Synergistic Polarization Engineering on Bulk and Surface for Boosting CO2 Photoreduction

Sluggish charge kinetics and low CO2 affinity seriously inhibit CO2 photoreduction. Herein, the synchronous promotion of charge separation and CO2 affinity of Bi4Ti3O12 is realized by coupling corona poling and surface I‐grafting. Corona poling enhances ferroelectric polarization of Bi4Ti3O12 by ali...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 33; pp. 18303 - 18308
Main Authors Liu, Lizhen, Huang, Hongwei, Chen, Zhensheng, Yu, Hongjian, Wang, Keyang, Huang, Jindi, Yu, Han, Zhang, Yihe
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 09.08.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sluggish charge kinetics and low CO2 affinity seriously inhibit CO2 photoreduction. Herein, the synchronous promotion of charge separation and CO2 affinity of Bi4Ti3O12 is realized by coupling corona poling and surface I‐grafting. Corona poling enhances ferroelectric polarization of Bi4Ti3O12 by aligning the domains direction, which profoundly promotes charge transfer along opposite directions across bulk. Surface I‐grafting forms a surface local electric field for further separating charge carriers and provides abundant active sites to enhance CO2 adsorption. The two modifications cooperatively further increase the ferroelectric polarization of Bi4Ti3O12, which maximize the separation efficiency of photogenerated charges, resulting in an enhanced CO production rate of 15.1 μmol g−1 h−1 (nearly 9 times) with no sacrificial agents or cocatalysts. This work discloses that ferroelectric polarization and surface ion grafting can promote CO2 photoreduction in a synergistic way. Synergistic polarization engineering on bulk and on the surface of Bi4Ti3O12 is realized by coupling corona poling and surface I‐grafting, which strengthen ferroelectric polarization for facilitating the separation and transfer of photogenerated charge carriers and enrich the reactive sites, largely improving the photocatalytic activity for reducing CO2 into CO.
AbstractList Sluggish charge kinetics and low CO2 affinity seriously inhibit CO2 photoreduction. Herein, the synchronous promotion of charge separation and CO2 affinity of Bi4Ti3O12 is realized by coupling corona poling and surface I‐grafting. Corona poling enhances ferroelectric polarization of Bi4Ti3O12 by aligning the domains direction, which profoundly promotes charge transfer along opposite directions across bulk. Surface I‐grafting forms a surface local electric field for further separating charge carriers and provides abundant active sites to enhance CO2 adsorption. The two modifications cooperatively further increase the ferroelectric polarization of Bi4Ti3O12, which maximize the separation efficiency of photogenerated charges, resulting in an enhanced CO production rate of 15.1 μmol g−1 h−1 (nearly 9 times) with no sacrificial agents or cocatalysts. This work discloses that ferroelectric polarization and surface ion grafting can promote CO2 photoreduction in a synergistic way.
Sluggish charge kinetics and low CO2 affinity seriously inhibit CO2 photoreduction. Herein, the synchronous promotion of charge separation and CO2 affinity of Bi4 Ti3 O12 is realized by coupling corona poling and surface I-grafting. Corona poling enhances ferroelectric polarization of Bi4 Ti3 O12 by aligning the domains direction, which profoundly promotes charge transfer along opposite directions across bulk. Surface I-grafting forms a surface local electric field for further separating charge carriers and provides abundant active sites to enhance CO2 adsorption. The two modifications cooperatively further increase the ferroelectric polarization of Bi4 Ti3 O12 , which maximize the separation efficiency of photogenerated charges, resulting in an enhanced CO production rate of 15.1 μmol g-1  h-1 (nearly 9 times) with no sacrificial agents or cocatalysts. This work discloses that ferroelectric polarization and surface ion grafting can promote CO2 photoreduction in a synergistic way.Sluggish charge kinetics and low CO2 affinity seriously inhibit CO2 photoreduction. Herein, the synchronous promotion of charge separation and CO2 affinity of Bi4 Ti3 O12 is realized by coupling corona poling and surface I-grafting. Corona poling enhances ferroelectric polarization of Bi4 Ti3 O12 by aligning the domains direction, which profoundly promotes charge transfer along opposite directions across bulk. Surface I-grafting forms a surface local electric field for further separating charge carriers and provides abundant active sites to enhance CO2 adsorption. The two modifications cooperatively further increase the ferroelectric polarization of Bi4 Ti3 O12 , which maximize the separation efficiency of photogenerated charges, resulting in an enhanced CO production rate of 15.1 μmol g-1  h-1 (nearly 9 times) with no sacrificial agents or cocatalysts. This work discloses that ferroelectric polarization and surface ion grafting can promote CO2 photoreduction in a synergistic way.
Sluggish charge kinetics and low CO2 affinity seriously inhibit CO2 photoreduction. Herein, the synchronous promotion of charge separation and CO2 affinity of Bi4Ti3O12 is realized by coupling corona poling and surface I‐grafting. Corona poling enhances ferroelectric polarization of Bi4Ti3O12 by aligning the domains direction, which profoundly promotes charge transfer along opposite directions across bulk. Surface I‐grafting forms a surface local electric field for further separating charge carriers and provides abundant active sites to enhance CO2 adsorption. The two modifications cooperatively further increase the ferroelectric polarization of Bi4Ti3O12, which maximize the separation efficiency of photogenerated charges, resulting in an enhanced CO production rate of 15.1 μmol g−1 h−1 (nearly 9 times) with no sacrificial agents or cocatalysts. This work discloses that ferroelectric polarization and surface ion grafting can promote CO2 photoreduction in a synergistic way. Synergistic polarization engineering on bulk and on the surface of Bi4Ti3O12 is realized by coupling corona poling and surface I‐grafting, which strengthen ferroelectric polarization for facilitating the separation and transfer of photogenerated charge carriers and enrich the reactive sites, largely improving the photocatalytic activity for reducing CO2 into CO.
Author Huang, Jindi
Chen, Zhensheng
Liu, Lizhen
Yu, Han
Yu, Hongjian
Zhang, Yihe
Wang, Keyang
Huang, Hongwei
Author_xml – sequence: 1
  givenname: Lizhen
  surname: Liu
  fullname: Liu, Lizhen
  organization: China University of Geosciences
– sequence: 2
  givenname: Hongwei
  orcidid: 0000-0003-0271-1079
  surname: Huang
  fullname: Huang, Hongwei
  email: hhw@cugb.edu.cn
  organization: China University of Geosciences
– sequence: 3
  givenname: Zhensheng
  surname: Chen
  fullname: Chen, Zhensheng
  organization: China University of Geosciences
– sequence: 4
  givenname: Hongjian
  surname: Yu
  fullname: Yu, Hongjian
  organization: China University of Geosciences
– sequence: 5
  givenname: Keyang
  surname: Wang
  fullname: Wang, Keyang
  organization: Lanzhou University
– sequence: 6
  givenname: Jindi
  surname: Huang
  fullname: Huang, Jindi
  organization: Nanyang Normal University
– sequence: 7
  givenname: Han
  surname: Yu
  fullname: Yu, Han
  email: hanyu0220@mail.tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 8
  givenname: Yihe
  surname: Zhang
  fullname: Zhang, Yihe
  organization: China University of Geosciences
BookMark eNpdkE1PAjEQhhuDiYBePTfx4mWxH9tuOQJBJSFCgibemu7uLBaXFrtsDP56SzAcPM28yfNOJk8PdZx3gNAtJQNKCHswzsKAEUaJ5JRcoC4VjCY8y3gn7innSaYEvUK9ptlEXikiu-h9dXAQ1rbZ2wIvfW2C_TF76x2eurV1AMG6NY5x3Naf2LgSr9pQmQJw5QMeex-LEZgsGF5--L0PULbFsX-NLitTN3DzN_vo7XH6OnlO5oun2WQ0T3ZMSpKk3CialnlGpSxyKowqjCSmonkBIAzlkpdVCSkwlme5yBQb5oRUoERaplJQ3kf3p7u74L9aaPZ6a5sC6to48G2jmeBCMcXFMKJ3_9CNb4OL30VKZDwVTPJIDU_Ut63hoHfBbk04aEr00bI-WtZny3r0MpueE_8FJu10kw
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202106310
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 18308
ExternalDocumentID ANIE202106310
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51972288; 51672258
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-p2660-43a814db7166cb15a8ca60af1bcee5a1363dfde4e22b7b57829b00fe854d46513
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 13:36:51 EDT 2025
Fri Jul 25 10:46:50 EDT 2025
Wed Jan 22 16:28:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2660-43a814db7166cb15a8ca60af1bcee5a1363dfde4e22b7b57829b00fe854d46513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0271-1079
PQID 2557345263
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2535828359
proquest_journals_2557345263
wiley_primary_10_1002_anie_202106310_ANIE202106310
PublicationCentury 2000
PublicationDate August 9, 2021
PublicationDateYYYYMMDD 2021-08-09
PublicationDate_xml – month: 08
  year: 2021
  text: August 9, 2021
  day: 09
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 218
2014 2014; 53 126
2018; 29
2017; 41
2021 2021
1991; 353
2021; 2
2019; 31
2013; 46
2020; 142
2019; 11
2019; 54
2017; 27
2019; 56
2003; 15
2005; 86
1978; 275
2010; 162
2017; 29
2020; 32
2017 2017; 56 129
2019 2019; 58 131
2019; 783
2007; 36
2014; 43
1972; 3
2012; 51
2020; 8
2004; 132
2021; 33
2019; 259
2014; 15
2016; 28
2014; 7
2012; 22
2016; 9
2018; 14
2009; 106
References_xml – volume: 43
  start-page: 7995
  year: 2014
  end-page: 8048
  publication-title: Chem. Soc. Rev.
– volume: 218
  start-page: 60
  year: 2017
  end-page: 67
  publication-title: Appl. Catal. B
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 2177
  year: 2016
  end-page: 2196
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 7453
  year: 2018
  end-page: 7457
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 58 131
  start-page: 10061 10164
  year: 2019 2019
  end-page: 10073 10176
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2021 2021
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43
  start-page: 5234
  year: 2014
  end-page: 5244
  publication-title: Chem. Soc. Rev.
– volume: 54
  start-page: 13740
  year: 2019
  end-page: 13752
  publication-title: J. Mater. Sci.
– volume: 132
  start-page: 175
  year: 2004
  end-page: 179
  publication-title: Solid State Commun.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 142
  start-page: 1492
  year: 2020
  end-page: 1500
  publication-title: J. Am. Chem. Soc.
– volume: 2
  year: 2021
  publication-title: Small Struct.
– volume: 3
  start-page: 17
  year: 1972
  end-page: 27
  publication-title: Ferroelectrics
– volume: 8
  start-page: 9268
  year: 2020
  end-page: 9277
  publication-title: J. Mater. Chem. A
– volume: 56
  start-page: 840
  year: 2019
  end-page: 850
  publication-title: Nano Energy
– volume: 58 131
  start-page: 9517 9617
  year: 2019 2019
  end-page: 9521 9621
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 3934
  year: 2014
  end-page: 3951
  publication-title: Energy Environ. Sci.
– volume: 51
  start-page: 10402
  year: 2012
  end-page: 10407
  publication-title: Inorg. Chem.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 29
  start-page: 639
  year: 2017
  end-page: 647
  publication-title: Chem. Mater.
– volume: 41
  start-page: 738
  year: 2017
  end-page: 748
  publication-title: Nano Energy
– volume: 53 126
  start-page: 7295 7423
  year: 2014 2014
  end-page: 7299 7427
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 36
  start-page: 95
  year: 2007
  end-page: 98
  publication-title: Rare Metal Mater. Eng.
– volume: 162
  start-page: 437
  year: 2010
  end-page: 447
  publication-title: Chem. Eng. J.
– volume: 86
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 56 129
  start-page: 11860 12022
  year: 2017 2017
  end-page: 11864 12026
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 275
  start-page: 115
  year: 1978
  end-page: 116
  publication-title: Nature
– volume: 15
  start-page: 5246
  year: 2014
  end-page: 5262
  publication-title: Int. J. Mol. Sci.
– volume: 11
  start-page: 25186
  year: 2019
  end-page: 25194
  publication-title: ACS Appl. Mater. Interfaces
– volume: 259
  year: 2019
  publication-title: Appl. Catal. B
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 353
  start-page: 737
  year: 1991
  end-page: 740
  publication-title: Nature
– volume: 106
  start-page: 1704
  year: 2009
  end-page: 1709
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 22
  start-page: 2058
  year: 2012
  end-page: 2066
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 5025
  year: 2003
  end-page: 5028
  publication-title: Chem. Mater.
– volume: 58 131
  start-page: 3880 3920
  year: 2019 2019
  end-page: 3884 3924
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 46
  start-page: 1900
  year: 2013
  end-page: 1909
  publication-title: Acc. Chem. Res.
– volume: 783
  start-page: 943
  year: 2019
  end-page: 951
  publication-title: J. Alloys Compd.
– volume: 28
  start-page: 4059
  year: 2016
  end-page: 4064
  publication-title: Adv. Mater.
SSID ssj0028806
Score 2.6967487
Snippet Sluggish charge kinetics and low CO2 affinity seriously inhibit CO2 photoreduction. Herein, the synchronous promotion of charge separation and CO2 affinity of...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 18303
SubjectTerms Affinity
Bi4Ti3O12
Bismuth titanate
Carbon dioxide
Charge transfer
CO2 reduction
corona poling
Current carriers
Electric fields
Ferroelectric materials
ferroelectric photocatalysts
Ferroelectricity
Grafting
ion grafting
Photoreduction
Polarization
Separation
Title Synergistic Polarization Engineering on Bulk and Surface for Boosting CO2 Photoreduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202106310
https://www.proquest.com/docview/2557345263
https://www.proquest.com/docview/2535828359
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG6MHvTibyOKpCZeB6zduu3IEIIekIgk3JZ2bWOC2Qiwg_719u2X4FFva7Ym29t76_e6930PoYeACU44V5bvM2k5gZSWUIxYTFPiMe3bnsqrLcZsNHOe5-58i8Vf6EPUG24QGfn3GgKci3XnRzQUGNgmvzMpC6M5xwoKtgAVvdb6UcQ4Z0EvotSCLvSVamOXdHan7-DLbZSaLzPDE8SrGyyqSxbtbCPa8dcv7cb_PMEpOi4xKO4VTnOG9lRyjg77Veu3CzSffgIlMNdwxhNIfku2Jt6SL8RmGGYfC8wTiafZSvNYYQOBcZimayimxv0XgifvqcnqQR8W5l-i2XDw1h9ZZQsGa2lW7q7lUO7bjhQmq2KxsF3ux5x1ubaFWVxdbkxOpZbKUYQIT4A0PmgsauW7joQu6_QK7Sdpoq4RjgODHXwdB7bqOoLHQnlEK0m18JlHY7uBmtUriMo4Wkcm4fEodEGnDXRfnzbWgN8aPFFpBtcA29cgyaCBSG7vaFkodUSFJjOJwNJRbemoN34a1KObv0y6RUdwnFcCBk20v1ll6s6gk41ooYNe-BgOW7knfgPXl99N
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ReqCXAv0RC0txpfYY2NhZJzn0sCyg3UK3qIC0t9SObVUCJWh3IwRv1VfhiZjJX6HHShx6i5M4SmY89jfOzDcAn2KpFVfKelEkjRfExnjaSu5JJ3goXeSHtoy2mMjRRfB12p8uwe8mF6bih2g33MgyyvmaDJw2pPf-sIZSCjY6eOizSMQodVzlsb29Qa9t_mV8gCr-zPnR4flw5NWFBbxrXI96XiBU5AdGo68gU-33VZQq2VPO17hk9JUvpDDO2MByrkNNhO_EHOhs1A8M1Q4X-NwX8JIOia7_4EfLWMXRHKqEJiE8qnvf8ET2-N7T932CaB_j4nJhO1qF-0YkVTzL5W6x0Lvp3V9skf-VzNbgdQ2z2aCyi3VYstkbWBk21e3ewvTslrIeS5pqdkr-fZ2Qyh4xNDJs7hdXl0xlhp0VM6dSyxDls_08n1O8OBt-5-z0V77IZ0SBS_3fwcWzfNh7WM7yzG4AS2OER5FLY9_2Aq1SbUPurBFORzIUqd-BbqPzpJ4q5gn6dKGgQu-iAx_byygN-nOjMpsXdA8lNCNYjjvASwUn1xUZSVLRTvOENJu0mk0Gk_Fh29r8l047sDI6_3aSnIwnx1vwis6XgY9xF5YXs8JuIxhb6A_l8Gfw87nHzgNWczwy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RKrW90H91KW2N1B4DiZ11kgMH2GXFlmpZlSLtLbVjW5VAyWp3I0Sfqq_SN2Imf4UekThwdBJHyYzH800y8w3A50RqxZWyXhxL44WJMZ62knvSCR5JFweRrbItJvLoLPw668_W4E9bC1PzQ3Qf3Mgyqv2aDHxu3O4_0lCqwMb4DkMWiRClSas8tleXGLQt98ZD1PAXzkeHPwZHXtNXwJujO_K9UKg4CI3GUEFmOuirOFPSVy7Q6DH6KhBSGGdsaDnXkSa-dyIOdDbuh4Zahwu87yN4HEo_oWYRw-8dYRVHa6jrmYTwqO19SxPp893bz3sL0N6ExZVfGz2Hv61E6nSW851ypXey3_-RRT4kkb2AjQZks_3aKl7Cms1fwdNB29vuNcxOr6jmsSKpZlOK7ptyVHaDn5Hh8KC8OGcqN-y0XDiVWYYYnx0UxZKyxdnghLPpr2JVLIgAl-a_gbN7ebG3sJ4XuX0HLEsQHMUuSwLrh1pl2kbcWSOcjmUksqAHW63K02ajWKYY0UWC2ryLHmx3p1Ea9N9G5bYo6RoqZ0aonPSAV_pN5zUVSVqTTvOUNJt2mk33J-PDbrR5l0mf4Ml0OEq_jSfH7-EZHa6yHpMtWF8tSvsBkdhKf6wWP4Of9710rgFEJDrh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Polarization+Engineering+on+Bulk+and+Surface+for+Boosting+CO2+Photoreduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Lizhen&rft.au=Huang%2C+Hongwei&rft.au=Chen%2C+Zhensheng&rft.au=Yu%2C+Hongjian&rft.date=2021-08-09&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=33&rft.spage=18303&rft_id=info:doi/10.1002%2Fanie.202106310&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon