRKySoxBZpVXZjmkFVCSyJzKoRUhDPKn2hG-RE6_82tg39rIKZybqIGa5UD38SS5UWXyoIUokXP_qEvvgntg1qqYEzyvMi7LSV_qaWxsCrrYOYqrEpKyo2XcuOl3Hop7-9Go-3EfwBxTYmp
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202207421
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202207421
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21771111; 21371104; 20771081; 21101096; 21471084
– fundername: Shiyanjia Lab
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-p2661-3e09507e6e8123ecaa98b9ffd09992f6de14f5ed7e4f6c90971669a03213b1413
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 10:58:59 EDT 2025
Fri Jul 25 10:32:45 EDT 2025
Wed Jan 22 16:22:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2661-3e09507e6e8123ecaa98b9ffd09992f6de14f5ed7e4f6c90971669a03213b1413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3383-9112
PQID 2822937875
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_miscellaneous_2785198086
proquest_journals_2822937875
wiley_primary_10_1002_smll_202207421_SMLL202207421
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 5
2021; 267
2021 2020; 12 13
2019 2019; 31 141
2019 2016; 58 4
2020; 16
2013 2019; 135 10
2021 2019; 33 7
2008; 104
2020; 11
2021 2014 2022 2020; 15 136 5 142
2020; 10
2021; 143
2019 2021; 11 27
1996; 77
2022; 144
2021 2022; 12 144
2021; 419
2022 2022; 61 13
2022 2019 2021; 144 847 40
2021; 12
2021 2018; 595 17
2015; 137
2021 2021; 143 33
2015; 44
1997; 19
2010; 132
2021 2019 2020 2020; 11 58 59 142
2018
2009; 8
2013; 135
2022; 32
2021; 60
2012; 4
1994; 50
2021 2020; 60 59
References_xml – volume: 44
  start-page: 5836
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 60
  start-page: 4594
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 58 4
  start-page: 675
  year: 2019 2016
  publication-title: Angew. Chem., Int. Ed. J. Mater. Chem. A
– volume: 11 58 59 142
  start-page: 345 5226
  year: 2021 2019 2020 2020
  publication-title: ACS Catal. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 33 7
  start-page: 8863 2380
  year: 2021 2019
  publication-title: Chem. Mater. ACS Sustainable Chem. Eng.
– volume: 144 847 40
  start-page: 9101 828
  year: 2022 2019 2021
  publication-title: J. Am. Chem. Soc. J. Electroanal. Chem. Huanjing Huaxue (Environ. Chem.)
– volume: 143 33
  year: 2021 2021
  publication-title: J. Am. Chem. Soc. Adv. Mater.
– volume: 11 27
  year: 2019 2021
  publication-title: ACS Appl. Mater. Interfaces Chem. ‐ Eur. J.
– volume: 12
  start-page: 4782
  year: 2021
  publication-title: Nat. Commun.
– volume: 11
  start-page: 9138
  year: 2020
  publication-title: J. Phys. Chem. Lett.
– volume: 61 13
  start-page: 2357
  year: 2022 2022
  publication-title: Angew. Chem., Int. Ed. Nat. Commun.
– volume: 11
  start-page: 1981
  year: 2020
  publication-title: Nat. Commun.
– volume: 8
  start-page: 76
  year: 2009
  publication-title: Nat. Mater.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 31 141
  year: 2019 2019
  publication-title: Adv. Mater. J. Am. Chem. Soc.
– year: 2018
– volume: 60
  year: 2021
  publication-title: Inorg. Chem.
– volume: 137
  start-page: 3241
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 60 59
  start-page: 3678
  year: 2021 2020
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 4
  start-page: 432
  year: 2012
  publication-title: Nat. Chem.
– volume: 15 136 5 142
  start-page: 6570 1298
  year: 2021 2014 2022 2020
  publication-title: ACS Nano J. Am. Chem. Soc. ACS Appl. Energy Mater. J. Am. Chem. Soc.
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 10
  start-page: 8717
  year: 2020
  publication-title: ACS Catal.
– volume: 10
  start-page: 5623
  year: 2020
  publication-title: ACS Catal.
– volume: 144
  start-page: 3653
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1632
  year: 2019
  publication-title: Chem
– volume: 4
  start-page: 461
  year: 2012
  publication-title: Nat. Chem.
– volume: 267
  year: 2021
  publication-title: Comput. Phys. Commun.
– volume: 60
  start-page: 1869
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 12 144
  start-page: 1982 6594
  year: 2021 2022
  publication-title: Nat. Commun. J. Am. Chem. Soc.
– volume: 12 13
  start-page: 6808 1725
  year: 2021 2020
  publication-title: Nat. Commun. ChemSusChem
– volume: 135 10
  start-page: 963 16
  year: 2013 2019
  publication-title: J. Am. Chem. Soc. Chem. Sci.
– volume: 595 17
  start-page: 361 827
  year: 2021 2018
  publication-title: Nature Nat. Mater.
– volume: 19
  start-page: 6575
  year: 1997
  publication-title: J. Am. Chem. Soc.
– volume: 104
  year: 2008
  publication-title: J. Appl. Phys.
– volume: 143
  start-page: 8970
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B: Condens. Matter
– volume: 419
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
SSID ssj0031247
Score 2.5666904
Snippet The well‐defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields....
The well-defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields....
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2207421
SubjectTerms Charge transfer
covalent organic frameworks
donor–acceptors
Hydrogen bonds
Hydrogen production
Nanochannels
Nanotechnology
Optical properties
Photocatalysis
Photoelectricity
Proton conduction
proton transport
pyrazine‐functionalized
Title Pyrazine‐Functionalized Donor–Acceptor Covalent Organic Frameworks for Enhanced Photocatalytic H2 Evolution with High Proton Transport
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202207421
https://www.proquest.com/docview/2822937875
https://www.proquest.com/docview/2785198086
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YTnrwbUTRrInXQrt90B4JQohBQ3wk3Jrd7TYYtSUFTODE2ZOJ_5Bf4swWKnrUY9NuH5mZzjez335LyKXrR1AmmIHhc9M0HOlFhsBGvrCYcC3u-F6EDf2bW6_z6Fz33f7aKv5cH6JouGFk6P81BjgXo9q3aOjo9QWnDhjD6g7rHyRsISq6K_SjbEheencVyFkGCm-tVBtNVvs5_Ae-XEepOs20dwhfvWDOLnmuTsaiKme_tBv_8wW7ZHuJQWkjd5o9sqGSfbK1pkx4QN5700wLTy_mH21IfXnH8GmmInqVJmm2mH82JDJi0ow2U_BWyF00X9cpaXtF-BpRgMS0lQw0zYD2Buk41f2iKTyZdhhtvS09n2I_mCLphPYyuCqhher6IXlstx6aHWO5bYMxxGxv2Apgm1lXngLwYCvJeeCLII4jBKMs9iJlObGrorpyYk8GWsTKC7hpM8sWFiTVI1JK0kQdExq4rnB5JPFmkEWZALDDPCbrppR2LIIyqazMFi5jbxQiMRZAFxRiZXJRnIaowakQnqh0AtfUAWkGPtRzZcK0jcJhru4R5jrOLETrhIV1wvubbrc4OvnLoFOyiXvV5zyzCimNs4k6A0QzFufaa78A_0Dypg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB4FeoAeSoGipqXtVipHg71-xD70gPJQUhIUtSBxc73rtagKNnKSVuHEmRMSv6R_pT8hv6Qz60eBYyUOPdpeP7Se2flm9ttvAT64foxpghkYfmSahiO92BBUyBcWF64VOb4XU0F_dOj1j51PJ-5JA35Va2EKfYi64EaeocdrcnAqSO_9VQ2dnJ_R3AHnlN5ZJa_yQM1_YtY2-Tjo4C_e4bzXPWr3jXJjAeOC4pFhKwQWZkt5CsObrWQUBb4IkiQmuMQTL1aWk7gqbikn8WSgZZa8IDJtbtnCwmEfn7sET2gbcZLr73yuFatsDJd6PxeMkgZJfVU6kSbfu_-99xDtXVysA1tvDX5XXVLwWb7vzqZiV14-UIv8r_rsOTwrYTbbL_xiHRoq3YCnd8QXN-F6PM-1tvbi6qaH0b0oin67VDHrZGmWL65u9yWRfrKctTN0SAzPrFi6Klmv4rRNGKJ-1k1PNZOCjU-zaaZLYnN8M-tz1v1ROjejkjcjXg0b59gqZbWw_As4fpTO2ILlNEvVS2CB6wo3iiU9DIECF4jnuMdly5TSTkTQhO3KTsJyeJmExP1FXIm5ZhPe15dxYKDZnihV2QzbtBBMBz6mrE3g2ijCi0LAJCykqnlI1hDW1hB-GQ2H9dGrf7npHaz0j0bDcDg4PHgNq3jeLmh127A8zWfqDQK4qXirXYbB18e2tz94jU87
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2iVKraBX2rAxRcqV0GEifxxIsuEDPRAAMatUVil8aPiKolGWVmQMOKdVeV-BF-pb_Al3DtPApdVmLRZRLnIede33Ovj48B3oeRwjTB5U6Uuq4TSKYcYQr5wqMi9NIgYsoU9PcP2OAw2D0KjxbgqlkLU-lDtAU34xl2vDYOPlbZ5h_R0MnJDzN1QKnJ7ryaVrmn52eYtE0-7vTwD3-gNO5_2R449b4CztiEI8fXiCvcrmYao5uvZZrySPAsUwYt0Ywp7QVZqFVXBxmT3KosMZ66PvV84eGoj899AA8D5nKzWUTvUytY5WO0tNu5YJB0jNJXIxPp0s2733sH0N6GxTauxU_hd9MjFZ3l-8ZsKjbk-V9ikf9Tlz2DpRpkk63KK57Dgs5fwJNb0osv4edoXlpl7euLXzHG9qok-u1cK9Ir8qK8vrjckobyU5Rku0B3xOBMqoWrksQNo21CEPOTfn5seRRkdFxMC1sQm-ObyYCS_mnt2sQUvIlh1ZBRia1y0srKv4LDe-mM17CYF7l-A4SHoQhTJc3DECZQgWiOMiq7rpR-JngHVhszSerBZZIY5i-iSsw0O_CuvYzDgpnrSXNdzLBNF6E0jzBh7QC1NpGMK_mSpBKqpomxhqS1huTz_nDYHi3_y03r8GjUi5PhzsHeCjzG037FqVuFxWk5028RvU3FmnUYAl_v29xuACL0Teo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyrazine%E2%80%90Functionalized+Donor%E2%80%93Acceptor+Covalent+Organic+Frameworks+for+Enhanced+Photocatalytic+H2+Evolution+with+High+Proton+Transport&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Feng%E2%80%90Dong&rft.au=Yang%2C+Li%E2%80%90Juan&rft.au=Wang%2C+Xin%E2%80%90Xin&rft.au=Rong%2C+Yi&rft.date=2023-06-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202207421&rft.externalDBID=10.1002%252Fsmll.202207421&rft.externalDocID=SMLL202207421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon