Synergistic Polarization Engineering on Bulk and Surface for Boosting CO2 Photoreduction
Sluggish charge kinetics and low CO2 affinity seriously inhibit CO2 photoreduction. Herein, the synchronous promotion of charge separation and CO2 affinity of Bi4Ti3O12 is realized by coupling corona poling and surface I‐grafting. Corona poling enhances ferroelectric polarization of Bi4Ti3O12 by ali...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 33; pp. 18303 - 18308 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
09.08.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sluggish charge kinetics and low CO2 affinity seriously inhibit CO2 photoreduction. Herein, the synchronous promotion of charge separation and CO2 affinity of Bi4Ti3O12 is realized by coupling corona poling and surface I‐grafting. Corona poling enhances ferroelectric polarization of Bi4Ti3O12 by aligning the domains direction, which profoundly promotes charge transfer along opposite directions across bulk. Surface I‐grafting forms a surface local electric field for further separating charge carriers and provides abundant active sites to enhance CO2 adsorption. The two modifications cooperatively further increase the ferroelectric polarization of Bi4Ti3O12, which maximize the separation efficiency of photogenerated charges, resulting in an enhanced CO production rate of 15.1 μmol g−1 h−1 (nearly 9 times) with no sacrificial agents or cocatalysts. This work discloses that ferroelectric polarization and surface ion grafting can promote CO2 photoreduction in a synergistic way.
Synergistic polarization engineering on bulk and on the surface of Bi4Ti3O12 is realized by coupling corona poling and surface I‐grafting, which strengthen ferroelectric polarization for facilitating the separation and transfer of photogenerated charge carriers and enrich the reactive sites, largely improving the photocatalytic activity for reducing CO2 into CO. |
---|---|
AbstractList | Sluggish charge kinetics and low CO2 affinity seriously inhibit CO2 photoreduction. Herein, the synchronous promotion of charge separation and CO2 affinity of Bi4Ti3O12 is realized by coupling corona poling and surface I‐grafting. Corona poling enhances ferroelectric polarization of Bi4Ti3O12 by aligning the domains direction, which profoundly promotes charge transfer along opposite directions across bulk. Surface I‐grafting forms a surface local electric field for further separating charge carriers and provides abundant active sites to enhance CO2 adsorption. The two modifications cooperatively further increase the ferroelectric polarization of Bi4Ti3O12, which maximize the separation efficiency of photogenerated charges, resulting in an enhanced CO production rate of 15.1 μmol g−1 h−1 (nearly 9 times) with no sacrificial agents or cocatalysts. This work discloses that ferroelectric polarization and surface ion grafting can promote CO2 photoreduction in a synergistic way. Sluggish charge kinetics and low CO2 affinity seriously inhibit CO2 photoreduction. Herein, the synchronous promotion of charge separation and CO2 affinity of Bi4 Ti3 O12 is realized by coupling corona poling and surface I-grafting. Corona poling enhances ferroelectric polarization of Bi4 Ti3 O12 by aligning the domains direction, which profoundly promotes charge transfer along opposite directions across bulk. Surface I-grafting forms a surface local electric field for further separating charge carriers and provides abundant active sites to enhance CO2 adsorption. The two modifications cooperatively further increase the ferroelectric polarization of Bi4 Ti3 O12 , which maximize the separation efficiency of photogenerated charges, resulting in an enhanced CO production rate of 15.1 μmol g-1 h-1 (nearly 9 times) with no sacrificial agents or cocatalysts. This work discloses that ferroelectric polarization and surface ion grafting can promote CO2 photoreduction in a synergistic way.Sluggish charge kinetics and low CO2 affinity seriously inhibit CO2 photoreduction. Herein, the synchronous promotion of charge separation and CO2 affinity of Bi4 Ti3 O12 is realized by coupling corona poling and surface I-grafting. Corona poling enhances ferroelectric polarization of Bi4 Ti3 O12 by aligning the domains direction, which profoundly promotes charge transfer along opposite directions across bulk. Surface I-grafting forms a surface local electric field for further separating charge carriers and provides abundant active sites to enhance CO2 adsorption. The two modifications cooperatively further increase the ferroelectric polarization of Bi4 Ti3 O12 , which maximize the separation efficiency of photogenerated charges, resulting in an enhanced CO production rate of 15.1 μmol g-1 h-1 (nearly 9 times) with no sacrificial agents or cocatalysts. This work discloses that ferroelectric polarization and surface ion grafting can promote CO2 photoreduction in a synergistic way. Sluggish charge kinetics and low CO2 affinity seriously inhibit CO2 photoreduction. Herein, the synchronous promotion of charge separation and CO2 affinity of Bi4Ti3O12 is realized by coupling corona poling and surface I‐grafting. Corona poling enhances ferroelectric polarization of Bi4Ti3O12 by aligning the domains direction, which profoundly promotes charge transfer along opposite directions across bulk. Surface I‐grafting forms a surface local electric field for further separating charge carriers and provides abundant active sites to enhance CO2 adsorption. The two modifications cooperatively further increase the ferroelectric polarization of Bi4Ti3O12, which maximize the separation efficiency of photogenerated charges, resulting in an enhanced CO production rate of 15.1 μmol g−1 h−1 (nearly 9 times) with no sacrificial agents or cocatalysts. This work discloses that ferroelectric polarization and surface ion grafting can promote CO2 photoreduction in a synergistic way. Synergistic polarization engineering on bulk and on the surface of Bi4Ti3O12 is realized by coupling corona poling and surface I‐grafting, which strengthen ferroelectric polarization for facilitating the separation and transfer of photogenerated charge carriers and enrich the reactive sites, largely improving the photocatalytic activity for reducing CO2 into CO. |
Author | Huang, Jindi Chen, Zhensheng Liu, Lizhen Yu, Han Yu, Hongjian Zhang, Yihe Wang, Keyang Huang, Hongwei |
Author_xml | – sequence: 1 givenname: Lizhen surname: Liu fullname: Liu, Lizhen organization: China University of Geosciences – sequence: 2 givenname: Hongwei orcidid: 0000-0003-0271-1079 surname: Huang fullname: Huang, Hongwei email: hhw@cugb.edu.cn organization: China University of Geosciences – sequence: 3 givenname: Zhensheng surname: Chen fullname: Chen, Zhensheng organization: China University of Geosciences – sequence: 4 givenname: Hongjian surname: Yu fullname: Yu, Hongjian organization: China University of Geosciences – sequence: 5 givenname: Keyang surname: Wang fullname: Wang, Keyang organization: Lanzhou University – sequence: 6 givenname: Jindi surname: Huang fullname: Huang, Jindi organization: Nanyang Normal University – sequence: 7 givenname: Han surname: Yu fullname: Yu, Han email: hanyu0220@mail.tsinghua.edu.cn organization: Tsinghua University – sequence: 8 givenname: Yihe surname: Zhang fullname: Zhang, Yihe organization: China University of Geosciences |
BookMark | eNpdkE1PAjEQhhuDiYBePTfx4mWxH9tuOQJBJSFCgibemu7uLBaXFrtsDP56SzAcPM28yfNOJk8PdZx3gNAtJQNKCHswzsKAEUaJ5JRcoC4VjCY8y3gn7innSaYEvUK9ptlEXikiu-h9dXAQ1rbZ2wIvfW2C_TF76x2eurV1AMG6NY5x3Naf2LgSr9pQmQJw5QMeex-LEZgsGF5--L0PULbFsX-NLitTN3DzN_vo7XH6OnlO5oun2WQ0T3ZMSpKk3CialnlGpSxyKowqjCSmonkBIAzlkpdVCSkwlme5yBQb5oRUoERaplJQ3kf3p7u74L9aaPZ6a5sC6to48G2jmeBCMcXFMKJ3_9CNb4OL30VKZDwVTPJIDU_Ut63hoHfBbk04aEr00bI-WtZny3r0MpueE_8FJu10kw |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202106310 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 18308 |
ExternalDocumentID | ANIE202106310 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51972288; 51672258 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 7X8 |
ID | FETCH-LOGICAL-p2660-43a814db7166cb15a8ca60af1bcee5a1363dfde4e22b7b57829b00fe854d46513 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 13:36:51 EDT 2025 Fri Jul 25 10:46:50 EDT 2025 Wed Jan 22 16:28:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2660-43a814db7166cb15a8ca60af1bcee5a1363dfde4e22b7b57829b00fe854d46513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0271-1079 |
PQID | 2557345263 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2535828359 proquest_journals_2557345263 wiley_primary_10_1002_anie_202106310_ANIE202106310 |
PublicationCentury | 2000 |
PublicationDate | August 9, 2021 |
PublicationDateYYYYMMDD | 2021-08-09 |
PublicationDate_xml | – month: 08 year: 2021 text: August 9, 2021 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 218 2014 2014; 53 126 2018; 29 2017; 41 2021 2021 1991; 353 2021; 2 2019; 31 2013; 46 2020; 142 2019; 11 2019; 54 2017; 27 2019; 56 2003; 15 2005; 86 1978; 275 2010; 162 2017; 29 2020; 32 2017 2017; 56 129 2019 2019; 58 131 2019; 783 2007; 36 2014; 43 1972; 3 2012; 51 2020; 8 2004; 132 2021; 33 2019; 259 2014; 15 2016; 28 2014; 7 2012; 22 2016; 9 2018; 14 2009; 106 |
References_xml | – volume: 43 start-page: 7995 year: 2014 end-page: 8048 publication-title: Chem. Soc. Rev. – volume: 218 start-page: 60 year: 2017 end-page: 67 publication-title: Appl. Catal. B – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 2177 year: 2016 end-page: 2196 publication-title: Energy Environ. Sci. – volume: 29 start-page: 7453 year: 2018 end-page: 7457 publication-title: J. Mater. Sci. Mater. Electron. – volume: 58 131 start-page: 10061 10164 year: 2019 2019 end-page: 10073 10176 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2021 2021 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 start-page: 5234 year: 2014 end-page: 5244 publication-title: Chem. Soc. Rev. – volume: 54 start-page: 13740 year: 2019 end-page: 13752 publication-title: J. Mater. Sci. – volume: 132 start-page: 175 year: 2004 end-page: 179 publication-title: Solid State Commun. – volume: 14 year: 2018 publication-title: Small – volume: 142 start-page: 1492 year: 2020 end-page: 1500 publication-title: J. Am. Chem. Soc. – volume: 2 year: 2021 publication-title: Small Struct. – volume: 3 start-page: 17 year: 1972 end-page: 27 publication-title: Ferroelectrics – volume: 8 start-page: 9268 year: 2020 end-page: 9277 publication-title: J. Mater. Chem. A – volume: 56 start-page: 840 year: 2019 end-page: 850 publication-title: Nano Energy – volume: 58 131 start-page: 9517 9617 year: 2019 2019 end-page: 9521 9621 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 3934 year: 2014 end-page: 3951 publication-title: Energy Environ. Sci. – volume: 51 start-page: 10402 year: 2012 end-page: 10407 publication-title: Inorg. Chem. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 29 start-page: 639 year: 2017 end-page: 647 publication-title: Chem. Mater. – volume: 41 start-page: 738 year: 2017 end-page: 748 publication-title: Nano Energy – volume: 53 126 start-page: 7295 7423 year: 2014 2014 end-page: 7299 7427 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 36 start-page: 95 year: 2007 end-page: 98 publication-title: Rare Metal Mater. Eng. – volume: 162 start-page: 437 year: 2010 end-page: 447 publication-title: Chem. Eng. J. – volume: 86 year: 2005 publication-title: Appl. Phys. Lett. – volume: 56 129 start-page: 11860 12022 year: 2017 2017 end-page: 11864 12026 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 275 start-page: 115 year: 1978 end-page: 116 publication-title: Nature – volume: 15 start-page: 5246 year: 2014 end-page: 5262 publication-title: Int. J. Mol. Sci. – volume: 11 start-page: 25186 year: 2019 end-page: 25194 publication-title: ACS Appl. Mater. Interfaces – volume: 259 year: 2019 publication-title: Appl. Catal. B – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 353 start-page: 737 year: 1991 end-page: 740 publication-title: Nature – volume: 106 start-page: 1704 year: 2009 end-page: 1709 publication-title: Proc. Natl. Acad. Sci. USA – volume: 22 start-page: 2058 year: 2012 end-page: 2066 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 5025 year: 2003 end-page: 5028 publication-title: Chem. Mater. – volume: 58 131 start-page: 3880 3920 year: 2019 2019 end-page: 3884 3924 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 46 start-page: 1900 year: 2013 end-page: 1909 publication-title: Acc. Chem. Res. – volume: 783 start-page: 943 year: 2019 end-page: 951 publication-title: J. Alloys Compd. – volume: 28 start-page: 4059 year: 2016 end-page: 4064 publication-title: Adv. Mater. |
SSID | ssj0028806 |
Score | 2.6967487 |
Snippet | Sluggish charge kinetics and low CO2 affinity seriously inhibit CO2 photoreduction. Herein, the synchronous promotion of charge separation and CO2 affinity of... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 18303 |
SubjectTerms | Affinity Bi4Ti3O12 Bismuth titanate Carbon dioxide Charge transfer CO2 reduction corona poling Current carriers Electric fields Ferroelectric materials ferroelectric photocatalysts Ferroelectricity Grafting ion grafting Photoreduction Polarization Separation |
Title | Synergistic Polarization Engineering on Bulk and Surface for Boosting CO2 Photoreduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202106310 https://www.proquest.com/docview/2557345263 https://www.proquest.com/docview/2535828359 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG6MHvTibyOKpCZeB6zduu3IEIIekIgk3JZ2bWOC2Qiwg_719u2X4FFva7Ym29t76_e6930PoYeACU44V5bvM2k5gZSWUIxYTFPiMe3bnsqrLcZsNHOe5-58i8Vf6EPUG24QGfn3GgKci3XnRzQUGNgmvzMpC6M5xwoKtgAVvdb6UcQ4Z0EvotSCLvSVamOXdHan7-DLbZSaLzPDE8SrGyyqSxbtbCPa8dcv7cb_PMEpOi4xKO4VTnOG9lRyjg77Veu3CzSffgIlMNdwxhNIfku2Jt6SL8RmGGYfC8wTiafZSvNYYQOBcZimayimxv0XgifvqcnqQR8W5l-i2XDw1h9ZZQsGa2lW7q7lUO7bjhQmq2KxsF3ux5x1ubaFWVxdbkxOpZbKUYQIT4A0PmgsauW7joQu6_QK7Sdpoq4RjgODHXwdB7bqOoLHQnlEK0m18JlHY7uBmtUriMo4Wkcm4fEodEGnDXRfnzbWgN8aPFFpBtcA29cgyaCBSG7vaFkodUSFJjOJwNJRbemoN34a1KObv0y6RUdwnFcCBk20v1ll6s6gk41ooYNe-BgOW7knfgPXl99N |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ReqCXAv0RC0txpfYY2NhZJzn0sCyg3UK3qIC0t9SObVUCJWh3IwRv1VfhiZjJX6HHShx6i5M4SmY89jfOzDcAn2KpFVfKelEkjRfExnjaSu5JJ3goXeSHtoy2mMjRRfB12p8uwe8mF6bih2g33MgyyvmaDJw2pPf-sIZSCjY6eOizSMQodVzlsb29Qa9t_mV8gCr-zPnR4flw5NWFBbxrXI96XiBU5AdGo68gU-33VZQq2VPO17hk9JUvpDDO2MByrkNNhO_EHOhs1A8M1Q4X-NwX8JIOia7_4EfLWMXRHKqEJiE8qnvf8ET2-N7T932CaB_j4nJhO1qF-0YkVTzL5W6x0Lvp3V9skf-VzNbgdQ2z2aCyi3VYstkbWBk21e3ewvTslrIeS5pqdkr-fZ2Qyh4xNDJs7hdXl0xlhp0VM6dSyxDls_08n1O8OBt-5-z0V77IZ0SBS_3fwcWzfNh7WM7yzG4AS2OER5FLY9_2Aq1SbUPurBFORzIUqd-BbqPzpJ4q5gn6dKGgQu-iAx_byygN-nOjMpsXdA8lNCNYjjvASwUn1xUZSVLRTvOENJu0mk0Gk_Fh29r8l047sDI6_3aSnIwnx1vwis6XgY9xF5YXs8JuIxhb6A_l8Gfw87nHzgNWczwy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RKrW90H91KW2N1B4DiZ11kgMH2GXFlmpZlSLtLbVjW5VAyWp3I0Sfqq_SN2Imf4UekThwdBJHyYzH800y8w3A50RqxZWyXhxL44WJMZ62knvSCR5JFweRrbItJvLoLPw668_W4E9bC1PzQ3Qf3Mgyqv2aDHxu3O4_0lCqwMb4DkMWiRClSas8tleXGLQt98ZD1PAXzkeHPwZHXtNXwJujO_K9UKg4CI3GUEFmOuirOFPSVy7Q6DH6KhBSGGdsaDnXkSa-dyIOdDbuh4Zahwu87yN4HEo_oWYRw-8dYRVHa6jrmYTwqO19SxPp893bz3sL0N6ExZVfGz2Hv61E6nSW851ypXey3_-RRT4kkb2AjQZks_3aKl7Cms1fwdNB29vuNcxOr6jmsSKpZlOK7ptyVHaDn5Hh8KC8OGcqN-y0XDiVWYYYnx0UxZKyxdnghLPpr2JVLIgAl-a_gbN7ebG3sJ4XuX0HLEsQHMUuSwLrh1pl2kbcWSOcjmUksqAHW63K02ajWKYY0UWC2ryLHmx3p1Ea9N9G5bYo6RoqZ0aonPSAV_pN5zUVSVqTTvOUNJt2mk33J-PDbrR5l0mf4Ml0OEq_jSfH7-EZHa6yHpMtWF8tSvsBkdhKf6wWP4Of9710rgFEJDrh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Polarization+Engineering+on+Bulk+and+Surface+for+Boosting+CO2+Photoreduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Lizhen&rft.au=Huang%2C+Hongwei&rft.au=Chen%2C+Zhensheng&rft.au=Yu%2C+Hongjian&rft.date=2021-08-09&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=33&rft.spage=18303&rft_id=info:doi/10.1002%2Fanie.202106310&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |