Integrating Enrichment, Reduction, and Oxidation Sites in One System for Artificial Photosynthetic Diluted CO2 Reduction

Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon‐resources recycling utilization. Herein, a three‐in‐one photocatalytic system of CO2 enrichment, CO2 reduction and H2O oxidation sites is designed for diluted CO2...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 40; pp. e2304170 - n/a
Main Authors Yang, Yan, Zhang, Hong‐Yu, Wang, Ya, Shao, Lu‐Hua, Fang, Liang, Dong, Hong, Lu, Meng, Dong, Long‐Zhang, Lan, Ya‐Qian, Zhang, Feng‐Ming
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon‐resources recycling utilization. Herein, a three‐in‐one photocatalytic system of CO2 enrichment, CO2 reduction and H2O oxidation sites is designed for diluted CO2 reduction. A Zn‐Salen‐based covalent organic framework (Zn‐S‐COF) with oxidation and reductive sites is synthesized; then, ionic liquids (ILs) are loaded into the pores. As a result, [Emim]BF4@Zn‐S‐COF shows a visible‐light‐driven CO2‐to‐CO conversion rate of 105.88 µmol g−1 h−1 under diluted CO2 (15%) atmosphere, even superior than most photocatalysts in high concentrations CO2. Moreover, natural sunlight driven diluted CO2 reduction rate also reaches 126.51 µmol g−1 in 5 h. Further experiments and theoretical calculations reveal that the triazine ring in the Zn‐S‐COF promotes the activity of H2O oxidation and CO2 reduction sites, and the loaded ILs provide an enriched CO2 atmosphere, realizing the efficient photocatalytic activity in diluted CO2 reduction. A three‐in‐one photocatalytic system of CO2 enrichment, CO2 reduction, and H2O oxidation sites is designed for diluted CO2 reduction, and the [Emim]BF4@Zn‐Salen‐COF shows excellent visible‐light‐driven and natural‐sunlight‐driven CO2‐to‐CO conversion activity under diluted CO2 (15%) atmosphere.
AbstractList Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon-resources recycling utilization. Herein, a three-in-one photocatalytic system of CO2 enrichment, CO2 reduction and H2 O oxidation sites is designed for diluted CO2 reduction. A Zn-Salen-based covalent organic framework (Zn-S-COF) with oxidation and reductive sites is synthesized; then, ionic liquids (ILs) are loaded into the pores. As a result, [Emim]BF4 @Zn-S-COF shows a visible-light-driven CO2 -to-CO conversion rate of 105.88 µmol g-1 h-1 under diluted CO2 (15%) atmosphere, even superior than most photocatalysts in high concentrations CO2 . Moreover, natural sunlight driven diluted CO2 reduction rate also reaches 126.51 µmol g-1 in 5 h. Further experiments and theoretical calculations reveal that the triazine ring in the Zn-S-COF promotes the activity of H2 O oxidation and CO2 reduction sites, and the loaded ILs provide an enriched CO2 atmosphere, realizing the efficient photocatalytic activity in diluted CO2 reduction.Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon-resources recycling utilization. Herein, a three-in-one photocatalytic system of CO2 enrichment, CO2 reduction and H2 O oxidation sites is designed for diluted CO2 reduction. A Zn-Salen-based covalent organic framework (Zn-S-COF) with oxidation and reductive sites is synthesized; then, ionic liquids (ILs) are loaded into the pores. As a result, [Emim]BF4 @Zn-S-COF shows a visible-light-driven CO2 -to-CO conversion rate of 105.88 µmol g-1 h-1 under diluted CO2 (15%) atmosphere, even superior than most photocatalysts in high concentrations CO2 . Moreover, natural sunlight driven diluted CO2 reduction rate also reaches 126.51 µmol g-1 in 5 h. Further experiments and theoretical calculations reveal that the triazine ring in the Zn-S-COF promotes the activity of H2 O oxidation and CO2 reduction sites, and the loaded ILs provide an enriched CO2 atmosphere, realizing the efficient photocatalytic activity in diluted CO2 reduction.
Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon‐resources recycling utilization. Herein, a three‐in‐one photocatalytic system of CO2 enrichment, CO2 reduction and H2O oxidation sites is designed for diluted CO2 reduction. A Zn‐Salen‐based covalent organic framework (Zn‐S‐COF) with oxidation and reductive sites is synthesized; then, ionic liquids (ILs) are loaded into the pores. As a result, [Emim]BF4@Zn‐S‐COF shows a visible‐light‐driven CO2‐to‐CO conversion rate of 105.88 µmol g−1 h−1 under diluted CO2 (15%) atmosphere, even superior than most photocatalysts in high concentrations CO2. Moreover, natural sunlight driven diluted CO2 reduction rate also reaches 126.51 µmol g−1 in 5 h. Further experiments and theoretical calculations reveal that the triazine ring in the Zn‐S‐COF promotes the activity of H2O oxidation and CO2 reduction sites, and the loaded ILs provide an enriched CO2 atmosphere, realizing the efficient photocatalytic activity in diluted CO2 reduction.
Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon‐resources recycling utilization. Herein, a three‐in‐one photocatalytic system of CO2 enrichment, CO2 reduction and H2O oxidation sites is designed for diluted CO2 reduction. A Zn‐Salen‐based covalent organic framework (Zn‐S‐COF) with oxidation and reductive sites is synthesized; then, ionic liquids (ILs) are loaded into the pores. As a result, [Emim]BF4@Zn‐S‐COF shows a visible‐light‐driven CO2‐to‐CO conversion rate of 105.88 µmol g−1 h−1 under diluted CO2 (15%) atmosphere, even superior than most photocatalysts in high concentrations CO2. Moreover, natural sunlight driven diluted CO2 reduction rate also reaches 126.51 µmol g−1 in 5 h. Further experiments and theoretical calculations reveal that the triazine ring in the Zn‐S‐COF promotes the activity of H2O oxidation and CO2 reduction sites, and the loaded ILs provide an enriched CO2 atmosphere, realizing the efficient photocatalytic activity in diluted CO2 reduction. A three‐in‐one photocatalytic system of CO2 enrichment, CO2 reduction, and H2O oxidation sites is designed for diluted CO2 reduction, and the [Emim]BF4@Zn‐Salen‐COF shows excellent visible‐light‐driven and natural‐sunlight‐driven CO2‐to‐CO conversion activity under diluted CO2 (15%) atmosphere.
Author Zhang, Hong‐Yu
Lu, Meng
Dong, Hong
Lan, Ya‐Qian
Shao, Lu‐Hua
Zhang, Feng‐Ming
Yang, Yan
Wang, Ya
Dong, Long‐Zhang
Fang, Liang
Author_xml – sequence: 1
  givenname: Yan
  surname: Yang
  fullname: Yang, Yan
  organization: Harbin Institute of Technology
– sequence: 2
  givenname: Hong‐Yu
  surname: Zhang
  fullname: Zhang, Hong‐Yu
  organization: Harbin Institute of Technology
– sequence: 3
  givenname: Ya
  surname: Wang
  fullname: Wang, Ya
  organization: Harbin University of Science and Technology
– sequence: 4
  givenname: Lu‐Hua
  surname: Shao
  fullname: Shao, Lu‐Hua
  organization: Harbin University of Science and Technology
– sequence: 5
  givenname: Liang
  surname: Fang
  fullname: Fang, Liang
  organization: Harbin University of Science and Technology
– sequence: 6
  givenname: Hong
  surname: Dong
  fullname: Dong, Hong
  organization: Harbin University of Science and Technology
– sequence: 7
  givenname: Meng
  surname: Lu
  fullname: Lu, Meng
  organization: South China Normal University
– sequence: 8
  givenname: Long‐Zhang
  surname: Dong
  fullname: Dong, Long‐Zhang
  organization: South China Normal University
– sequence: 9
  givenname: Ya‐Qian
  surname: Lan
  fullname: Lan, Ya‐Qian
  organization: South China Normal University
– sequence: 10
  givenname: Feng‐Ming
  orcidid: 0000-0002-2738-306X
  surname: Zhang
  fullname: Zhang, Feng‐Ming
  email: zhangfengming@hrbust.edu.cn
  organization: Harbin University of Science and Technology
BookMark eNpdkc9LwzAYhoMouKlXzwEvHuz8kjRZehzb_AGTidNziUm6ZbTpbFLc_ns7JhM8fbzw8PK9PH106mtvEbomMCAA9F6ZSg0oUAYpGcIJ6hFOSZJCxk9RDzLGk0yk8hz1Q1gDQCZA9ND22Ue7bFR0fomnvnF6VVkf7_CbNa2OrvZ3WHmD51tn1D7ihYs2YOfx3Fu82IVoK1zUDR410RVOO1Xi11Ud67DzcWWj03jiyjZag8dz-ld7ic4KVQZ79Xsv0MfD9H38lMzmj8_j0SzZUCEgYVZ_SpbKwqSFISlYyYeCcAmEcaW6bSlnhBpOM2CaMSG00WBSk3X7iDDALtDtoXfT1F-tDTGvXNC2LJW3dRtyKhlQSjNBO_TmH7qu28Z333XUkBJJJZcdlR2ob1faXb5pXKWaXU4g31vI9xbyo4V8NHkZHRP7AYl7fng
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202304170
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202304170
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22178077
– fundername: Shandong Provincial Natural Science Foundation
  funderid: ZR2022MB126
– fundername: Postdoctoral Scientific Research Start‐Up Project in Heilongjiang Province
  funderid: LBH‐Q19111
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-p2660-3ecb8348fd4fd140e85761580135aa09545312d52903c3366cdc0d4d909616d03
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 10:18:23 EDT 2025
Fri Jul 25 22:36:19 EDT 2025
Tue Jan 21 03:11:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2660-3ecb8348fd4fd140e85761580135aa09545312d52903c3366cdc0d4d909616d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2738-306X
PQID 2872182858
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_2830222962
proquest_journals_2872182858
wiley_primary_10_1002_adma_202304170_ADMA202304170
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 9
2020 2020; 142 2
2020 2019 2020 2020; 120 4 59 49
2020 2021; 142 33
2018 2010 2016; 12 3 55
2022 2022 2022 2020; 13 303 32 142
2022 2022 2022; 55 61 34
2022 2022 2019 2021; 144 61 48 143
2020; 14
2019 2019; 9 259
2019 2015; 4 137
2023 2020; 14 142
2022 2022 2022; 144 134 144
2022 2019; 61 58
2016; 140
2021; 14
2022 2021; 61 33
2022 2018 2022; 445 118 304
2021 2018; 60 140
2019 2019; 517 4
2020 2020; 142 142
2019 2021; 31 60
2023; 475
2019 2022 2020 2021; 141 144 49 143
2023 2020; 145 142
2021 2021; 280 79
2021; 60
2020 2017 2016 2019 2009; 120 117 45 10 8
2019 2019 2021; 48 141 12
2021 2017 2015; 12 139 6
2018; 57
References_xml – volume: 142 142
  year: 2020 2020
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 13 303 32 142
  start-page: 1355
  year: 2022 2022 2022 2020
  publication-title: Nat. Commun. Appl. Catal., B Adv. Funct. Mater. J. Am. Chem. Soc.
– volume: 14
  start-page: 2429
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 12 139 6
  start-page: 1354 8693 8508
  year: 2021 2017 2015
  publication-title: Nat. Commun. J. Am. Chem. Soc. Nat. Commun.
– volume: 31 60
  year: 2019 2021
  publication-title: Adv. Mater. Angew. Chem., Int. Ed.
– volume: 12 3 55
  start-page: 5385 1961 7166
  year: 2018 2010 2016
  publication-title: ACS Nano Energy Environ. Sci. Angew. Chem., Int. Ed.
– volume: 142 33
  year: 2020 2021
  publication-title: J. Am. Chem. Soc. Adv. Mater.
– volume: 141 144 49 143
  start-page: 3565 7104
  year: 2019 2022 2020 2021
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. Chem. Soc. Rev. J. Am. Chem. Soc.
– volume: 142 2
  start-page: 416
  year: 2020 2020
  publication-title: J. Am. Chem. Soc. Matter
– volume: 145 142
  start-page: 3248
  year: 2023 2020
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 140
  start-page: 1
  year: 2016
  publication-title: Chem. Eng. Sci.
– volume: 60 140
  year: 2021 2018
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 144 134 144
  start-page: 5145 2468
  year: 2022 2022 2022
  publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 60
  start-page: 4815
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 4 137
  start-page: 690
  year: 2019 2015
  publication-title: Nat. Energy J. Am. Chem. Soc.
– volume: 14 142
  start-page: 593 4508
  year: 2023 2020
  publication-title: Nat. Commun. J. Am. Chem. Soc.
– volume: 280 79
  year: 2021 2021
  publication-title: Appl. Catal., B Nano Energy
– volume: 120 117 45 10 8
  start-page: 7113 4307 2020 621
  year: 2020 2017 2016 2019 2009
  publication-title: Chem. Rev. Chem. Rev. Chem. Soc. Rev. Nat. Commun. Nat. Mater.
– volume: 55 61 34
  start-page: 978
  year: 2022 2022 2022
  publication-title: Acc. Chem. Res. Angew. Chem., Int. Ed. Adv. Mater.
– volume: 120 4 59 49
  start-page: 957 6579
  year: 2020 2019 2020 2020
  publication-title: Chem. Rev. Nat. Energy Angew. Chem., Int. Ed. Chem. Soc. Rev.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 60
  start-page: 4864
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 8719
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 144 61 48 143
  start-page: 488 3509
  year: 2022 2022 2019 2021
  publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. Chem. Soc. Rev. J. Am. Chem. Soc.
– volume: 445 118 304
  start-page: 5242
  year: 2022 2018 2022
  publication-title: Chem. Eng. J. Chem. Rev. Appl. Catal., B
– volume: 9 259
  start-page: 4573
  year: 2019 2019
  publication-title: ACS Catal. Appl. Catal., B
– volume: 517 4
  start-page: 104 2251
  year: 2019 2019
  publication-title: Chem. Phys. ACS Energy Lett.
– volume: 61 58
  start-page: 3880
  year: 2022 2019
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 61 33
  year: 2022 2021
  publication-title: Angew. Chem., Int. Ed. Adv. Mater.
– volume: 9
  start-page: 5590
  year: 2019
  publication-title: ACS Catal.
– volume: 48 141 12
  start-page: 5310 6617 4276
  year: 2019 2019 2021
  publication-title: Chem. Soc. Rev. J. Am. Chem. Soc. Nat. Commun.
– volume: 475
  year: 2023
  publication-title: Coord. Chem. Rev.
SSID ssj0009606
Score 2.6753857
Snippet Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon‐resources recycling...
Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon-resources recycling...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2304170
SubjectTerms Carbon dioxide
Catalytic activity
covalent organic frameworks
diluted CO2 reduction
Dilution
Enrichment
Ionic liquids
Materials science
natural sunlight driven
Oxidation
Photocatalysis
Photosynthesis
Reduction
Sunlight
three‐in‐one photocatalysts
Title Integrating Enrichment, Reduction, and Oxidation Sites in One System for Artificial Photosynthetic Diluted CO2 Reduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202304170
https://www.proquest.com/docview/2872182858
https://www.proquest.com/docview/2830222962
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bT8IwFMcbw5M-eDeiaGriI-PSrWM8Ei5BE8SgJLwtXdsFYtIRGQn66T1nhQE-6tuarbvk9LT_c9b-SshjrGMI_pmEMDVijsdrsRNJIRzNG5H2cU04x4XCgxe_P_aeJ3yys4rf8iHyhBt6RtZfo4OLaFHdQkOFyrhBmNSsNzBoxwlbqIpGW34UyvMMtudyp-l7wYbaWGPV_ep7-nJXpWbDTO-EiM0L2tklH5VlGlXk9y9243--4JQcrzUobdlGc0YOtDknRztkwguyelpjJKBEuwY6yymmEct0hKhXNGaZCqPocDWzmzLRN9CuCzozdGg0tRx0CoI4e4qlVNDXaZImiy8DmhOeTDszaPVa0faQbW97Sca97nu776w3aXDmMLZDH65lFLheECsvVhCt6QAimDqHgc_lQoCA88DLmeIMmoR0Xd-XStaUp5q414yvau4VKZjE6GtCtcqyYrFkElQaVJfCFSCfGroBOlPJIiltjBSuPW0RQsSHEPqAB0XykJ8GH8EfH8LoZInXuBjXNn1WJCyzSDi3LI_QUptZiLYIc1uErc6glZdu_lLplhzisZ33VyKF9HOp70C_pNF91kZ_AHno58c
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT4MwFMcbowf14G_jdGpNPA7FQoEdl00zf2wzOhNvpLQlLiadcSxR_3rfo8CcRz0WKD_y-trve7SfEnKa6hSCfyYhTE2Y43M3dRIphKN5mOgA14RzXCjc6wfdJ__mmZezCXEtjOVDVAk39Iy8v0YHx4T0-YwaKlQODsKs5kUIUfsSbuuN-PzOw4wghQI9x-153GkGflRyG112Pl9_TmH-1Kn5QHO1TpLyFe38ktezaZacya9f9MZ_fcMGWStkKG3ZdrNJFrTZIqs_4ITb5OO6IElAiV4a6C9fMJPYoA9Ie0V7Nqgwig4-RnZfJvoI8nVCR4YOjKYWhU5BE-dPsaAKev8yzsaTTwOyE55MOyNo-FrR9oDNbrtDnq4uh-2uU-zT4LzB8A7duJZJ5PlRqvxUQcCmIwhiLjiMfR4XAjScD47OFGfQKqTnBYFU0lW-auJ2M4FyvV2yaMZG7xGqVZ4YSyWTINSguhSeAAUV6hCkppI1Ui-tFBfONokh6EMOfcSjGjmpToOb4L8PYfR4itd4GNo2A1YjLDdJ_GZxHrEFN7MYbRFXtohbnV6rKu3_pdIxWe4Oe3fx3XX_9oCs4HE7DbBOFrP3qT4EOZMlR3mD_QYIZevj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFG4MJkYfvBtR1Jr4yGB06xiPhEtERQxqwtvStV0gJoUIJOiv95yVq4_62G3dJeec9vvO2u8QcpfoBMg_k0BTY-b43E2cWArhaF6OdYB7wjluFG4_B_fv_kOP99Z28Vt9iGXCDSMjHa8xwEcqKa5EQ4VKdYMwqVkqA2nf9gO3gsUb6t2VgBTi81Rtz-NOJfDDhWyjy4qb_TcA5jpMTeeZ5gERize0y0s-CtNJXJDfv8Qb__MJh2R_DkJp1XrNEdnS5pjsrUkTnpBZa64jAS3aMDBa9jGPmKdd1HpFa-apMIp2ZgNblYm-Angd04GhHaOpFUKngIjTp1iZCvrSH06G4y8DoBOeTOsDcHutaK3DVrc9Je_Nxlvt3plXaXBGMLnDIK5lHHp-mCg_UUDXdAgUpsRh5vO4EIDgfAhzpjgDn5CeFwRSSVf5qoLFZgLlemckY4ZGnxOqVZoWSySTANOguxSeAPxU1mUAmkpmSW5hpGgeauMIKB-q0Ic8zJLb5WkIEvzzIYweTvEaD4ltJWBZwlKLRCMr5hFZ2WYWoS2ipS2iar1dXbYu_tLphuy81JvRU-v58ZLs4mG7BjBHMpPPqb4CLDOJr1N3_QFPtOqS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Enrichment%2C+Reduction%2C+and+Oxidation+Sites+in+One+System+for+Artificial+Photosynthetic+Diluted+CO2+Reduction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yang%2C+Yan&rft.au=Zhang%2C+Hong-Yu&rft.au=Wang%2C+Ya&rft.au=Shao%2C+Lu-Hua&rft.date=2023-10-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=35&rft.issue=40&rft.spage=e2304170&rft_id=info:doi/10.1002%2Fadma.202304170&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon