CO2 Dependence in Global Estimation of All‐Sky Downwelling Longwave: Parameterization and Model Comparison
The downwelling longwave radiation at the surface (DLR) is a key component of the Earth's surface energy budget. We present a novel set of equations that explicitly account for both clouds and the CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ effect to calculate the all‐sky DLR. This paper first ex...
Saved in:
Published in | Geophysical research letters Vol. 51; no. 18 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
28.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0094-8276 1944-8007 |
DOI | 10.1029/2024GL110384 |
Cover
Abstract | The downwelling longwave radiation at the surface (DLR) is a key component of the Earth's surface energy budget. We present a novel set of equations that explicitly account for both clouds and the CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ effect to calculate the all‐sky DLR. This paper first extends the clear‐sky DLR model of Shakespeare and Roderick (2021, https://doi.org/10.1002/qj.4176) to include temperature inversions and clouds. We parameterize relevant cloud properties through theoretical and empirical considerations to formulate an all‐sky model. Our model is more accurate than existing methods (reduces Root Mean Squared Error by 2.1–8.7 W/m2 $\mathrm{W}/{\mathrm{m}}^{\mathrm{2}}$ and 1.2–10.1 W/m2 $\mathrm{W}/{\mathrm{m}}^{\mathrm{2}}$ compared to ERA5 reanalysis and in‐situ data respectively), and provides a strong physical basis for the estimation of the downwelling longwave from near‐surface information. We highlight the important role of CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ dependence by showing our model largely captures the change in atmospheric emissivity purely due to CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ (i.e., the instantaneous radiative forcing) in CMIP6 models.
Plain Language Summary
The downwelling longwave radiation (DLR) at the surface is a key component of the energy balance at the Earth's surface. Understanding how the DLR will change under future climate conditions is vital. For the first time, we explicitly write a set of equations to calculate the DLR that sufficiently account for the impact of CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ and clouds simultaneously. Our model is more accurate than existing methods, and provides a much stronger physical basis for the estimation of the downwelling longwave from near‐surface information. In this paper, we extend an existing method for estimating the DLR under clear‐sky conditions (i.e., no clouds) to operate under all sky conditions. This method can be used to inform models where the DLR is needed, but only basic observations are available.
Key Points
Downwelling longwave radiation (DLR) is a poorly estimated element of the surface energy budget by existing analytical models
Explicitly accounting for temperature inversions and cloud emissivities improves the accuracy of DLR estimation
Considering the radiative forcing from increasing CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ is necessary to produce unbiased future estimates of DLR |
---|---|
AbstractList | The downwelling longwave radiation at the surface (DLR) is a key component of the Earth's surface energy budget. We present a novel set of equations that explicitly account for both clouds and the CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ effect to calculate the all‐sky DLR. This paper first extends the clear‐sky DLR model of Shakespeare and Roderick (2021, https://doi.org/10.1002/qj.4176) to include temperature inversions and clouds. We parameterize relevant cloud properties through theoretical and empirical considerations to formulate an all‐sky model. Our model is more accurate than existing methods (reduces Root Mean Squared Error by 2.1–8.7 W/m2 $\mathrm{W}/{\mathrm{m}}^{\mathrm{2}}$ and 1.2–10.1 W/m2 $\mathrm{W}/{\mathrm{m}}^{\mathrm{2}}$ compared to ERA5 reanalysis and in‐situ data respectively), and provides a strong physical basis for the estimation of the downwelling longwave from near‐surface information. We highlight the important role of CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ dependence by showing our model largely captures the change in atmospheric emissivity purely due to CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ (i.e., the instantaneous radiative forcing) in CMIP6 models.
Plain Language Summary
The downwelling longwave radiation (DLR) at the surface is a key component of the energy balance at the Earth's surface. Understanding how the DLR will change under future climate conditions is vital. For the first time, we explicitly write a set of equations to calculate the DLR that sufficiently account for the impact of CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ and clouds simultaneously. Our model is more accurate than existing methods, and provides a much stronger physical basis for the estimation of the downwelling longwave from near‐surface information. In this paper, we extend an existing method for estimating the DLR under clear‐sky conditions (i.e., no clouds) to operate under all sky conditions. This method can be used to inform models where the DLR is needed, but only basic observations are available.
Key Points
Downwelling longwave radiation (DLR) is a poorly estimated element of the surface energy budget by existing analytical models
Explicitly accounting for temperature inversions and cloud emissivities improves the accuracy of DLR estimation
Considering the radiative forcing from increasing CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ is necessary to produce unbiased future estimates of DLR The downwelling longwave radiation at the surface (DLR) is a key component of the Earth's surface energy budget. We present a novel set of equations that explicitly account for both clouds and the CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ effect to calculate the all‐sky DLR. This paper first extends the clear‐sky DLR model of Shakespeare and Roderick (2021, https://doi.org/10.1002/qj.4176) to include temperature inversions and clouds. We parameterize relevant cloud properties through theoretical and empirical considerations to formulate an all‐sky model. Our model is more accurate than existing methods (reduces Root Mean Squared Error by 2.1–8.7 W/m2 $\mathrm{W}/{\mathrm{m}}^{\mathrm{2}}$ and 1.2–10.1 W/m2 $\mathrm{W}/{\mathrm{m}}^{\mathrm{2}}$ compared to ERA5 reanalysis and in‐situ data respectively), and provides a strong physical basis for the estimation of the downwelling longwave from near‐surface information. We highlight the important role of CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ dependence by showing our model largely captures the change in atmospheric emissivity purely due to CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ (i.e., the instantaneous radiative forcing) in CMIP6 models. |
Author | Kawaguchi, Koh Roderick, Michael L. Shakespeare, Callum J. |
Author_xml | – sequence: 1 givenname: Koh orcidid: 0000-0002-9438-3895 surname: Kawaguchi fullname: Kawaguchi, Koh email: kohkawaguchitas@gmail.com, koh.kawaguchi@anu.edu.au organization: Australian National University – sequence: 2 givenname: Callum J. orcidid: 0000-0002-8109-0751 surname: Shakespeare fullname: Shakespeare, Callum J. organization: Australian National University – sequence: 3 givenname: Michael L. surname: Roderick fullname: Roderick, Michael L. organization: Australian National University |
BookMark | eNpNUL1OwzAYtFCRaAsbD2CJOWB_dh2HrUpLQAoq4meO3NiuUlw7JC1RmXgEnpEnIagMTHfD_ehuhAY-eIPQOSWXlEByBQR4llNKmORHaEgTziNJSDxAQ0KSnkMsTtCobdeEEEYYHSKXLgDPTG28Nr40uPI4c2GpHJ6322qjtlXwOFg8de778-vpdY9nofOdca7yK5wHv-rUu7nGD6pRG7M1TfVx8Civ8X3QxuE0bGrVVG3wp-jYKteasz8co5eb-XN6G-WL7C6d5lENgstIA9VJwrUWwpYcGGPcSKknMejSxiVAaUsgSwsANlZMGSKU5GAln4ARVLAxujjk1k1425l2W6zDrvF9ZcEoSeIJE1T2KjiousqZfVE3_dxmX1BS_J5Z_D-zyB5zISlI9gN242sp |
ContentType | Journal Article |
Copyright | 2024. The Author(s). 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Author(s). – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1029/2024GL110384 |
DatabaseName | Wiley Online Library Open Access Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | GRL68128 |
Genre | article |
GrantInformation_xml | – fundername: Australian National University funderid: SCHNUSU6983480 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA GROUPED_DOAJ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A 7TG 7TN 8FD AAFWJ AAMMB ACTHY AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-p2648-d21d994dd66fc423334e88d572dcf7c22cfc20bf222f7a3ae06a842f8452e6163 |
IEDL.DBID | 24P |
ISSN | 0094-8276 |
IngestDate | Fri Jul 25 12:16:02 EDT 2025 Wed Jan 22 17:14:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2648-d21d994dd66fc423334e88d572dcf7c22cfc20bf222f7a3ae06a842f8452e6163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9438-3895 0000-0002-8109-0751 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL110384 |
PQID | 3109753618 |
PQPubID | 54723 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3109753618 wiley_primary_10_1029_2024GL110384_GRL68128 |
PublicationCentury | 2000 |
PublicationDate | 28 September 2024 |
PublicationDateYYYYMMDD | 2024-09-28 |
PublicationDate_xml | – month: 09 year: 2024 text: 28 September 2024 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
RelatedPersons | Shakespeare, William (1564-1616) |
RelatedPersons_xml | – fullname: Shakespeare, William (1564-1616) |
SSID | ssj0003031 |
Score | 2.456808 |
Snippet | The downwelling longwave radiation at the surface (DLR) is a key component of the Earth's surface energy budget. We present a novel set of equations that... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Carbon dioxide Climatic conditions cloud Cloud properties Clouds Downwelling downwelling longwave radiation Earth surface Emissivity Energy balance Energy budget Estimation Future climates Inversions Long wave radiation Parameterization Radiation Radiative forcing Shakespeare, William (1564-1616) Sky models Surface energy Surface properties Temperature inversion Temperature inversions |
Title | CO2 Dependence in Global Estimation of All‐Sky Downwelling Longwave: Parameterization and Model Comparison |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL110384 https://www.proquest.com/docview/3109753618 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA3aIngRP7FaSw7eZHGTZpOst9JPpGpRV4qXJbtJRFy2xValN3-Cv9FfYpJdSz16C2FzmWQmb7Iz7wFwihKFmGahJ5qCeESaUSh97SEtOFWCEu3omq6u6SAil-NgXD642V6Ygh9i-eBmPcPFa-vgIpmVZAOWI9Nk7aQ_RJbgm6yDqu2utdINmIyWkdiE50IxLyQex4yWhe9m_fnq6j_gchWiujumtw22SnAIW8Vu7oA1le-Cjb4T312YkSvXTGd7IGvfYNgp9WtTBZ9zWJD3w65x2aIbEU40bGXZ9-fX3csCdky2bd_pzE0Fh5P86UO8qws4ErY2y9I1F92YUOQSWnm0DLaXAoX7IOp179sDr9RN8Ka2Xs2TGMkwJFJSqlMDl5pNojiXAcMy1SzFONUp9hNtoIFmZo-UTwUnWHMSYEUNQDsAlXySq0MAqRRYIkw1p4ykiCUBYlwiKZMkpNxnNVD_NV1cHv5ZbMlGTRZEEa-BM2fOeFpQZ8TulzcO41Xzx_3boWVB40f_-voYbNp5W7uBeR1U5q9v6sQAhHnScKegAaqth-gxarg0-wc6O7YA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhECVaY_Ri_IzVqhy8mY2FssB6a_qpbmujbeJtwy5gjJttY6umN3-Cv9FfIrBrU4_eOMBlgOHNMPMeAOcoVohpFniiJohHpBkFsqo9pAWnSlCiHV1Tr0-7I3Lz6D8WOqe2Fybnh1gk3OzNcP7aXnCbkC7YBixJpgnbSSdEluGbrII1YqC5renDZLBwxcY_55J5AfE4ZrSofDfrL5dX_0GXyxjVPTLtbbBVoENYz7dzB6yobBesd5z67tyMXL1mMt0DaeMOw2YhYJso-JzBnL0ftsydzdsR4VjDepp-f349vMxh04TbNlFnnioYjrOnD_GuruBA2OIsy9ect2NCkUlo9dFS2FgoFO6DUbs1bHS9QjjBm9iCNU9iJIOASEmpTgxeqtWI4lz6DMtEswTjRCe4GmuDDTQzm6SqVHCCNSc-VtQgtANQysaZOgSQSoElwlRzykiCWOwjxiWSMo4DyqusDCq_pouK0z-NLNuoCYMo4mVw4cwZTXLujMj9eeMgWjZ_1LkPLQ0aP_rX7DOw0R32wii87t8eg007xxZyYF4BpdnrmzoxaGEWn7oT8QMt_bbA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELagFYgF8SsKBTywoYjadWyHreovEEoFBFUskRPbCBGlFS2gbjwCz8iTYCehKiObB8fD-e783eXuOwBOUKQQ08xzRF0Qh0iz8mRNO0gLTpWgRGd0Tdd92gvI5dAdFgk32wuT80PME27WMjJ_bQ18LHVBNmA5Mk3UTro-sgTfZBmULVGe0fNy4yF4DOa-2DjofGaeRxyOGS1K380JZ4vf_4GXiyA1e2U6G2C9gIewkd_nJlhS6RZY6Wbjd2dmlRVsxpNtkDRvMGwVE2xjBZ9TmNP3w7Yx2rwfEY40bCTJ9-fX3csMtky8bTN15q2C_ih9-hDv6hwOhK3OsoTNeT8mFKmEdkBaApvzEYU7IOi075s9p5ic4IxtxZojMZKeR6SkVMcGMNXrRHEuXYZlrFmMcaxjXIu0AQeamVtSNSo4wZoTFytqINouKKWjVO0BSKXAEmGqOWUkRixyEeMSSRlFHuU1VgHVX9GFhfpPQks3auIgingFnGbiDMc5eUaY_fTGXrgo_rB761seNL7_r93HYHXQ6oT-Rf_qAKzZLbaQA_MqKE1f39ShQQvT6KhQiR_H97ev |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CO2+Dependence+in+Global+Estimation+of+All%E2%80%90Sky+Downwelling+Longwave%3A+Parameterization+and+Model+Comparison&rft.jtitle=Geophysical+research+letters&rft.au=Kawaguchi%2C+Koh&rft.au=Shakespeare%2C+Callum+J.&rft.au=Roderick%2C+Michael+L.&rft.date=2024-09-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024GL110384&rft.externalDBID=10.1029%252F2024GL110384&rft.externalDocID=GRL68128 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |