Isomeric Cu(I) Azolate Frameworks Showing Contrasting Electrocatalytic CO2 Reduction Selectivities and Stabilities

Metal‒organic frameworks have attracted wide interest in the electrocatalytic CO2 reduction reaction (eCO2RR), but their differences of performances originated from chemical composition and stabilities are rarely concerned. Here, isomeric Cu(I) triazolate frameworks (MAF‐2Fa and MAF‐2Fb) with simila...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 4; pp. e2408510 - n/a
Main Authors Zheng, Kai, Hu, Ding‐Yi, Wang, Chao, Liang, Zi‐Jun, Zhang, Xue‐Wen, Xiao, Xian‐Xian, Wu, Jun‐Xi, Zhuo, Lin‐Ling, Lin, Duo‐Yu, Zhou, Dong‐Dong, Zhang, Jie‐Peng
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal‒organic frameworks have attracted wide interest in the electrocatalytic CO2 reduction reaction (eCO2RR), but their differences of performances originated from chemical composition and stabilities are rarely concerned. Here, isomeric Cu(I) triazolate frameworks (MAF‐2Fa and MAF‐2Fb) with similar thermal/chemical stabilities but very different coordination modes are used for eCO2RR studies. MAF‐2Fa with monotypic planar dinuclear Cu(I) coordination mode achieves high selectivity for C2H4 (53%) and C2 products (70%), with almost unchanged over a wide potential window (‒1.1 to ‒1.5 V), making it among one of the best Cu‐complex electrocatalysts. In contrast, MAF‐2Fb with multiple Cu(I) coordination modes (including planar/bent dinuclear, linear mononuclear, and trigonal mononuclear ones) showed low C2/C1 products without significant differences. More interestingly, MAF‐2Fa can maintain its performance for at least 8 h, whereas MAF‐2Fb decomposed into inorganics with inferior performance after 1.5 h. The significant differences of eCO2RR selectivities and stabilities are elucidated by computational simulations and operando electrochemical tests. Two supramolecular isomers with different coordination modes are demonstrated to possess different eCO2RR selectivities and stabilities, in which the one with uniform dinuclear Cu(I) site showed higher stability and selectivity for C2, while the other one with diverse Cu(I) sites showed relative low stability and no obvious difference of C1/C2 products.
AbstractList Metal‒organic frameworks have attracted wide interest in the electrocatalytic CO2 reduction reaction (eCO2RR), but their differences of performances originated from chemical composition and stabilities are rarely concerned. Here, isomeric Cu(I) triazolate frameworks (MAF‐2Fa and MAF‐2Fb) with similar thermal/chemical stabilities but very different coordination modes are used for eCO2RR studies. MAF‐2Fa with monotypic planar dinuclear Cu(I) coordination mode achieves high selectivity for C2H4 (53%) and C2 products (70%), with almost unchanged over a wide potential window (‒1.1 to ‒1.5 V), making it among one of the best Cu‐complex electrocatalysts. In contrast, MAF‐2Fb with multiple Cu(I) coordination modes (including planar/bent dinuclear, linear mononuclear, and trigonal mononuclear ones) showed low C2/C1 products without significant differences. More interestingly, MAF‐2Fa can maintain its performance for at least 8 h, whereas MAF‐2Fb decomposed into inorganics with inferior performance after 1.5 h. The significant differences of eCO2RR selectivities and stabilities are elucidated by computational simulations and operando electrochemical tests.
Metal‒organic frameworks have attracted wide interest in the electrocatalytic CO2 reduction reaction (eCO2RR), but their differences of performances originated from chemical composition and stabilities are rarely concerned. Here, isomeric Cu(I) triazolate frameworks (MAF‐2Fa and MAF‐2Fb) with similar thermal/chemical stabilities but very different coordination modes are used for eCO2RR studies. MAF‐2Fa with monotypic planar dinuclear Cu(I) coordination mode achieves high selectivity for C2H4 (53%) and C2 products (70%), with almost unchanged over a wide potential window (‒1.1 to ‒1.5 V), making it among one of the best Cu‐complex electrocatalysts. In contrast, MAF‐2Fb with multiple Cu(I) coordination modes (including planar/bent dinuclear, linear mononuclear, and trigonal mononuclear ones) showed low C2/C1 products without significant differences. More interestingly, MAF‐2Fa can maintain its performance for at least 8 h, whereas MAF‐2Fb decomposed into inorganics with inferior performance after 1.5 h. The significant differences of eCO2RR selectivities and stabilities are elucidated by computational simulations and operando electrochemical tests. Two supramolecular isomers with different coordination modes are demonstrated to possess different eCO2RR selectivities and stabilities, in which the one with uniform dinuclear Cu(I) site showed higher stability and selectivity for C2, while the other one with diverse Cu(I) sites showed relative low stability and no obvious difference of C1/C2 products.
Metal‒organic frameworks have attracted wide interest in the electrocatalytic CO2 reduction reaction (eCO2RR), but their differences of performances originated from chemical composition and stabilities are rarely concerned. Here, isomeric Cu(I) triazolate frameworks (MAF-2Fa and MAF-2Fb) with similar thermal/chemical stabilities but very different coordination modes are used for eCO2RR studies. MAF-2Fa with monotypic planar dinuclear Cu(I) coordination mode achieves high selectivity for C2H4 (53%) and C2 products (70%), with almost unchanged over a wide potential window (‒1.1 to ‒1.5 V), making it among one of the best Cu-complex electrocatalysts. In contrast, MAF-2Fb with multiple Cu(I) coordination modes (including planar/bent dinuclear, linear mononuclear, and trigonal mononuclear ones) showed low C2/C1 products without significant differences. More interestingly, MAF-2Fa can maintain its performance for at least 8 h, whereas MAF-2Fb decomposed into inorganics with inferior performance after 1.5 h. The significant differences of eCO2RR selectivities and stabilities are elucidated by computational simulations and operando electrochemical tests.Metal‒organic frameworks have attracted wide interest in the electrocatalytic CO2 reduction reaction (eCO2RR), but their differences of performances originated from chemical composition and stabilities are rarely concerned. Here, isomeric Cu(I) triazolate frameworks (MAF-2Fa and MAF-2Fb) with similar thermal/chemical stabilities but very different coordination modes are used for eCO2RR studies. MAF-2Fa with monotypic planar dinuclear Cu(I) coordination mode achieves high selectivity for C2H4 (53%) and C2 products (70%), with almost unchanged over a wide potential window (‒1.1 to ‒1.5 V), making it among one of the best Cu-complex electrocatalysts. In contrast, MAF-2Fb with multiple Cu(I) coordination modes (including planar/bent dinuclear, linear mononuclear, and trigonal mononuclear ones) showed low C2/C1 products without significant differences. More interestingly, MAF-2Fa can maintain its performance for at least 8 h, whereas MAF-2Fb decomposed into inorganics with inferior performance after 1.5 h. The significant differences of eCO2RR selectivities and stabilities are elucidated by computational simulations and operando electrochemical tests.
Author Hu, Ding‐Yi
Wang, Chao
Zhang, Xue‐Wen
Zhou, Dong‐Dong
Xiao, Xian‐Xian
Zhang, Jie‐Peng
Wu, Jun‐Xi
Zhuo, Lin‐Ling
Zheng, Kai
Liang, Zi‐Jun
Lin, Duo‐Yu
Author_xml – sequence: 1
  givenname: Kai
  surname: Zheng
  fullname: Zheng, Kai
  organization: Sun Yat‐Sen University
– sequence: 2
  givenname: Ding‐Yi
  surname: Hu
  fullname: Hu, Ding‐Yi
  organization: Sun Yat‐Sen University
– sequence: 3
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: Sun Yat‐Sen University
– sequence: 4
  givenname: Zi‐Jun
  surname: Liang
  fullname: Liang, Zi‐Jun
  organization: Sun Yat‐Sen University
– sequence: 5
  givenname: Xue‐Wen
  surname: Zhang
  fullname: Zhang, Xue‐Wen
  organization: Sun Yat‐Sen University
– sequence: 6
  givenname: Xian‐Xian
  surname: Xiao
  fullname: Xiao, Xian‐Xian
  organization: Sun Yat‐Sen University
– sequence: 7
  givenname: Jun‐Xi
  surname: Wu
  fullname: Wu, Jun‐Xi
  organization: Sun Yat‐Sen University
– sequence: 8
  givenname: Lin‐Ling
  surname: Zhuo
  fullname: Zhuo, Lin‐Ling
  organization: Sun Yat‐Sen University
– sequence: 9
  givenname: Duo‐Yu
  surname: Lin
  fullname: Lin, Duo‐Yu
  organization: Sun Yat‐Sen University
– sequence: 10
  givenname: Dong‐Dong
  orcidid: 0000-0003-1105-8702
  surname: Zhou
  fullname: Zhou, Dong‐Dong
  email: zhoudd3@mail.sysu.edu.cn
  organization: Sun Yat‐Sen University
– sequence: 11
  givenname: Jie‐Peng
  surname: Zhang
  fullname: Zhang, Jie‐Peng
  email: zhangjp7@mail.sysu.edu.cn
  organization: Sun Yat‐Sen University
BookMark eNpdkM1LAzEQxYMo-Hn1HPBSD62ZZM3uHkuxWqgIVs8hm51qNLupSdZS_3q7Kj14mveY3wyPd0z2W98iIefARsAYv4qNcyPOeMaKa2B75AgkiKEseLm_08AOyXGMb4wJ4Fl-RMIs-gaDNXTSDWaXdPzlnU5Ip0E3uPbhPdLFq1_b9oVOfJuCjqnXNw5NCt7opN0m9dcPnD5i3ZlkfUsX2O_tp00WI9VtTRdJV9b9-FNysNQu4tnfPCHP05unyd1w_nA7m4znwxWXkg31MufAmayzpSlEUUElalNLJni-LLFEyEVVGuBbJQGLQuoaq_za1JU2UEEmTsjg9-8q-I8OY1KNjQad0y36LioBmZQyAwZb9OIf-ua70G7TKcFFyfOMQU-Vv9TaOtyoVbCNDhsFTPX9q75_tetfLe7n850T36aYfrY
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202408510
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202408510
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22071272; 22475240; 21975290; 22231012
– fundername: National Key Research and Development Program of China
  funderid: 2021YFA1500400
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
53G
7X8
ID FETCH-LOGICAL-p2660-af721206d4fc838b1b3dcd60327f9e9e173b9c129e161e886adeb75cdbac1b143
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 09:43:28 EDT 2025
Thu Aug 14 08:43:44 EDT 2025
Wed Jan 29 10:50:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2660-af721206d4fc838b1b3dcd60327f9e9e173b9c129e161e886adeb75cdbac1b143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1105-8702
PQID 3239274011
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_3146664101
proquest_journals_3239274011
wiley_primary_10_1002_smll_202408510_SMLL202408510
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2023; 76
2023; 10
2023; 23
2023 2021; 145 143
2021 2020 2021 2021; 60 11 11 60
2024 2016; 146 138
2009 2001; 38 101
2019 2024 2020; 9 63 8
2023; 145
2021 2023 2021 2024 2024; 60 5 60 24 14
2021 2019 2024; 143 40 146
2019 2024; 15 14
2023 2024 2020; 20 355 10
2021; 143
2022 2023; 58 145
2023 2022; 62 3
2019 2018 2024; 63 57 67
2023 2017 2022 2022 2018 2023 2022; 87 2 25 41 39 52 8
2023 2022 2022 2024; 123 61 144 12
2024 2022 2018 2020 2023 2021 2024 2024; 15 12 140 59 145 143 63
2022 2023 2022; 43 13 19
References_xml – volume: 43 13 19
  start-page: 1687
  year: 2022 2023 2022
  publication-title: Chin. J. Catal. Adv. Energy Mater. Small
– volume: 38 101
  start-page: 2385 1629
  year: 2009 2001
  publication-title: Chem. Soc. Rev. Chem. Rev.
– volume: 87 2 25 41 39 52 8
  start-page: 540 2394 207 1382 1506
  year: 2023 2017 2022 2022 2018 2023 2022
  publication-title: J. Energy Chem. ACS Energy Lett. iScience Chin. J. Struc. Chem. Chin. J. Catal. Chem. Soc. Rev. ACS Cent. Sci.
– volume: 60 11 11 60
  start-page: 1409
  year: 2021 2020 2021 2021
  publication-title: Angew. Chem., Int. Ed. Nat. Commun. ACS Catal. Angew. Chem., Int. Ed.
– volume: 123 61 144 12
  year: 2023 2022 2022 2024
  publication-title: Chem. Rev. Angew. Chem., Int. Ed. J. Am. Chem. Soc. J. Mater. Chem. A
– volume: 76
  start-page: 462
  year: 2023
  publication-title: J. Energy Chem.
– volume: 60 5 60 24 14
  start-page: 2237 1553 741
  year: 2021 2023 2021 2024 2024
  publication-title: Angew. Chem., Int. Ed. CCS Chem Angew. Chem., Int. Ed. Nano Lett. ACS Catal.
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 146 138
  start-page: 5678
  year: 2024 2016
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 15 12 140 59 145 143 63
  start-page: 9173 2195 6681
  year: 2024 2022 2018 2020 2023 2021 2024 2024
  publication-title: Chem. Sci. ACS Catal. J. Am. Chem. Soc. Angew. Chem., Int. Ed. J. Am. Chem. Soc. J. Am. Chem. Soc. Chin. Chem. Lett. Angew. Chem., Int. Ed.
– volume: 23
  start-page: 116
  year: 2023
  publication-title: Nat. Mater.
– volume: 9 63 8
  start-page: 2213 3351
  year: 2019 2024 2020
  publication-title: ACS Catal. Angew. Chem., Int. Ed. J. Mater. Chem. A
– volume: 8
  year: 2021
  publication-title: Natl. Sci. Rev.
– volume: 145 143
  start-page: 3808
  year: 2023 2021
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 58 145
  start-page: 2678
  year: 2022 2023
  publication-title: Chem. Commun. J. Am. Chem. Soc.
– volume: 63 57 67
  start-page: 182 8560 1839
  year: 2019 2018 2024
  publication-title: Sci. China Chem. Angew. Chem., Int. Ed. Sci. China Mater.
– volume: 143 40 146
  start-page: 23
  year: 2021 2019 2024
  publication-title: J. Am. Chem. Soc. Chin. J. Catal. J. Am. Chem. Soc.
– volume: 62 3
  start-page: 163
  year: 2023 2022
  publication-title: Angew. Chem., Int. Ed. SmartMat
– volume: 20 355 10
  year: 2023 2024 2020
  publication-title: Small Appl. Catal. B: Environ. Energy ACS Catal.
– volume: 143
  start-page: 7242
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 10
  year: 2023
  publication-title: Natl. Sci. Rev.
– volume: 15 14
  start-page: 8776
  year: 2019 2024
  publication-title: Small ACS Catal.
SSID ssj0031247
Score 2.4659126
Snippet Metal‒organic frameworks have attracted wide interest in the electrocatalytic CO2 reduction reaction (eCO2RR), but their differences of performances originated...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2408510
SubjectTerms Carbon dioxide
carbon dioxide reduction
Chemical composition
Chemical reduction
Coordination
coordination mode
Electrocatalysts
ethylene
metal azolate frameworks
Selectivity
supramolecular isomer
Title Isomeric Cu(I) Azolate Frameworks Showing Contrasting Electrocatalytic CO2 Reduction Selectivities and Stabilities
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202408510
https://www.proquest.com/docview/3239274011
https://www.proquest.com/docview/3146664101
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA7iSQ_-FqdTInjQQ2ebtF17HGNjyqbgFHYr-TUEtZO1RfSv9710rZtHPYYm0Pbl5X0vefk-Qi58L9aRgDQ1iiWSarvGkYESDvO1pyFp5kLhfefRXTh48m8nwWTpFn_JD1FvuKFn2PUaHVzI7PqHNDR7e8WjA0vRZe9YYcEWoqKHmj-KQ_Cy6ioQsxwk3qpYG112vTp8BV8uo1QbZvrbRFQvWFaXvLSKXLbU1y_uxv98wQ7ZWmBQ2iknzS5ZM-ke2VxiJtwn85tsZs9yaLe4vLminS9IgXND-1UtV0bHz7MP6EuR32ouMiyfpr1SVMfuCX3mOPqe0Qdkh0X707EV3UG5CsjPqUg1Baxrq3OhfUCe-r3H7sBZyDM47xDVXUdMIXtkbqj9qYp4JD3JtdKhy1l7GpvYeG0uYwV4wsD_N1EUCm1kO1BaCuVJwGmHZD2dpeaIUDdgypWSK6U8wHeh9AMllWQhExw7N0izMk-y8LEs4QywHQoKeg1yXj8G78AjD5GaWQF9IBCEoQ_rToMwa4vkvWTxSEq-ZpagFZLaCsl4NBzWreO_DDohGwxFgu0-TZOs5_PCnAJyyeWZnZ3f0ZDorA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5ED-rBt1ituoIHPUST3SRNjiKWVluFtoK3sK8iqGlpUsT-emc2TXwc9RiyCwmzs_PN7Oz3EXLqe7GOBKSpUSyRVNs1jgyUcJivPQ1JMxcK7zt378PWo3_7FJTdhHgXpuCHqApu6Bl2v0YHx4L05RdraPb2imcHlqMLL1ktoay3zap6FYMUh_Bl9VUgajlIvVXyNrrs8uf8HwjzO061gaa5TmT5iUV_ycvFNJcXavaLvfFf_7BB1uYwlF4V62aTLJh0i6x-IyfcJpN2NrLHOfR6etY-p1czyIJzQ5tlO1dG-8-jdxhLkeJqIjLsoKY3ha6OLQt95Dj7gdEeEsTiEqB9q7uDihWQolORagpw1zbowvMOeWzeDK5bzlyhwRlDYHcdMYQEkrmh9ocq4pH0JNdKhy5njWFsYuM1uIwVQAoDBjBRFAptZCNQWgrlSYBqu2QxHaVmj1A3YMqVkiulPIB4ofQDJZVkIRMcB9dIvbRPMnezLOEM4B1qCno1clK9BgfBUw-RmtEUxkAsCEMftp4aYdYYybgg8kgKymaWoBWSygpJv9vpVE_7f5l0TJZbg24n6bTv7w7ICkPNYFu2qZPFfDI1hwBkcnlkl-onYC3sxw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QSAgOvBHjGSQOcCi0SZu1RwRMDMZDDCRuVV4TEtBNayfEfj12upXBEY5RE6mt7fhz7Hwm5CAMEhNLCFPjRCGptm89FWnpsdAEBoJmLjXed765FZdP4dVz9Dxxi7_kh6gO3NAy3H6NBt4znZNv0tD8_Q1TB46iC-9YzYTCj1Gvzx8qAikO3su1VwGn5SHz1pi20WcnP9f_AJiTMNX5mcYikeM3LMtLXo8HhTrWw1_kjf_5hCWyMAKh9LTUmmUyZbMVMj9BTbhK-s2865I59Gxw2Dyip0OIgQtLG-Nirpy2X7ofMJciwVVf5lg_TS_KrjruUOizwNV3jD4gPSwqAG27rjvYrwICdCozQwHsuvJcGK-Rp8bF49mlN-rP4PXArfue7ED4yHxhwo6OeawCxY02wues3klsYoM6V4kGQGHh_9s4FtJYVY-0UVIHCoDaOpnOupndINSPmPaV4lrrAACeUGGklVZMMMlxco1sj8WTjowsTzkDcIcdBYMa2a8eg3lgzkNmtjuAOeAJhAhh46kR5mSR9koaj7QkbGYpSiGtpJC2b1qtarT5l0V7ZPb-vJG2mrfXW2SOYcNgd2azTaaL_sDuAIop1K5T1C_E_ut_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isomeric+Cu%28I%29+Azolate+Frameworks+Showing+Contrasting+Electrocatalytic+CO2+Reduction+Selectivities+and+Stabilities&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zheng%2C+Kai&rft.au=Hu%2C+Ding%E2%80%90Yi&rft.au=Wang%2C+Chao&rft.au=Liang%2C+Zi%E2%80%90Jun&rft.date=2025-01-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=21&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202408510&rft.externalDBID=10.1002%252Fsmll.202408510&rft.externalDocID=SMLL202408510
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon