Generating Multi‐Carbon Products by Electrochemical CO2 Reduction via Catalytically Harmonious Ni/Cu Dual Active Sites
Despite the unique advantages of single‐atom catalysts, molecular dual‐active sites facilitate the C‐C coupling reaction for C2 products toward the CO2 reduction reaction (CO2RR). The Ni/Cu proximal dual‐active site catalyst (Ni/Cu‐PASC) is developed, which is a harmonic catalyst with dual‐active si...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 17; pp. e2307180 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the unique advantages of single‐atom catalysts, molecular dual‐active sites facilitate the C‐C coupling reaction for C2 products toward the CO2 reduction reaction (CO2RR). The Ni/Cu proximal dual‐active site catalyst (Ni/Cu‐PASC) is developed, which is a harmonic catalyst with dual‐active sites, by simply mixing commercial Ni‐phthalocyanine (Ni‐Pc) and Cu‐phthalocyanine (Cu‐Pc) molecules physically. According to scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) energy dispersive spectroscopy (EDS) data, Ni and Cu atoms are separated, creating dual‐active sites for the CO2RR. The Ni/Cu‐PASC generates ethanol with an FE of 55%. Conversely, Ni‐Pc and Cu‐Pc have only detected single‐carbon products like CO and HCOO−. In situ X‐ray absorption spectroscopy (XAS) indicates that CO generation is caused by the stable Ni active site's balanced electronic state. The CO production from Ni‐Pc consistently increased the CO concentration over Cu sites attributed to subsequent reduction reaction through a C‐C coupling on nearby Cu. The CO bound (HCOO−) peak, which can be found on Cu‐Pc, vanishes on Ni/Cu‐PASC, as shown by in situ fourier transformation infrared (FTIR). The characteristic intermediate of *CHO instead of HCOO− proves to be the prerequisite for multi‐carbon products by electrochemical CO2RR. The work demonstrates that the harmonic dual‐active sites in Ni/Cu‐PASC can be readily available by the cascading proximal active Ni‐ and Cu‐Pc sites.
Ethanol is produced by a Ni/Cu dual active site in the Ni/Cu‐PASC catalyst. Because of the CO that has migrated from the Ni atom, a harmonious Ni/Cu dual atom site modifies the coordination bind site, converting the Cu‐*OCHO intermediate site to Cu‐*CHO. Ethanol is eventually produced when the Ni/Cu dual site facilitates the C‐C coupling via Cu‐*CHO‐CO
. |
---|---|
AbstractList | Despite the unique advantages of single‐atom catalysts, molecular dual‐active sites facilitate the C‐C coupling reaction for C2 products toward the CO2 reduction reaction (CO2RR). The Ni/Cu proximal dual‐active site catalyst (Ni/Cu‐PASC) is developed, which is a harmonic catalyst with dual‐active sites, by simply mixing commercial Ni‐phthalocyanine (Ni‐Pc) and Cu‐phthalocyanine (Cu‐Pc) molecules physically. According to scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) energy dispersive spectroscopy (EDS) data, Ni and Cu atoms are separated, creating dual‐active sites for the CO2RR. The Ni/Cu‐PASC generates ethanol with an FE of 55%. Conversely, Ni‐Pc and Cu‐Pc have only detected single‐carbon products like CO and HCOO−. In situ X‐ray absorption spectroscopy (XAS) indicates that CO generation is caused by the stable Ni active site's balanced electronic state. The CO production from Ni‐Pc consistently increased the CO concentration over Cu sites attributed to subsequent reduction reaction through a C‐C coupling on nearby Cu. The CO bound (HCOO−) peak, which can be found on Cu‐Pc, vanishes on Ni/Cu‐PASC, as shown by in situ fourier transformation infrared (FTIR). The characteristic intermediate of *CHO instead of HCOO− proves to be the prerequisite for multi‐carbon products by electrochemical CO2RR. The work demonstrates that the harmonic dual‐active sites in Ni/Cu‐PASC can be readily available by the cascading proximal active Ni‐ and Cu‐Pc sites.
Ethanol is produced by a Ni/Cu dual active site in the Ni/Cu‐PASC catalyst. Because of the CO that has migrated from the Ni atom, a harmonious Ni/Cu dual atom site modifies the coordination bind site, converting the Cu‐*OCHO intermediate site to Cu‐*CHO. Ethanol is eventually produced when the Ni/Cu dual site facilitates the C‐C coupling via Cu‐*CHO‐CO
. Despite the unique advantages of single‐atom catalysts, molecular dual‐active sites facilitate the C‐C coupling reaction for C2 products toward the CO2 reduction reaction (CO2RR). The Ni/Cu proximal dual‐active site catalyst (Ni/Cu‐PASC) is developed, which is a harmonic catalyst with dual‐active sites, by simply mixing commercial Ni‐phthalocyanine (Ni‐Pc) and Cu‐phthalocyanine (Cu‐Pc) molecules physically. According to scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) energy dispersive spectroscopy (EDS) data, Ni and Cu atoms are separated, creating dual‐active sites for the CO2RR. The Ni/Cu‐PASC generates ethanol with an FE of 55%. Conversely, Ni‐Pc and Cu‐Pc have only detected single‐carbon products like CO and HCOO−. In situ X‐ray absorption spectroscopy (XAS) indicates that CO generation is caused by the stable Ni active site's balanced electronic state. The CO production from Ni‐Pc consistently increased the CO concentration over Cu sites attributed to subsequent reduction reaction through a C‐C coupling on nearby Cu. The CO bound (HCOO−) peak, which can be found on Cu‐Pc, vanishes on Ni/Cu‐PASC, as shown by in situ fourier transformation infrared (FTIR). The characteristic intermediate of *CHO instead of HCOO− proves to be the prerequisite for multi‐carbon products by electrochemical CO2RR. The work demonstrates that the harmonic dual‐active sites in Ni/Cu‐PASC can be readily available by the cascading proximal active Ni‐ and Cu‐Pc sites. Despite the unique advantages of single-atom catalysts, molecular dual-active sites facilitate the C-C coupling reaction for C2 products toward the CO2 reduction reaction (CO2RR). The Ni/Cu proximal dual-active site catalyst (Ni/Cu-PASC) is developed, which is a harmonic catalyst with dual-active sites, by simply mixing commercial Ni-phthalocyanine (Ni-Pc) and Cu-phthalocyanine (Cu-Pc) molecules physically. According to scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) energy dispersive spectroscopy (EDS) data, Ni and Cu atoms are separated, creating dual-active sites for the CO2RR. The Ni/Cu-PASC generates ethanol with an FE of 55%. Conversely, Ni-Pc and Cu-Pc have only detected single-carbon products like CO and HCOO-. In situ X-ray absorption spectroscopy (XAS) indicates that CO generation is caused by the stable Ni active site's balanced electronic state. The CO production from Ni-Pc consistently increased the CO concentration over Cu sites attributed to subsequent reduction reaction through a C-C coupling on nearby Cu. The CO bound (HCOO-) peak, which can be found on Cu-Pc, vanishes on Ni/Cu-PASC, as shown by in situ fourier transformation infrared (FTIR). The characteristic intermediate of *CHO instead of HCOO- proves to be the prerequisite for multi-carbon products by electrochemical CO2RR. The work demonstrates that the harmonic dual-active sites in Ni/Cu-PASC can be readily available by the cascading proximal active Ni- and Cu-Pc sites.Despite the unique advantages of single-atom catalysts, molecular dual-active sites facilitate the C-C coupling reaction for C2 products toward the CO2 reduction reaction (CO2RR). The Ni/Cu proximal dual-active site catalyst (Ni/Cu-PASC) is developed, which is a harmonic catalyst with dual-active sites, by simply mixing commercial Ni-phthalocyanine (Ni-Pc) and Cu-phthalocyanine (Cu-Pc) molecules physically. According to scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) energy dispersive spectroscopy (EDS) data, Ni and Cu atoms are separated, creating dual-active sites for the CO2RR. The Ni/Cu-PASC generates ethanol with an FE of 55%. Conversely, Ni-Pc and Cu-Pc have only detected single-carbon products like CO and HCOO-. In situ X-ray absorption spectroscopy (XAS) indicates that CO generation is caused by the stable Ni active site's balanced electronic state. The CO production from Ni-Pc consistently increased the CO concentration over Cu sites attributed to subsequent reduction reaction through a C-C coupling on nearby Cu. The CO bound (HCOO-) peak, which can be found on Cu-Pc, vanishes on Ni/Cu-PASC, as shown by in situ fourier transformation infrared (FTIR). The characteristic intermediate of *CHO instead of HCOO- proves to be the prerequisite for multi-carbon products by electrochemical CO2RR. The work demonstrates that the harmonic dual-active sites in Ni/Cu-PASC can be readily available by the cascading proximal active Ni- and Cu-Pc sites. |
Author | Saravanan, Sruthi Thiraviam Yang, Sheng‐Chiang Lee, Yao‐Chang Huang, Wei‐Hsiang Su, Wei‐Nien Huang, Pei‐Yu Chala, Soressa Abera Moges, Endalkachew Asefa Tsai, Meng‐Che Dandena, Berhanu Degagsa Chang, Chia‐Yu Taklu, Bereket Woldegbreal Lee, Jyh‐Fu Nikodimos, Yosef Hwang, Bing Joe Lakshmanan, Keseven |
Author_xml | – sequence: 1 givenname: Keseven surname: Lakshmanan fullname: Lakshmanan, Keseven organization: National Taiwan University of Science and Technology – sequence: 2 givenname: Wei‐Hsiang surname: Huang fullname: Huang, Wei‐Hsiang organization: National Synchrotron Radiation Research Center – sequence: 3 givenname: Soressa Abera surname: Chala fullname: Chala, Soressa Abera organization: National Taiwan University of Science and Technology – sequence: 4 givenname: Chia‐Yu surname: Chang fullname: Chang, Chia‐Yu organization: National Taiwan University of Science and Technology – sequence: 5 givenname: Sruthi Thiraviam surname: Saravanan fullname: Saravanan, Sruthi Thiraviam organization: National Synchrotron Radiation Research Center – sequence: 6 givenname: Bereket Woldegbreal surname: Taklu fullname: Taklu, Bereket Woldegbreal organization: National Taiwan University of Science and Technology – sequence: 7 givenname: Endalkachew Asefa surname: Moges fullname: Moges, Endalkachew Asefa organization: National Taiwan University of Science and Technology – sequence: 8 givenname: Yosef surname: Nikodimos fullname: Nikodimos, Yosef organization: National Taiwan University of Science and Technology – sequence: 9 givenname: Berhanu Degagsa surname: Dandena fullname: Dandena, Berhanu Degagsa organization: National Taiwan University of Science and Technology – sequence: 10 givenname: Sheng‐Chiang surname: Yang fullname: Yang, Sheng‐Chiang organization: National Taiwan University of Science and Technology – sequence: 11 givenname: Jyh‐Fu surname: Lee fullname: Lee, Jyh‐Fu organization: National Synchrotron Radiation Research Center – sequence: 12 givenname: Pei‐Yu surname: Huang fullname: Huang, Pei‐Yu organization: National Synchrotron Radiation Research Center – sequence: 13 givenname: Yao‐Chang surname: Lee fullname: Lee, Yao‐Chang organization: National Synchrotron Radiation Research Center – sequence: 14 givenname: Meng‐Che orcidid: 0000-0002-1301-866X surname: Tsai fullname: Tsai, Meng‐Che email: mctsai@mail.ntust.edu.tw organization: National Taiwan University of Science and Technology – sequence: 15 givenname: Wei‐Nien surname: Su fullname: Su, Wei‐Nien email: wsu@mail.ntust.edu.tw organization: National Taiwan University of Science and Technology – sequence: 16 givenname: Bing Joe orcidid: 0000-0002-3873-2149 surname: Hwang fullname: Hwang, Bing Joe email: bjh@mail.ntust.edu.tw organization: National Taiwan University of Science and Technology |
BookMark | eNpdkb1OwzAUhS1UJCiwMltiYSm9dhInHqtQClKgiJ_ZchwHjJyk2AmQjUfgGXkSEoE6sNwfne9eHelM0aRuao3QMYEzAkDnvrL2jAINICYJ7KB9wkgwYwnlk-1MYA9NvX8BCAgN4330sdK1drI19RO-7mxrvj-_Uunypsa3rik61Xqc93hptWpdo551ZZS0OF1TfKdH2Qzkm5E4la20fTuqtseX0lVNbZrO4xszTzt83g1XiwF_0_jetNofot1SWq-P_voBerxYPqSXs2y9ukoX2WxDGYNZrgsm45KTKOFxHspQhTmU8VALHpdRERUQhbHKKS8AmA4DJnNWSDaKSpZJcIBOf_9uXPPaad-KynilrZW1HuwJmvCER2EC8YCe_ENfms7VgzsRQBhx4DSJBor_Uu_G6l5snKmk6wUBMaYgxhTENgVxf51l2y34ATpEgbc |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH. |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202307180 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL202307180 |
Genre | article |
GrantInformation_xml | – fundername: Academia Sinica funderid: AS‐KPQ‐106‐ DDPP – fundername: National Science and Technology Council funderid: 112‐2369‐E‐011‐‐001‐ASP; 112‐2923‐E‐011‐005; 112‐2923‐E‐011‐001; 112‐2923‐E‐011‐004‐MY3; 112‐2218‐E‐011‐011 – fundername: Ministry of Education funderid: SEED |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-p2660-bed6a7f915897b4a4c4b0f7c4bd97f5d5d0547cb29d006e436ab6da697f5caf83 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 06:53:07 EDT 2025 Fri Jul 25 11:56:53 EDT 2025 Sun Jul 06 04:45:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2660-bed6a7f915897b4a4c4b0f7c4bd97f5d5d0547cb29d006e436ab6da697f5caf83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3873-2149 0000-0002-1301-866X |
PQID | 3045909285 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2898954807 proquest_journals_3045909285 wiley_primary_10_1002_smll_202307180_SMLL202307180 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2023; 13 2021; 5 2019; 4 2019; 31 2020; 142 2023; 7 2020; 11 2023; 62 2021; 15 2018; 3 2020; 3 2021; 12 2023; 23 2021; 33 2022; 3 2023 2022 2022; 5 2022; 61 2018; 1 2022; 7 2023; 651 2022; 12 2022; 34 2022; 13 2022; 607 2022; 32 2021; 133 2022; 2 2022; 306 2022; 19 |
References_xml | – year: 2023 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 1409 year: 2020 publication-title: Nat. Commun. – volume: 651 year: 2023 publication-title: Appl. Catal., A – volume: 13 start-page: 3689 year: 2022 publication-title: Nat. Commun. – volume: 2 start-page: 68 year: 2022 publication-title: Nature Reviews Methods Primers – volume: 15 year: 2021 publication-title: ACS Nano – volume: 607 start-page: 823 year: 2022 publication-title: Nature – volume: 12 start-page: 9735 year: 2022 publication-title: ACS Catal. – volume: 13 start-page: 1322 year: 2022 publication-title: Nat. Commun. – volume: 19 year: 2022 publication-title: Materials Today Sustainability – start-page: 170 year: 2022 publication-title: Nat. Energy – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 8698 year: 2022 publication-title: ACS Catal. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 12 start-page: 4088 year: 2021 publication-title: Nat. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 7 start-page: 170 year: 2022 publication-title: Nat. Energy – volume: 5 start-page: 268 year: 2022 publication-title: Nat. Catal. – volume: 4 start-page: 682 year: 2019 publication-title: ACS Energy Lett. – volume: 2 start-page: 138 year: 2022 publication-title: Nature Computational Science – start-page: 202 year: 2022 publication-title: Nat. Catal. – volume: 23 start-page: 2312 year: 2023 publication-title: Nano Lett. – volume: 7 start-page: 8382 year: 2017 publication-title: ACS Catal. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 1988 year: 2022 publication-title: Nat. Commun. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 13 start-page: 3754 year: 2022 publication-title: Nat. Commun. – volume: 1 start-page: 764 year: 2018 publication-title: Nat. Catal. – volume: 13 start-page: 87 year: 2022 publication-title: Nat. Commun. – volume: 133 year: 2021 publication-title: Angew. Chem. – volume: 13 start-page: 819 year: 2022 publication-title: Nat. Commun. – volume: 7 start-page: 1749 year: 2017 publication-title: ACS Catal. – volume: 7 start-page: 230 year: 2023 publication-title: Materials Chemistry Frontiers – volume: 5 start-page: 429 year: 2021 publication-title: Joule – volume: 306 year: 2022 publication-title: Appl. Catal., B – volume: 13 start-page: 6082 year: 2022 publication-title: Nat. Commun. – volume: 142 year: 2020 publication-title: JACS – volume: 3 start-page: 804 year: 2020 publication-title: Nat. Catal. – volume: 12 year: 2022 publication-title: ACS Catal. – volume: 3 year: 2022 publication-title: Advanced Energy and Sustainability Research – volume: 3 start-page: 140 year: 2018 publication-title: Nat. Energy |
SSID | ssj0031247 |
Score | 2.5105405 |
Snippet | Despite the unique advantages of single‐atom catalysts, molecular dual‐active sites facilitate the C‐C coupling reaction for C2 products toward the CO2... Despite the unique advantages of single-atom catalysts, molecular dual-active sites facilitate the C-C coupling reaction for C2 products toward the CO2... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2307180 |
SubjectTerms | Absorption spectroscopy Carbon Carbon dioxide Catalysts Chemical reactions Chemical reduction CO2 reduction reaction Copper C‐C coupling dual‐active sites Electron states Ethanol Fourier transforms harmonious effect molecular catalyst multi‐carbon product Nickel Scanning transmission electron microscopy Spectrum analysis Transmission electron microscopy |
Title | Generating Multi‐Carbon Products by Electrochemical CO2 Reduction via Catalytically Harmonious Ni/Cu Dual Active Sites |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202307180 https://www.proquest.com/docview/3045909285 https://www.proquest.com/docview/2898954807 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iSQ--xfoigte1a_aRzVHWliJWRS30tiTZBETdSrcV68mf4G_0lzizu11bj3pZsoRAwmQyX2Ym3xBy7GomFAAFR3JuHD9i2hEB3FJ8ywIbCpCLRddA9yrs9PyLftCfecVf8kPUDjfUjOK8RgWXKm_-kIbmz08YOsBE5tMIL-2YsIWo6Lbmj_LAeBXVVcBmOUi8NWVtdFlzfvgcvpxFqYWZaa8SOZ1gmV3yeDIeqRP9_ou78T8rWCMrFQalZ-WmWScLJtsgyzPMhJvkraSjxpxoWrzR_fr4jOVQDTJ6U3LE5lRNaKssoqMr1gEaXzN6i2SwKG76-iBpjO6hSeEwf5rQjhzCtse0W3r10IzH9HyMEynOXHoH6DffIr126z7uOFWRBucFbLvrKJOGkltxGkSCK1_62leu5fBNBbdBGqQACrlWTKSg4Mb3QqnCVIbYqaWNvG2ymA0ys0Oo4h53rfS4scIXro5Coy0cSXBJtzKIvAbZnwopqTQtTzDSK1zBoqBBjupu0BEMfMjMwIoShjUykdiONwgrJJK8lFweScnazBKURVLLIrnrXl7Wf7t_GbRHlqBdJfnsk8XRcGwOAL-M1GGxR78B7z7qiA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTtwwEIAtBAfooS2Fim1pcSWu2c06P46PKIAC7G4RP1Jvlu3YEgIC2myqLiceoc_YJ-lMkk2hR7hESixLjsbjGY_H3xCy6xsmNDgKnuLcemHCjCci2KWEjkUuFiAXh6GB8STOLsPjH9EimxDvwjR8iC7ghppRr9eo4BiQHvyjhpa3N3h2gJnMwwR27StY1hvx-ftnHUEqAPNV11cBq-UhemvBbfTZ4Hn_Zx7mUz-1NjSH74heDLHJL7nuVzPdNw__0Rtf9Q_vydvWDaV7zbxZJ0u2-EDePIETbpBfDZEa06JpfU33z-PvVE31XUFPG0xsSfWcHjR1dEwLHqDpd0bPkAeLEqc_rxRNMUI0r2PmN3OaqSnMfMy8pZOrQVrR_QoHUi-79Bwc4HKTXB4eXKSZ19Zp8O7BvPuetnmsuBPDKBFchyo0ofYdh2cuuIvyKAe_kBvNRA46bsMgVjrOVYyNRrkk-EiWi7vCbhGqecB9pwJunQiFb5LYGgerEuzTnYqSoEe2F1KSrbKVEg97hS9YEvXIt64Z1ATPPlRh4Y8kwzKZyLbjPcJqkcj7BuchG3AzkygL2clCno9Ho-7t00s67ZDV7GI8kqOjyclnsgbf25yfbbI8m1b2C7gzM_21nrB_AZvh7qQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1fT9swEMCtCaSJPQwGm1ZWmCftNTQ4Thw_orRV2UqHYEi8WbZjS2gsVP2DVp74CHxGPgl3SRrKHreXSIllydH5fOfz-XeEfA0tkwYchUAL4QKeMhvIGHYp3LPYJxLk4jE0cDJKBhf822V8uXKLv-JDNAE31IxyvUYFH-e-8wwNnf6-xqMDTGQ-TGHTvs6TUGLxhu5ZA5CKwHqV5VXAaAVI3lpiG0PWedn_hYO56qaWdqa_SfRyhFV6ya-D-cwc2Lu_4I3_8wtb5G3thNKjata8I69csU3erKAJd8ifikeNSdG0vKT7eP-Q6Ym5KehpBYmdUrOgvaqKjq2xAzT7wegZ0mBR3vT2StMM40OLMmJ-vaADPYF5j3m3dHTVyea0O8eBlIsuPQf3d_qeXPR7P7NBUFdpCMZg3MPAuDzRwsvDOJXCcM0tN6EX8Myl8HEe5-AVCmuYzEHDHY8SbZJcJ9hotU-jD2StuCncR0KNiETodSScl1yGNk2c9bAmwS7d6ziNWqS9FJKqVW2q8KhXhpKlcYt8aZpBSfDkQxcO_kgxLJKJZDvRIqyUiBpXMA9VYZuZQlmoRhbq_GQ4bN52_6XTZ_L6tNtXw-PR909kAz7XCT9tsjabzN0e-DIzs19O1yfiSe1T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+Multi-Carbon+Products+by+Electrochemical+CO2+Reduction+via+Catalytically+Harmonious+Ni%2FCu+Dual+Active+Sites&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Lakshmanan%2C+Keseven&rft.au=Huang%2C+Wei-Hsiang&rft.au=Chala%2C+Soressa+Abera&rft.au=Chang%2C+Chia-Yu&rft.date=2024-04-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=20&rft.issue=17&rft.spage=e2307180&rft_id=info:doi/10.1002%2Fsmll.202307180&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |