Generating Multi‐Carbon Products by Electrochemical CO2 Reduction via Catalytically Harmonious Ni/Cu Dual Active Sites

Despite the unique advantages of single‐atom catalysts, molecular dual‐active sites facilitate the C‐C coupling reaction for C2 products toward the CO2 reduction reaction (CO2RR). The Ni/Cu proximal dual‐active site catalyst (Ni/Cu‐PASC) is developed, which is a harmonic catalyst with dual‐active si...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 17; pp. e2307180 - n/a
Main Authors Lakshmanan, Keseven, Huang, Wei‐Hsiang, Chala, Soressa Abera, Chang, Chia‐Yu, Saravanan, Sruthi Thiraviam, Taklu, Bereket Woldegbreal, Moges, Endalkachew Asefa, Nikodimos, Yosef, Dandena, Berhanu Degagsa, Yang, Sheng‐Chiang, Lee, Jyh‐Fu, Huang, Pei‐Yu, Lee, Yao‐Chang, Tsai, Meng‐Che, Su, Wei‐Nien, Hwang, Bing Joe
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the unique advantages of single‐atom catalysts, molecular dual‐active sites facilitate the C‐C coupling reaction for C2 products toward the CO2 reduction reaction (CO2RR). The Ni/Cu proximal dual‐active site catalyst (Ni/Cu‐PASC) is developed, which is a harmonic catalyst with dual‐active sites, by simply mixing commercial Ni‐phthalocyanine (Ni‐Pc) and Cu‐phthalocyanine (Cu‐Pc) molecules physically. According to scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) energy dispersive spectroscopy (EDS) data, Ni and Cu atoms are separated, creating dual‐active sites for the CO2RR. The Ni/Cu‐PASC generates ethanol with an FE of 55%. Conversely, Ni‐Pc and Cu‐Pc have only detected single‐carbon products like CO and HCOO−. In situ X‐ray absorption spectroscopy (XAS) indicates that CO generation is caused by the stable Ni active site's balanced electronic state. The CO production from Ni‐Pc consistently increased the CO concentration over Cu sites attributed to subsequent reduction reaction through a C‐C coupling on nearby Cu. The CO bound (HCOO−) peak, which can be found on Cu‐Pc, vanishes on Ni/Cu‐PASC, as shown by in situ fourier transformation infrared (FTIR). The characteristic intermediate of *CHO instead of HCOO− proves to be the prerequisite for multi‐carbon products by electrochemical CO2RR. The work demonstrates that the harmonic dual‐active sites in Ni/Cu‐PASC can be readily available by the cascading proximal active Ni‐ and Cu‐Pc sites. Ethanol is produced by a Ni/Cu dual active site in the Ni/Cu‐PASC catalyst. Because of the CO that has migrated from the Ni atom, a harmonious Ni/Cu dual atom site modifies the coordination bind site, converting the Cu‐*OCHO intermediate site to Cu‐*CHO. Ethanol is eventually produced when the Ni/Cu dual site facilitates the C‐C coupling via Cu‐*CHO‐CO .
AbstractList Despite the unique advantages of single‐atom catalysts, molecular dual‐active sites facilitate the C‐C coupling reaction for C2 products toward the CO2 reduction reaction (CO2RR). The Ni/Cu proximal dual‐active site catalyst (Ni/Cu‐PASC) is developed, which is a harmonic catalyst with dual‐active sites, by simply mixing commercial Ni‐phthalocyanine (Ni‐Pc) and Cu‐phthalocyanine (Cu‐Pc) molecules physically. According to scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) energy dispersive spectroscopy (EDS) data, Ni and Cu atoms are separated, creating dual‐active sites for the CO2RR. The Ni/Cu‐PASC generates ethanol with an FE of 55%. Conversely, Ni‐Pc and Cu‐Pc have only detected single‐carbon products like CO and HCOO−. In situ X‐ray absorption spectroscopy (XAS) indicates that CO generation is caused by the stable Ni active site's balanced electronic state. The CO production from Ni‐Pc consistently increased the CO concentration over Cu sites attributed to subsequent reduction reaction through a C‐C coupling on nearby Cu. The CO bound (HCOO−) peak, which can be found on Cu‐Pc, vanishes on Ni/Cu‐PASC, as shown by in situ fourier transformation infrared (FTIR). The characteristic intermediate of *CHO instead of HCOO− proves to be the prerequisite for multi‐carbon products by electrochemical CO2RR. The work demonstrates that the harmonic dual‐active sites in Ni/Cu‐PASC can be readily available by the cascading proximal active Ni‐ and Cu‐Pc sites. Ethanol is produced by a Ni/Cu dual active site in the Ni/Cu‐PASC catalyst. Because of the CO that has migrated from the Ni atom, a harmonious Ni/Cu dual atom site modifies the coordination bind site, converting the Cu‐*OCHO intermediate site to Cu‐*CHO. Ethanol is eventually produced when the Ni/Cu dual site facilitates the C‐C coupling via Cu‐*CHO‐CO .
Despite the unique advantages of single‐atom catalysts, molecular dual‐active sites facilitate the C‐C coupling reaction for C2 products toward the CO2 reduction reaction (CO2RR). The Ni/Cu proximal dual‐active site catalyst (Ni/Cu‐PASC) is developed, which is a harmonic catalyst with dual‐active sites, by simply mixing commercial Ni‐phthalocyanine (Ni‐Pc) and Cu‐phthalocyanine (Cu‐Pc) molecules physically. According to scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) energy dispersive spectroscopy (EDS) data, Ni and Cu atoms are separated, creating dual‐active sites for the CO2RR. The Ni/Cu‐PASC generates ethanol with an FE of 55%. Conversely, Ni‐Pc and Cu‐Pc have only detected single‐carbon products like CO and HCOO−. In situ X‐ray absorption spectroscopy (XAS) indicates that CO generation is caused by the stable Ni active site's balanced electronic state. The CO production from Ni‐Pc consistently increased the CO concentration over Cu sites attributed to subsequent reduction reaction through a C‐C coupling on nearby Cu. The CO bound (HCOO−) peak, which can be found on Cu‐Pc, vanishes on Ni/Cu‐PASC, as shown by in situ fourier transformation infrared (FTIR). The characteristic intermediate of *CHO instead of HCOO− proves to be the prerequisite for multi‐carbon products by electrochemical CO2RR. The work demonstrates that the harmonic dual‐active sites in Ni/Cu‐PASC can be readily available by the cascading proximal active Ni‐ and Cu‐Pc sites.
Despite the unique advantages of single-atom catalysts, molecular dual-active sites facilitate the C-C coupling reaction for C2 products toward the CO2 reduction reaction (CO2RR). The Ni/Cu proximal dual-active site catalyst (Ni/Cu-PASC) is developed, which is a harmonic catalyst with dual-active sites, by simply mixing commercial Ni-phthalocyanine (Ni-Pc) and Cu-phthalocyanine (Cu-Pc) molecules physically. According to scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) energy dispersive spectroscopy (EDS) data, Ni and Cu atoms are separated, creating dual-active sites for the CO2RR. The Ni/Cu-PASC generates ethanol with an FE of 55%. Conversely, Ni-Pc and Cu-Pc have only detected single-carbon products like CO and HCOO-. In situ X-ray absorption spectroscopy (XAS) indicates that CO generation is caused by the stable Ni active site's balanced electronic state. The CO production from Ni-Pc consistently increased the CO concentration over Cu sites attributed to subsequent reduction reaction through a C-C coupling on nearby Cu. The CO bound (HCOO-) peak, which can be found on Cu-Pc, vanishes on Ni/Cu-PASC, as shown by in situ fourier transformation infrared (FTIR). The characteristic intermediate of *CHO instead of HCOO- proves to be the prerequisite for multi-carbon products by electrochemical CO2RR. The work demonstrates that the harmonic dual-active sites in Ni/Cu-PASC can be readily available by the cascading proximal active Ni- and Cu-Pc sites.Despite the unique advantages of single-atom catalysts, molecular dual-active sites facilitate the C-C coupling reaction for C2 products toward the CO2 reduction reaction (CO2RR). The Ni/Cu proximal dual-active site catalyst (Ni/Cu-PASC) is developed, which is a harmonic catalyst with dual-active sites, by simply mixing commercial Ni-phthalocyanine (Ni-Pc) and Cu-phthalocyanine (Cu-Pc) molecules physically. According to scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) energy dispersive spectroscopy (EDS) data, Ni and Cu atoms are separated, creating dual-active sites for the CO2RR. The Ni/Cu-PASC generates ethanol with an FE of 55%. Conversely, Ni-Pc and Cu-Pc have only detected single-carbon products like CO and HCOO-. In situ X-ray absorption spectroscopy (XAS) indicates that CO generation is caused by the stable Ni active site's balanced electronic state. The CO production from Ni-Pc consistently increased the CO concentration over Cu sites attributed to subsequent reduction reaction through a C-C coupling on nearby Cu. The CO bound (HCOO-) peak, which can be found on Cu-Pc, vanishes on Ni/Cu-PASC, as shown by in situ fourier transformation infrared (FTIR). The characteristic intermediate of *CHO instead of HCOO- proves to be the prerequisite for multi-carbon products by electrochemical CO2RR. The work demonstrates that the harmonic dual-active sites in Ni/Cu-PASC can be readily available by the cascading proximal active Ni- and Cu-Pc sites.
Author Saravanan, Sruthi Thiraviam
Yang, Sheng‐Chiang
Lee, Yao‐Chang
Huang, Wei‐Hsiang
Su, Wei‐Nien
Huang, Pei‐Yu
Chala, Soressa Abera
Moges, Endalkachew Asefa
Tsai, Meng‐Che
Dandena, Berhanu Degagsa
Chang, Chia‐Yu
Taklu, Bereket Woldegbreal
Lee, Jyh‐Fu
Nikodimos, Yosef
Hwang, Bing Joe
Lakshmanan, Keseven
Author_xml – sequence: 1
  givenname: Keseven
  surname: Lakshmanan
  fullname: Lakshmanan, Keseven
  organization: National Taiwan University of Science and Technology
– sequence: 2
  givenname: Wei‐Hsiang
  surname: Huang
  fullname: Huang, Wei‐Hsiang
  organization: National Synchrotron Radiation Research Center
– sequence: 3
  givenname: Soressa Abera
  surname: Chala
  fullname: Chala, Soressa Abera
  organization: National Taiwan University of Science and Technology
– sequence: 4
  givenname: Chia‐Yu
  surname: Chang
  fullname: Chang, Chia‐Yu
  organization: National Taiwan University of Science and Technology
– sequence: 5
  givenname: Sruthi Thiraviam
  surname: Saravanan
  fullname: Saravanan, Sruthi Thiraviam
  organization: National Synchrotron Radiation Research Center
– sequence: 6
  givenname: Bereket Woldegbreal
  surname: Taklu
  fullname: Taklu, Bereket Woldegbreal
  organization: National Taiwan University of Science and Technology
– sequence: 7
  givenname: Endalkachew Asefa
  surname: Moges
  fullname: Moges, Endalkachew Asefa
  organization: National Taiwan University of Science and Technology
– sequence: 8
  givenname: Yosef
  surname: Nikodimos
  fullname: Nikodimos, Yosef
  organization: National Taiwan University of Science and Technology
– sequence: 9
  givenname: Berhanu Degagsa
  surname: Dandena
  fullname: Dandena, Berhanu Degagsa
  organization: National Taiwan University of Science and Technology
– sequence: 10
  givenname: Sheng‐Chiang
  surname: Yang
  fullname: Yang, Sheng‐Chiang
  organization: National Taiwan University of Science and Technology
– sequence: 11
  givenname: Jyh‐Fu
  surname: Lee
  fullname: Lee, Jyh‐Fu
  organization: National Synchrotron Radiation Research Center
– sequence: 12
  givenname: Pei‐Yu
  surname: Huang
  fullname: Huang, Pei‐Yu
  organization: National Synchrotron Radiation Research Center
– sequence: 13
  givenname: Yao‐Chang
  surname: Lee
  fullname: Lee, Yao‐Chang
  organization: National Synchrotron Radiation Research Center
– sequence: 14
  givenname: Meng‐Che
  orcidid: 0000-0002-1301-866X
  surname: Tsai
  fullname: Tsai, Meng‐Che
  email: mctsai@mail.ntust.edu.tw
  organization: National Taiwan University of Science and Technology
– sequence: 15
  givenname: Wei‐Nien
  surname: Su
  fullname: Su, Wei‐Nien
  email: wsu@mail.ntust.edu.tw
  organization: National Taiwan University of Science and Technology
– sequence: 16
  givenname: Bing Joe
  orcidid: 0000-0002-3873-2149
  surname: Hwang
  fullname: Hwang, Bing Joe
  email: bjh@mail.ntust.edu.tw
  organization: National Taiwan University of Science and Technology
BookMark eNpdkb1OwzAUhS1UJCiwMltiYSm9dhInHqtQClKgiJ_ZchwHjJyk2AmQjUfgGXkSEoE6sNwfne9eHelM0aRuao3QMYEzAkDnvrL2jAINICYJ7KB9wkgwYwnlk-1MYA9NvX8BCAgN4330sdK1drI19RO-7mxrvj-_Uunypsa3rik61Xqc93hptWpdo551ZZS0OF1TfKdH2Qzkm5E4la20fTuqtseX0lVNbZrO4xszTzt83g1XiwF_0_jetNofot1SWq-P_voBerxYPqSXs2y9ukoX2WxDGYNZrgsm45KTKOFxHspQhTmU8VALHpdRERUQhbHKKS8AmA4DJnNWSDaKSpZJcIBOf_9uXPPaad-KynilrZW1HuwJmvCER2EC8YCe_ENfms7VgzsRQBhx4DSJBor_Uu_G6l5snKmk6wUBMaYgxhTENgVxf51l2y34ATpEgbc
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH.
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202307180
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202307180
Genre article
GrantInformation_xml – fundername: Academia Sinica
  funderid: AS‐KPQ‐106‐ DDPP
– fundername: National Science and Technology Council
  funderid: 112‐2369‐E‐011‐‐001‐ASP; 112‐2923‐E‐011‐005; 112‐2923‐E‐011‐001; 112‐2923‐E‐011‐004‐MY3; 112‐2218‐E‐011‐011
– fundername: Ministry of Education
  funderid: SEED
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-p2660-bed6a7f915897b4a4c4b0f7c4bd97f5d5d0547cb29d006e436ab6da697f5caf83
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 06:53:07 EDT 2025
Fri Jul 25 11:56:53 EDT 2025
Sun Jul 06 04:45:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2660-bed6a7f915897b4a4c4b0f7c4bd97f5d5d0547cb29d006e436ab6da697f5caf83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3873-2149
0000-0002-1301-866X
PQID 3045909285
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2898954807
proquest_journals_3045909285
wiley_primary_10_1002_smll_202307180_SMLL202307180
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2023; 13
2021; 5
2019; 4
2019; 31
2020; 142
2023; 7
2020; 11
2023; 62
2021; 15
2018; 3
2020; 3
2021; 12
2023; 23
2021; 33
2022; 3
2023
2022
2022; 5
2022; 61
2018; 1
2022; 7
2023; 651
2022; 12
2022; 34
2022; 13
2022; 607
2022; 32
2021; 133
2022; 2
2022; 306
2022; 19
References_xml – year: 2023
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 1409
  year: 2020
  publication-title: Nat. Commun.
– volume: 651
  year: 2023
  publication-title: Appl. Catal., A
– volume: 13
  start-page: 3689
  year: 2022
  publication-title: Nat. Commun.
– volume: 2
  start-page: 68
  year: 2022
  publication-title: Nature Reviews Methods Primers
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 607
  start-page: 823
  year: 2022
  publication-title: Nature
– volume: 12
  start-page: 9735
  year: 2022
  publication-title: ACS Catal.
– volume: 13
  start-page: 1322
  year: 2022
  publication-title: Nat. Commun.
– volume: 19
  year: 2022
  publication-title: Materials Today Sustainability
– start-page: 170
  year: 2022
  publication-title: Nat. Energy
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 8698
  year: 2022
  publication-title: ACS Catal.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 4088
  year: 2021
  publication-title: Nat. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 7
  start-page: 170
  year: 2022
  publication-title: Nat. Energy
– volume: 5
  start-page: 268
  year: 2022
  publication-title: Nat. Catal.
– volume: 4
  start-page: 682
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 138
  year: 2022
  publication-title: Nature Computational Science
– start-page: 202
  year: 2022
  publication-title: Nat. Catal.
– volume: 23
  start-page: 2312
  year: 2023
  publication-title: Nano Lett.
– volume: 7
  start-page: 8382
  year: 2017
  publication-title: ACS Catal.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 1988
  year: 2022
  publication-title: Nat. Commun.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 13
  start-page: 3754
  year: 2022
  publication-title: Nat. Commun.
– volume: 1
  start-page: 764
  year: 2018
  publication-title: Nat. Catal.
– volume: 13
  start-page: 87
  year: 2022
  publication-title: Nat. Commun.
– volume: 133
  year: 2021
  publication-title: Angew. Chem.
– volume: 13
  start-page: 819
  year: 2022
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1749
  year: 2017
  publication-title: ACS Catal.
– volume: 7
  start-page: 230
  year: 2023
  publication-title: Materials Chemistry Frontiers
– volume: 5
  start-page: 429
  year: 2021
  publication-title: Joule
– volume: 306
  year: 2022
  publication-title: Appl. Catal., B
– volume: 13
  start-page: 6082
  year: 2022
  publication-title: Nat. Commun.
– volume: 142
  year: 2020
  publication-title: JACS
– volume: 3
  start-page: 804
  year: 2020
  publication-title: Nat. Catal.
– volume: 12
  year: 2022
  publication-title: ACS Catal.
– volume: 3
  year: 2022
  publication-title: Advanced Energy and Sustainability Research
– volume: 3
  start-page: 140
  year: 2018
  publication-title: Nat. Energy
SSID ssj0031247
Score 2.5105405
Snippet Despite the unique advantages of single‐atom catalysts, molecular dual‐active sites facilitate the C‐C coupling reaction for C2 products toward the CO2...
Despite the unique advantages of single-atom catalysts, molecular dual-active sites facilitate the C-C coupling reaction for C2 products toward the CO2...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2307180
SubjectTerms Absorption spectroscopy
Carbon
Carbon dioxide
Catalysts
Chemical reactions
Chemical reduction
CO2 reduction reaction
Copper
C‐C coupling
dual‐active sites
Electron states
Ethanol
Fourier transforms
harmonious effect
molecular catalyst
multi‐carbon product
Nickel
Scanning transmission electron microscopy
Spectrum analysis
Transmission electron microscopy
Title Generating Multi‐Carbon Products by Electrochemical CO2 Reduction via Catalytically Harmonious Ni/Cu Dual Active Sites
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202307180
https://www.proquest.com/docview/3045909285
https://www.proquest.com/docview/2898954807
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iSQ--xfoigte1a_aRzVHWliJWRS30tiTZBETdSrcV68mf4G_0lzizu11bj3pZsoRAwmQyX2Ym3xBy7GomFAAFR3JuHD9i2hEB3FJ8ywIbCpCLRddA9yrs9PyLftCfecVf8kPUDjfUjOK8RgWXKm_-kIbmz08YOsBE5tMIL-2YsIWo6Lbmj_LAeBXVVcBmOUi8NWVtdFlzfvgcvpxFqYWZaa8SOZ1gmV3yeDIeqRP9_ou78T8rWCMrFQalZ-WmWScLJtsgyzPMhJvkraSjxpxoWrzR_fr4jOVQDTJ6U3LE5lRNaKssoqMr1gEaXzN6i2SwKG76-iBpjO6hSeEwf5rQjhzCtse0W3r10IzH9HyMEynOXHoH6DffIr126z7uOFWRBucFbLvrKJOGkltxGkSCK1_62leu5fBNBbdBGqQACrlWTKSg4Mb3QqnCVIbYqaWNvG2ymA0ys0Oo4h53rfS4scIXro5Coy0cSXBJtzKIvAbZnwopqTQtTzDSK1zBoqBBjupu0BEMfMjMwIoShjUykdiONwgrJJK8lFweScnazBKURVLLIrnrXl7Wf7t_GbRHlqBdJfnsk8XRcGwOAL-M1GGxR78B7z7qiA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTtwwEIAtBAfooS2Fim1pcSWu2c06P46PKIAC7G4RP1Jvlu3YEgIC2myqLiceoc_YJ-lMkk2hR7hESixLjsbjGY_H3xCy6xsmNDgKnuLcemHCjCci2KWEjkUuFiAXh6GB8STOLsPjH9EimxDvwjR8iC7ghppRr9eo4BiQHvyjhpa3N3h2gJnMwwR27StY1hvx-ftnHUEqAPNV11cBq-UhemvBbfTZ4Hn_Zx7mUz-1NjSH74heDLHJL7nuVzPdNw__0Rtf9Q_vydvWDaV7zbxZJ0u2-EDePIETbpBfDZEa06JpfU33z-PvVE31XUFPG0xsSfWcHjR1dEwLHqDpd0bPkAeLEqc_rxRNMUI0r2PmN3OaqSnMfMy8pZOrQVrR_QoHUi-79Bwc4HKTXB4eXKSZ19Zp8O7BvPuetnmsuBPDKBFchyo0ofYdh2cuuIvyKAe_kBvNRA46bsMgVjrOVYyNRrkk-EiWi7vCbhGqecB9pwJunQiFb5LYGgerEuzTnYqSoEe2F1KSrbKVEg97hS9YEvXIt64Z1ATPPlRh4Y8kwzKZyLbjPcJqkcj7BuchG3AzkygL2clCno9Ho-7t00s67ZDV7GI8kqOjyclnsgbf25yfbbI8m1b2C7gzM_21nrB_AZvh7qQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1fT9swEMCtCaSJPQwGm1ZWmCftNTQ4Thw_orRV2UqHYEi8WbZjS2gsVP2DVp74CHxGPgl3SRrKHreXSIllydH5fOfz-XeEfA0tkwYchUAL4QKeMhvIGHYp3LPYJxLk4jE0cDJKBhf822V8uXKLv-JDNAE31IxyvUYFH-e-8wwNnf6-xqMDTGQ-TGHTvs6TUGLxhu5ZA5CKwHqV5VXAaAVI3lpiG0PWedn_hYO56qaWdqa_SfRyhFV6ya-D-cwc2Lu_4I3_8wtb5G3thNKjata8I69csU3erKAJd8ifikeNSdG0vKT7eP-Q6Ym5KehpBYmdUrOgvaqKjq2xAzT7wegZ0mBR3vT2StMM40OLMmJ-vaADPYF5j3m3dHTVyea0O8eBlIsuPQf3d_qeXPR7P7NBUFdpCMZg3MPAuDzRwsvDOJXCcM0tN6EX8Myl8HEe5-AVCmuYzEHDHY8SbZJcJ9hotU-jD2StuCncR0KNiETodSScl1yGNk2c9bAmwS7d6ziNWqS9FJKqVW2q8KhXhpKlcYt8aZpBSfDkQxcO_kgxLJKJZDvRIqyUiBpXMA9VYZuZQlmoRhbq_GQ4bN52_6XTZ_L6tNtXw-PR909kAz7XCT9tsjabzN0e-DIzs19O1yfiSe1T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+Multi-Carbon+Products+by+Electrochemical+CO2+Reduction+via+Catalytically+Harmonious+Ni%2FCu+Dual+Active+Sites&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Lakshmanan%2C+Keseven&rft.au=Huang%2C+Wei-Hsiang&rft.au=Chala%2C+Soressa+Abera&rft.au=Chang%2C+Chia-Yu&rft.date=2024-04-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=20&rft.issue=17&rft.spage=e2307180&rft_id=info:doi/10.1002%2Fsmll.202307180&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon