Integrating Enrichment, Reduction, and Oxidation Sites in One System for Artificial Photosynthetic Diluted CO2 Reduction
Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon‐resources recycling utilization. Herein, a three‐in‐one photocatalytic system of CO2 enrichment, CO2 reduction and H2O oxidation sites is designed for diluted CO2...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 40; pp. e2304170 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon‐resources recycling utilization. Herein, a three‐in‐one photocatalytic system of CO2 enrichment, CO2 reduction and H2O oxidation sites is designed for diluted CO2 reduction. A Zn‐Salen‐based covalent organic framework (Zn‐S‐COF) with oxidation and reductive sites is synthesized; then, ionic liquids (ILs) are loaded into the pores. As a result, [Emim]BF4@Zn‐S‐COF shows a visible‐light‐driven CO2‐to‐CO conversion rate of 105.88 µmol g−1 h−1 under diluted CO2 (15%) atmosphere, even superior than most photocatalysts in high concentrations CO2. Moreover, natural sunlight driven diluted CO2 reduction rate also reaches 126.51 µmol g−1 in 5 h. Further experiments and theoretical calculations reveal that the triazine ring in the Zn‐S‐COF promotes the activity of H2O oxidation and CO2 reduction sites, and the loaded ILs provide an enriched CO2 atmosphere, realizing the efficient photocatalytic activity in diluted CO2 reduction.
A three‐in‐one photocatalytic system of CO2 enrichment, CO2 reduction, and H2O oxidation sites is designed for diluted CO2 reduction, and the [Emim]BF4@Zn‐Salen‐COF shows excellent visible‐light‐driven and natural‐sunlight‐driven CO2‐to‐CO conversion activity under diluted CO2 (15%) atmosphere. |
---|---|
AbstractList | Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon-resources recycling utilization. Herein, a three-in-one photocatalytic system of CO2 enrichment, CO2 reduction and H2 O oxidation sites is designed for diluted CO2 reduction. A Zn-Salen-based covalent organic framework (Zn-S-COF) with oxidation and reductive sites is synthesized; then, ionic liquids (ILs) are loaded into the pores. As a result, [Emim]BF4 @Zn-S-COF shows a visible-light-driven CO2 -to-CO conversion rate of 105.88 µmol g-1 h-1 under diluted CO2 (15%) atmosphere, even superior than most photocatalysts in high concentrations CO2 . Moreover, natural sunlight driven diluted CO2 reduction rate also reaches 126.51 µmol g-1 in 5 h. Further experiments and theoretical calculations reveal that the triazine ring in the Zn-S-COF promotes the activity of H2 O oxidation and CO2 reduction sites, and the loaded ILs provide an enriched CO2 atmosphere, realizing the efficient photocatalytic activity in diluted CO2 reduction.Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon-resources recycling utilization. Herein, a three-in-one photocatalytic system of CO2 enrichment, CO2 reduction and H2 O oxidation sites is designed for diluted CO2 reduction. A Zn-Salen-based covalent organic framework (Zn-S-COF) with oxidation and reductive sites is synthesized; then, ionic liquids (ILs) are loaded into the pores. As a result, [Emim]BF4 @Zn-S-COF shows a visible-light-driven CO2 -to-CO conversion rate of 105.88 µmol g-1 h-1 under diluted CO2 (15%) atmosphere, even superior than most photocatalysts in high concentrations CO2 . Moreover, natural sunlight driven diluted CO2 reduction rate also reaches 126.51 µmol g-1 in 5 h. Further experiments and theoretical calculations reveal that the triazine ring in the Zn-S-COF promotes the activity of H2 O oxidation and CO2 reduction sites, and the loaded ILs provide an enriched CO2 atmosphere, realizing the efficient photocatalytic activity in diluted CO2 reduction. Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon‐resources recycling utilization. Herein, a three‐in‐one photocatalytic system of CO2 enrichment, CO2 reduction and H2O oxidation sites is designed for diluted CO2 reduction. A Zn‐Salen‐based covalent organic framework (Zn‐S‐COF) with oxidation and reductive sites is synthesized; then, ionic liquids (ILs) are loaded into the pores. As a result, [Emim]BF4@Zn‐S‐COF shows a visible‐light‐driven CO2‐to‐CO conversion rate of 105.88 µmol g−1 h−1 under diluted CO2 (15%) atmosphere, even superior than most photocatalysts in high concentrations CO2. Moreover, natural sunlight driven diluted CO2 reduction rate also reaches 126.51 µmol g−1 in 5 h. Further experiments and theoretical calculations reveal that the triazine ring in the Zn‐S‐COF promotes the activity of H2O oxidation and CO2 reduction sites, and the loaded ILs provide an enriched CO2 atmosphere, realizing the efficient photocatalytic activity in diluted CO2 reduction. Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon‐resources recycling utilization. Herein, a three‐in‐one photocatalytic system of CO2 enrichment, CO2 reduction and H2O oxidation sites is designed for diluted CO2 reduction. A Zn‐Salen‐based covalent organic framework (Zn‐S‐COF) with oxidation and reductive sites is synthesized; then, ionic liquids (ILs) are loaded into the pores. As a result, [Emim]BF4@Zn‐S‐COF shows a visible‐light‐driven CO2‐to‐CO conversion rate of 105.88 µmol g−1 h−1 under diluted CO2 (15%) atmosphere, even superior than most photocatalysts in high concentrations CO2. Moreover, natural sunlight driven diluted CO2 reduction rate also reaches 126.51 µmol g−1 in 5 h. Further experiments and theoretical calculations reveal that the triazine ring in the Zn‐S‐COF promotes the activity of H2O oxidation and CO2 reduction sites, and the loaded ILs provide an enriched CO2 atmosphere, realizing the efficient photocatalytic activity in diluted CO2 reduction. A three‐in‐one photocatalytic system of CO2 enrichment, CO2 reduction, and H2O oxidation sites is designed for diluted CO2 reduction, and the [Emim]BF4@Zn‐Salen‐COF shows excellent visible‐light‐driven and natural‐sunlight‐driven CO2‐to‐CO conversion activity under diluted CO2 (15%) atmosphere. |
Author | Zhang, Hong‐Yu Lu, Meng Dong, Hong Lan, Ya‐Qian Shao, Lu‐Hua Zhang, Feng‐Ming Yang, Yan Wang, Ya Dong, Long‐Zhang Fang, Liang |
Author_xml | – sequence: 1 givenname: Yan surname: Yang fullname: Yang, Yan organization: Harbin Institute of Technology – sequence: 2 givenname: Hong‐Yu surname: Zhang fullname: Zhang, Hong‐Yu organization: Harbin Institute of Technology – sequence: 3 givenname: Ya surname: Wang fullname: Wang, Ya organization: Harbin University of Science and Technology – sequence: 4 givenname: Lu‐Hua surname: Shao fullname: Shao, Lu‐Hua organization: Harbin University of Science and Technology – sequence: 5 givenname: Liang surname: Fang fullname: Fang, Liang organization: Harbin University of Science and Technology – sequence: 6 givenname: Hong surname: Dong fullname: Dong, Hong organization: Harbin University of Science and Technology – sequence: 7 givenname: Meng surname: Lu fullname: Lu, Meng organization: South China Normal University – sequence: 8 givenname: Long‐Zhang surname: Dong fullname: Dong, Long‐Zhang organization: South China Normal University – sequence: 9 givenname: Ya‐Qian surname: Lan fullname: Lan, Ya‐Qian organization: South China Normal University – sequence: 10 givenname: Feng‐Ming orcidid: 0000-0002-2738-306X surname: Zhang fullname: Zhang, Feng‐Ming email: zhangfengming@hrbust.edu.cn organization: Harbin University of Science and Technology |
BookMark | eNpdkc9LwzAYhoMouKlXzwEvHuz8kjRZehzb_AGTidNziUm6ZbTpbFLc_ns7JhM8fbzw8PK9PH106mtvEbomMCAA9F6ZSg0oUAYpGcIJ6hFOSZJCxk9RDzLGk0yk8hz1Q1gDQCZA9ND22Ue7bFR0fomnvnF6VVkf7_CbNa2OrvZ3WHmD51tn1D7ihYs2YOfx3Fu82IVoK1zUDR410RVOO1Xi11Ud67DzcWWj03jiyjZag8dz-ld7ic4KVQZ79Xsv0MfD9H38lMzmj8_j0SzZUCEgYVZ_SpbKwqSFISlYyYeCcAmEcaW6bSlnhBpOM2CaMSG00WBSk3X7iDDALtDtoXfT1F-tDTGvXNC2LJW3dRtyKhlQSjNBO_TmH7qu28Z333XUkBJJJZcdlR2ob1faXb5pXKWaXU4g31vI9xbyo4V8NHkZHRP7AYl7fng |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202304170 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA202304170 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22178077 – fundername: Shandong Provincial Natural Science Foundation funderid: ZR2022MB126 – fundername: Postdoctoral Scientific Research Start‐Up Project in Heilongjiang Province funderid: LBH‐Q19111 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-p2660-3ecb8348fd4fd140e85761580135aa09545312d52903c3366cdc0d4d909616d03 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 10:18:23 EDT 2025 Fri Jul 25 22:36:19 EDT 2025 Tue Jan 21 03:11:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2660-3ecb8348fd4fd140e85761580135aa09545312d52903c3366cdc0d4d909616d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2738-306X |
PQID | 2872182858 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2830222962 proquest_journals_2872182858 wiley_primary_10_1002_adma_202304170_ADMA202304170 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 9 2020 2020; 142 2 2020 2019 2020 2020; 120 4 59 49 2020 2021; 142 33 2018 2010 2016; 12 3 55 2022 2022 2022 2020; 13 303 32 142 2022 2022 2022; 55 61 34 2022 2022 2019 2021; 144 61 48 143 2020; 14 2019 2019; 9 259 2019 2015; 4 137 2023 2020; 14 142 2022 2022 2022; 144 134 144 2022 2019; 61 58 2016; 140 2021; 14 2022 2021; 61 33 2022 2018 2022; 445 118 304 2021 2018; 60 140 2019 2019; 517 4 2020 2020; 142 142 2019 2021; 31 60 2023; 475 2019 2022 2020 2021; 141 144 49 143 2023 2020; 145 142 2021 2021; 280 79 2021; 60 2020 2017 2016 2019 2009; 120 117 45 10 8 2019 2019 2021; 48 141 12 2021 2017 2015; 12 139 6 2018; 57 |
References_xml | – volume: 142 142 year: 2020 2020 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 13 303 32 142 start-page: 1355 year: 2022 2022 2022 2020 publication-title: Nat. Commun. Appl. Catal., B Adv. Funct. Mater. J. Am. Chem. Soc. – volume: 14 start-page: 2429 year: 2021 publication-title: Energy Environ. Sci. – volume: 12 139 6 start-page: 1354 8693 8508 year: 2021 2017 2015 publication-title: Nat. Commun. J. Am. Chem. Soc. Nat. Commun. – volume: 31 60 year: 2019 2021 publication-title: Adv. Mater. Angew. Chem., Int. Ed. – volume: 12 3 55 start-page: 5385 1961 7166 year: 2018 2010 2016 publication-title: ACS Nano Energy Environ. Sci. Angew. Chem., Int. Ed. – volume: 142 33 year: 2020 2021 publication-title: J. Am. Chem. Soc. Adv. Mater. – volume: 141 144 49 143 start-page: 3565 7104 year: 2019 2022 2020 2021 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. Chem. Soc. Rev. J. Am. Chem. Soc. – volume: 142 2 start-page: 416 year: 2020 2020 publication-title: J. Am. Chem. Soc. Matter – volume: 145 142 start-page: 3248 year: 2023 2020 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 140 start-page: 1 year: 2016 publication-title: Chem. Eng. Sci. – volume: 60 140 year: 2021 2018 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 144 134 144 start-page: 5145 2468 year: 2022 2022 2022 publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 60 start-page: 4815 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 4 137 start-page: 690 year: 2019 2015 publication-title: Nat. Energy J. Am. Chem. Soc. – volume: 14 142 start-page: 593 4508 year: 2023 2020 publication-title: Nat. Commun. J. Am. Chem. Soc. – volume: 280 79 year: 2021 2021 publication-title: Appl. Catal., B Nano Energy – volume: 120 117 45 10 8 start-page: 7113 4307 2020 621 year: 2020 2017 2016 2019 2009 publication-title: Chem. Rev. Chem. Rev. Chem. Soc. Rev. Nat. Commun. Nat. Mater. – volume: 55 61 34 start-page: 978 year: 2022 2022 2022 publication-title: Acc. Chem. Res. Angew. Chem., Int. Ed. Adv. Mater. – volume: 120 4 59 49 start-page: 957 6579 year: 2020 2019 2020 2020 publication-title: Chem. Rev. Nat. Energy Angew. Chem., Int. Ed. Chem. Soc. Rev. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 60 start-page: 4864 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 8719 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 144 61 48 143 start-page: 488 3509 year: 2022 2022 2019 2021 publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. Chem. Soc. Rev. J. Am. Chem. Soc. – volume: 445 118 304 start-page: 5242 year: 2022 2018 2022 publication-title: Chem. Eng. J. Chem. Rev. Appl. Catal., B – volume: 9 259 start-page: 4573 year: 2019 2019 publication-title: ACS Catal. Appl. Catal., B – volume: 517 4 start-page: 104 2251 year: 2019 2019 publication-title: Chem. Phys. ACS Energy Lett. – volume: 61 58 start-page: 3880 year: 2022 2019 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 61 33 year: 2022 2021 publication-title: Angew. Chem., Int. Ed. Adv. Mater. – volume: 9 start-page: 5590 year: 2019 publication-title: ACS Catal. – volume: 48 141 12 start-page: 5310 6617 4276 year: 2019 2019 2021 publication-title: Chem. Soc. Rev. J. Am. Chem. Soc. Nat. Commun. – volume: 475 year: 2023 publication-title: Coord. Chem. Rev. |
SSID | ssj0009606 |
Score | 2.6753857 |
Snippet | Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon‐resources recycling... Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon-resources recycling... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2304170 |
SubjectTerms | Carbon dioxide Catalytic activity covalent organic frameworks diluted CO2 reduction Dilution Enrichment Ionic liquids Materials science natural sunlight driven Oxidation Photocatalysis Photosynthesis Reduction Sunlight three‐in‐one photocatalysts |
Title | Integrating Enrichment, Reduction, and Oxidation Sites in One System for Artificial Photosynthetic Diluted CO2 Reduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202304170 https://www.proquest.com/docview/2872182858 https://www.proquest.com/docview/2830222962 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bT8IwFMcbw5M-eDeiaGriI-PSrWM8Ei5BE8SgJLwtXdsFYtIRGQn66T1nhQE-6tuarbvk9LT_c9b-SshjrGMI_pmEMDVijsdrsRNJIRzNG5H2cU04x4XCgxe_P_aeJ3yys4rf8iHyhBt6RtZfo4OLaFHdQkOFyrhBmNSsNzBoxwlbqIpGW34UyvMMtudyp-l7wYbaWGPV_ep7-nJXpWbDTO-EiM0L2tklH5VlGlXk9y9243--4JQcrzUobdlGc0YOtDknRztkwguyelpjJKBEuwY6yymmEct0hKhXNGaZCqPocDWzmzLRN9CuCzozdGg0tRx0CoI4e4qlVNDXaZImiy8DmhOeTDszaPVa0faQbW97Sca97nu776w3aXDmMLZDH65lFLheECsvVhCt6QAimDqHgc_lQoCA88DLmeIMmoR0Xd-XStaUp5q414yvau4VKZjE6GtCtcqyYrFkElQaVJfCFSCfGroBOlPJIiltjBSuPW0RQsSHEPqAB0XykJ8GH8EfH8LoZInXuBjXNn1WJCyzSDi3LI_QUptZiLYIc1uErc6glZdu_lLplhzisZ33VyKF9HOp70C_pNF91kZ_AHno58c |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT4MwFMcbowf14G_jdGpNPA7FQoEdl00zf2wzOhNvpLQlLiadcSxR_3rfo8CcRz0WKD_y-trve7SfEnKa6hSCfyYhTE2Y43M3dRIphKN5mOgA14RzXCjc6wfdJ__mmZezCXEtjOVDVAk39Iy8v0YHx4T0-YwaKlQODsKs5kUIUfsSbuuN-PzOw4wghQI9x-153GkGflRyG112Pl9_TmH-1Kn5QHO1TpLyFe38ktezaZacya9f9MZ_fcMGWStkKG3ZdrNJFrTZIqs_4ITb5OO6IElAiV4a6C9fMJPYoA9Ie0V7Nqgwig4-RnZfJvoI8nVCR4YOjKYWhU5BE-dPsaAKev8yzsaTTwOyE55MOyNo-FrR9oDNbrtDnq4uh-2uU-zT4LzB8A7duJZJ5PlRqvxUQcCmIwhiLjiMfR4XAjScD47OFGfQKqTnBYFU0lW-auJ2M4FyvV2yaMZG7xGqVZ4YSyWTINSguhSeAAUV6hCkppI1Ui-tFBfONokh6EMOfcSjGjmpToOb4L8PYfR4itd4GNo2A1YjLDdJ_GZxHrEFN7MYbRFXtohbnV6rKu3_pdIxWe4Oe3fx3XX_9oCs4HE7DbBOFrP3qT4EOZMlR3mD_QYIZevj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFG4MJkYfvBtR1Jr4yGB06xiPhEtERQxqwtvStV0gJoUIJOiv95yVq4_62G3dJeec9vvO2u8QcpfoBMg_k0BTY-b43E2cWArhaF6OdYB7wjluFG4_B_fv_kOP99Z28Vt9iGXCDSMjHa8xwEcqKa5EQ4VKdYMwqVkqA2nf9gO3gsUb6t2VgBTi81Rtz-NOJfDDhWyjy4qb_TcA5jpMTeeZ5gERize0y0s-CtNJXJDfv8Qb__MJh2R_DkJp1XrNEdnS5pjsrUkTnpBZa64jAS3aMDBa9jGPmKdd1HpFa-apMIp2ZgNblYm-Angd04GhHaOpFUKngIjTp1iZCvrSH06G4y8DoBOeTOsDcHutaK3DVrc9Je_Nxlvt3plXaXBGMLnDIK5lHHp-mCg_UUDXdAgUpsRh5vO4EIDgfAhzpjgDn5CeFwRSSVf5qoLFZgLlemckY4ZGnxOqVZoWSySTANOguxSeAPxU1mUAmkpmSW5hpGgeauMIKB-q0Ic8zJLb5WkIEvzzIYweTvEaD4ltJWBZwlKLRCMr5hFZ2WYWoS2ipS2iar1dXbYu_tLphuy81JvRU-v58ZLs4mG7BjBHMpPPqb4CLDOJr1N3_QFPtOqS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Enrichment%2C+Reduction%2C+and+Oxidation+Sites+in+One+System+for+Artificial+Photosynthetic+Diluted+CO2+Reduction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yang%2C+Yan&rft.au=Zhang%2C+Hong-Yu&rft.au=Wang%2C+Ya&rft.au=Shao%2C+Lu-Hua&rft.date=2023-10-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=35&rft.issue=40&rft.spage=e2304170&rft_id=info:doi/10.1002%2Fadma.202304170&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |