Free‐breathing, non‐ECG, continuous myocardial T1 mapping with cardiovascular magnetic resonance multitasking
Purpose To evaluate the accuracy and repeatability of a free‐breathing, non‐electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV) mapping technique adapted from the Multitasking framework. Methods The Multitasking framework is adapted to quantify both myocardial native T1...
Saved in:
Published in | Magnetic resonance in medicine Vol. 81; no. 4; pp. 2450 - 2463 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To evaluate the accuracy and repeatability of a free‐breathing, non‐electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV) mapping technique adapted from the Multitasking framework.
Methods
The Multitasking framework is adapted to quantify both myocardial native T1 and ECV with a free‐breathing, non‐ECG, continuous acquisition T1 mapping method. We acquire interleaved high–spatial resolution image data and high–temporal resolution auxiliary data following inversion‐recovery pulses at set intervals and perform low‐rank tensor imaging to reconstruct images at 344 inversion times, 20 cardiac phases, and 6 respiratory phases. The accuracy and repeatability of Multitasking T1 mapping in generating native T1 and ECV maps are compared with conventional techniques in a phantom, a simulation, 12 healthy subjects, and 10 acute myocardial infarction patients.
Results
In phantoms, Multitasking T1 mapping correlated strongly with the gold‐standard spin‐echo inversion recovery (R2 = 0.99). A simulation study demonstrated that Multitasking T1 mapping has similar myocardial sharpness to the fully sampled ground truth. In vivo native T1 and ECV values from Multitasking T1 mapping agree well with conventional MOLLI values and show good repeatability for native T1 and ECV mapping for 60 seconds, 30 seconds, or 15 seconds of data. Multitasking native T1 and ECV in myocardial infarction patients correlate positively with values from MOLLI.
Conclusion
Multitasking T1 mapping can quantify native T1 and ECV in the myocardium with free‐breathing, non‐ECG, continuous scans with good image quality and good repeatability in vivo in healthy subjects, and correlation with MOLLI T1 and ECV in acute myocardial infarction patients. |
---|---|
AbstractList | Purpose
To evaluate the accuracy and repeatability of a free‐breathing, non‐electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV) mapping technique adapted from the Multitasking framework.
Methods
The Multitasking framework is adapted to quantify both myocardial native T1 and ECV with a free‐breathing, non‐ECG, continuous acquisition T1 mapping method. We acquire interleaved high–spatial resolution image data and high–temporal resolution auxiliary data following inversion‐recovery pulses at set intervals and perform low‐rank tensor imaging to reconstruct images at 344 inversion times, 20 cardiac phases, and 6 respiratory phases. The accuracy and repeatability of Multitasking T1 mapping in generating native T1 and ECV maps are compared with conventional techniques in a phantom, a simulation, 12 healthy subjects, and 10 acute myocardial infarction patients.
Results
In phantoms, Multitasking T1 mapping correlated strongly with the gold‐standard spin‐echo inversion recovery (R2 = 0.99). A simulation study demonstrated that Multitasking T1 mapping has similar myocardial sharpness to the fully sampled ground truth. In vivo native T1 and ECV values from Multitasking T1 mapping agree well with conventional MOLLI values and show good repeatability for native T1 and ECV mapping for 60 seconds, 30 seconds, or 15 seconds of data. Multitasking native T1 and ECV in myocardial infarction patients correlate positively with values from MOLLI.
Conclusion
Multitasking T1 mapping can quantify native T1 and ECV in the myocardium with free‐breathing, non‐ECG, continuous scans with good image quality and good repeatability in vivo in healthy subjects, and correlation with MOLLI T1 and ECV in acute myocardial infarction patients. PurposeTo evaluate the accuracy and repeatability of a free‐breathing, non‐electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV) mapping technique adapted from the Multitasking framework.MethodsThe Multitasking framework is adapted to quantify both myocardial native T1 and ECV with a free‐breathing, non‐ECG, continuous acquisition T1 mapping method. We acquire interleaved high–spatial resolution image data and high–temporal resolution auxiliary data following inversion‐recovery pulses at set intervals and perform low‐rank tensor imaging to reconstruct images at 344 inversion times, 20 cardiac phases, and 6 respiratory phases. The accuracy and repeatability of Multitasking T1 mapping in generating native T1 and ECV maps are compared with conventional techniques in a phantom, a simulation, 12 healthy subjects, and 10 acute myocardial infarction patients.ResultsIn phantoms, Multitasking T1 mapping correlated strongly with the gold‐standard spin‐echo inversion recovery (R2 = 0.99). A simulation study demonstrated that Multitasking T1 mapping has similar myocardial sharpness to the fully sampled ground truth. In vivo native T1 and ECV values from Multitasking T1 mapping agree well with conventional MOLLI values and show good repeatability for native T1 and ECV mapping for 60 seconds, 30 seconds, or 15 seconds of data. Multitasking native T1 and ECV in myocardial infarction patients correlate positively with values from MOLLI.ConclusionMultitasking T1 mapping can quantify native T1 and ECV in the myocardium with free‐breathing, non‐ECG, continuous scans with good image quality and good repeatability in vivo in healthy subjects, and correlation with MOLLI T1 and ECV in acute myocardial infarction patients. To evaluate the accuracy and repeatability of a free-breathing, non-electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV) mapping technique adapted from the Multitasking framework.PURPOSETo evaluate the accuracy and repeatability of a free-breathing, non-electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV) mapping technique adapted from the Multitasking framework.The Multitasking framework is adapted to quantify both myocardial native T1 and ECV with a free-breathing, non-ECG, continuous acquisition T1 mapping method. We acquire interleaved high-spatial resolution image data and high-temporal resolution auxiliary data following inversion-recovery pulses at set intervals and perform low-rank tensor imaging to reconstruct images at 344 inversion times, 20 cardiac phases, and 6 respiratory phases. The accuracy and repeatability of Multitasking T1 mapping in generating native T1 and ECV maps are compared with conventional techniques in a phantom, a simulation, 12 healthy subjects, and 10 acute myocardial infarction patients.METHODSThe Multitasking framework is adapted to quantify both myocardial native T1 and ECV with a free-breathing, non-ECG, continuous acquisition T1 mapping method. We acquire interleaved high-spatial resolution image data and high-temporal resolution auxiliary data following inversion-recovery pulses at set intervals and perform low-rank tensor imaging to reconstruct images at 344 inversion times, 20 cardiac phases, and 6 respiratory phases. The accuracy and repeatability of Multitasking T1 mapping in generating native T1 and ECV maps are compared with conventional techniques in a phantom, a simulation, 12 healthy subjects, and 10 acute myocardial infarction patients.In phantoms, Multitasking T1 mapping correlated strongly with the gold-standard spin-echo inversion recovery (R2 = 0.99). A simulation study demonstrated that Multitasking T1 mapping has similar myocardial sharpness to the fully sampled ground truth. In vivo native T1 and ECV values from Multitasking T1 mapping agree well with conventional MOLLI values and show good repeatability for native T1 and ECV mapping for 60 seconds, 30 seconds, or 15 seconds of data. Multitasking native T1 and ECV in myocardial infarction patients correlate positively with values from MOLLI.RESULTSIn phantoms, Multitasking T1 mapping correlated strongly with the gold-standard spin-echo inversion recovery (R2 = 0.99). A simulation study demonstrated that Multitasking T1 mapping has similar myocardial sharpness to the fully sampled ground truth. In vivo native T1 and ECV values from Multitasking T1 mapping agree well with conventional MOLLI values and show good repeatability for native T1 and ECV mapping for 60 seconds, 30 seconds, or 15 seconds of data. Multitasking native T1 and ECV in myocardial infarction patients correlate positively with values from MOLLI.Multitasking T1 mapping can quantify native T1 and ECV in the myocardium with free-breathing, non-ECG, continuous scans with good image quality and good repeatability in vivo in healthy subjects, and correlation with MOLLI T1 and ECV in acute myocardial infarction patients.CONCLUSIONMultitasking T1 mapping can quantify native T1 and ECV in the myocardium with free-breathing, non-ECG, continuous scans with good image quality and good repeatability in vivo in healthy subjects, and correlation with MOLLI T1 and ECV in acute myocardial infarction patients. |
Author | Nguyen, Christopher Zhou, Zhengwei Christodoulou, Anthony G. Li, Debiao Yang, Qi Shaw, Jaime L. Deng, Zixin |
Author_xml | – sequence: 1 givenname: Jaime L. orcidid: 0000-0003-2730-5982 surname: Shaw fullname: Shaw, Jaime L. organization: Smidt Heart Institute, Cedars‐Sinai Medical Center – sequence: 2 givenname: Qi surname: Yang fullname: Yang, Qi organization: Xuanwu Hospital – sequence: 3 givenname: Zhengwei orcidid: 0000-0002-7469-2658 surname: Zhou fullname: Zhou, Zhengwei organization: Biomedical Imaging Research Institute, Cedars‐Sinai Medical Center – sequence: 4 givenname: Zixin surname: Deng fullname: Deng, Zixin organization: University of California – sequence: 5 givenname: Christopher surname: Nguyen fullname: Nguyen, Christopher organization: Biomedical Imaging Research Institute, Cedars‐Sinai Medical Center – sequence: 6 givenname: Debiao surname: Li fullname: Li, Debiao organization: University of California – sequence: 7 givenname: Anthony G. orcidid: 0000-0002-9334-8684 surname: Christodoulou fullname: Christodoulou, Anthony G. email: Anthony.Christodoulou@cshs.org organization: Biomedical Imaging Research Institute, Cedars‐Sinai Medical Center |
BookMark | eNpdkE1OwzAQhS0EEqWw4AaW2LAgZfyTOl6iqi1IICRU1pHr2GBInGAnVN1xBM7ISTCFFasZvfnmaeYdoX3feoPQKYEJAaCXTWgmVOSC76ERySnNaC75PhqB4JAxIvkhOorxBQCkFHyE3hbBmK-Pz3Uwqn92_ukCJ8ckzGfLC6xb3zs_tEPEzbbVKlRO1XhFcKO6LsF44_pnvNPbdxX1UKuQZk_e9E7jYGLrldcGN0Pdu17F17RzjA6sqqM5-atj9LiYr2bX2e398mZ2dZt1NJ_yTFesmBaaWGlJIYs1GLlmVmrGwFpRFdoqsGCAkqkFYaqcW2orUJxLCSpXbIzOf3270L4NJvZl46I2da28SQ-VlLB8ygQlIqFn_9CXdgg-XZcoUXBZUM4TdflLbVxttmUXXKPCtiRQ_iRfpuTLXfLl3cPdrmHfeSF9lQ |
ContentType | Journal Article |
Copyright | 2018 International Society for Magnetic Resonance in Medicine 2019 International Society for Magnetic Resonance in Medicine 2018 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2018 International Society for Magnetic Resonance in Medicine – notice: 2019 International Society for Magnetic Resonance in Medicine – notice: 2018 International Society for Magnetic Resonance in Medicine. |
DBID | 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.27574 |
DatabaseName | Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 2463 |
ExternalDocumentID | MRM27574 |
Genre | article |
GrantInformation_xml | – fundername: National Institutes of Health funderid: 1R01HL124649; T32HL116273 – fundername: American Heart Association funderid: 15PRE21590006 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 8FD AAMMB AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-p2564-cd3868c1f9f1898b0e9b3f9c330ff7d8cfa0f0e0216f07ed54f2fd0a44990a5a3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 14:31:00 EDT 2025 Fri Jul 25 12:21:01 EDT 2025 Wed Jan 22 16:57:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2564-cd3868c1f9f1898b0e9b3f9c330ff7d8cfa0f0e0216f07ed54f2fd0a44990a5a3 |
Notes | Funding information National Institutes of Health (1R01HL124649 and NIH T32HL116273) and American Heart Association (15PRE21590006) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7469-2658 0000-0002-9334-8684 0000-0003-2730-5982 |
PQID | 2178498244 |
PQPubID | 1016391 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2135637217 proquest_journals_2178498244 wiley_primary_10_1002_mrm_27574_MRM27574 |
PublicationCentury | 2000 |
PublicationDate | April 2019 20190401 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2015; 17 2015; 16 2013; 69 2010; 37 2009; 62 2000; 21 2015; 74 2000; 44 2010; 122 2016; 75 2013; 71 2013; 70 2012; 14 2016; 18 2013; 6 2012; 98 2016; 35 2004; 52 2018; 2 2013; 99 2016; 119 2015; 274 2014; 16 2013; 60 2017; 19 2014; 9 2014; 7 2014; 71 2001; 219 2008; 60 2018; 79 |
References_xml | – volume: 7 start-page: 471 year: 2014 end-page: 481 article-title: Determination of location, size, and transmurality of chronic myocardial infarction without exogenous contrast media by using cardiac magnetic resonance imaging at 3 T publication-title: Circ Cardiovasc Imaging – volume: 14 start-page: 63 year: 2012 article-title: Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method publication-title: J Cardiovasc Magn Reson – volume: 79 start-page: 2087 year: 2018 end-page: 2100 article-title: Temporally resolved parametric assessment of Z‐magnetization recovery (TOPAZ): dynamic myocardial T1 mapping using a cine steady‐state look‐locker approach publication-title: Magn Reson Med – volume: 6 start-page: 373 year: 2013 end-page: 383 article-title: Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume publication-title: Circ Cardiovasc Imaging – volume: 62 start-page: 699 year: 2009 end-page: 705 article-title: Assessment of magnetization transfer effects in myocardial tissue using balanced steady‐state free precession (bSSFP) cine MRI publication-title: Magn Reson Med – volume: 17 start-page: 29 year: 2015 article-title: Normal values for cardiovascular magnetic resonance in adults and children publication-title: J Cardiovasc Magn Reson – volume: 6 start-page: 488 year: 2013 end-page: 497 article-title: Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis publication-title: JACC Cardiovasc Imaging – volume: 71 start-page: 2082 year: 2013 end-page: 2095 article-title: Saturation recovery single‐shot acquisition (SASHA) for myocardial T1 mapping publication-title: Magn Reson Med – volume: 9 start-page: e98441 year: 2014 article-title: Multidimensional compressed sensing MRI using tensor decomposition‐based sparsifying transform publication-title: PLoS One – volume: 52 start-page: 141 year: 2004 end-page: 146 article-title: Modified Look‐Locker inversion recovery (MOLLI) for high‐resolution T1 mapping of the heart publication-title: Magn Reson Med – volume: 74 start-page: 115 year: 2015 end-page: 124 article-title: Free‐breathing multislice native myocardial T mapping using the slice‐interleaved T (STONE) sequence publication-title: Magn Reson Med – volume: 2 start-page: 215 year: 2018 end-page: 226 article-title: Magnetic resonance multitasking for motion‐ resolved quantitative cardiovascular imaging publication-title: Nature Biomed Eng – volume: 16 start-page: 2 year: 2014 article-title: T1‐mapping in the heart: accuracy and precision publication-title: J Cardiovasc Magn Reson – volume: 71 start-page: 1024 year: 2014 end-page: 1034 article-title: Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability publication-title: Magn Reson Med – volume: 69 start-page: 1408 year: 2013 end-page: 1420 article-title: Phase‐sensitive inversion recovery for myocardial T1 mapping with motion correction and parametric fitting publication-title: Magn Reson Med – volume: 18 start-page: 13 year: 2016 article-title: Systolic MOLLI T1 mapping with heart‐rate‐ dependent pulse sequence sampling scheme is feasible in patients with atrial fibrillation publication-title: J Cardiovasc Magn Reson – volume: 19 start-page: 75 year: 2017 article-title: Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI) publication-title: J Cardiovasc Magn Reson – volume: 122 start-page: 138 year: 2010 end-page: 144 article-title: Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans publication-title: Circulation – volume: 70 start-page: 664 year: 2013 end-page: 670 article-title: T1 measurements in the human myocardium: the effects of magnetization transfer on the SASHA and MOLLI sequences publication-title: Magn Reson Med – volume: 60 start-page: 683 year: 2008 end-page: 690 article-title: Prospective self‐gating for simultaneous compensation of cardiac and respiratory motion publication-title: Magn Reson Med – volume: 99 start-page: 932 year: 2013 end-page: 937 article-title: Human non‐contrast T1 values and correlation with histology in diffuse fibrosis publication-title: Heart – volume: 98 start-page: 1436 year: 2012 end-page: 1441 article-title: Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease publication-title: Heart – volume: 14 start-page: 88 year: 2012 article-title: Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath‐hold T1 quantification equilibrium contrast CMR publication-title: J Cardiovasc Magn Reson – volume: 16 start-page: 102 year: 2014 article-title: Simultaneous three‐dimensional myocardial T1 and T2 mapping in one breath hold with 3D‐QALAS publication-title: J Cardiovasc Magn Reson – volume: 44 start-page: 825 year: 2000 end-page: 832 article-title: k‐space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI publication-title: Magn Reson Med – volume: 6 start-page: 475 year: 2013 end-page: 484 article-title: Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy publication-title: JACC Cardiovasc Imaging – volume: 35 start-page: 2119 year: 2016 end-page: 2129 article-title: Accelerated high‐dimensional MR imaging with sparse sampling using low‐rank tensors publication-title: IEEE Trans Med Imaging – volume: 17 start-page: 77 year: 2015 article-title: Systolic ShMOLLI myocardial T1‐mapping for improved robustness to partial‐volume effects and applications in tachyarrhythmias publication-title: J Cardiovasc Magn Reson – volume: 37 start-page: 4902 year: 2010 end-page: 4915 article-title: 4D XCAT phantom for multimodality imaging research publication-title: Med Phys – volume: 60 start-page: 3083 year: 2013 end-page: 3092 article-title: High‐resolution cardiovascular MRI by integrating parallel imaging with low‐rank and sparse modeling publication-title: IEEE Trans Biomed Eng – volume: 219 start-page: 270 year: 2001 end-page: 277 article-title: Coronary arteries: magnetization‐prepared contrast‐enhanced three‐dimensional volume‐targeted breath‐hold MR angiography publication-title: Radiology – volume: 21 start-page: 1253 year: 2000 end-page: 1278 article-title: A multilinear singular value decomposition publication-title: SIAM J Matrix Anal Appl – volume: 119 start-page: 277 year: 2016 end-page: 299 article-title: T1 Mapping in characterizing myocardial disease: a comprehensive review publication-title: Circ Res – volume: 274 start-page: 879 year: 2015 end-page: 887 article-title: Myocardial T1: quantification by using an ECG‐triggered radial single‐shot inversion‐recovery MR imaging sequence publication-title: Radiology – volume: 12 start-page: 69 year: 2010 article-title: Shortened modified Look‐Locker inversion recovery (ShMOLLI) for clinical myocardial T1‐mapping at 1.5 and 3 T within a 9 heartbeat breathhold publication-title: J Cardiovasc Magn Reson – volume: 75 start-page: 775 year: 2016 end-page: 788 article-title: XD‐GRASP: golden‐angle radial MRI with reconstruction of extra motion‐state dimensions using compressed sensing publication-title: Magn Reson Med – volume: 16 start-page: 210 year: 2015 end-page: 216 article-title: T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. publication-title: Imaging |
SSID | ssj0009974 |
Score | 2.5283382 |
Snippet | Purpose
To evaluate the accuracy and repeatability of a free‐breathing, non‐electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV)... PurposeTo evaluate the accuracy and repeatability of a free‐breathing, non‐electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV)... To evaluate the accuracy and repeatability of a free-breathing, non-electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV) mapping... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 2450 |
SubjectTerms | Breathing cardiac imaging Correlation Data recovery Echocardiography EKG Electrocardiography Ground truth Heart attacks Image acquisition Image quality Image reconstruction Magnetic resonance Mapping Multitasking Myocardial infarction Myocardium Patients Reproducibility Respiration Sharpness Spatial data Spatial discrimination Spatial resolution T1 mapping Temporal resolution Tensors tissue characterization |
Title | Free‐breathing, non‐ECG, continuous myocardial T1 mapping with cardiovascular magnetic resonance multitasking |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27574 https://www.proquest.com/docview/2178498244 https://www.proquest.com/docview/2135637217 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB1CoCGXfqQp3TYtCvTQQ7yxLNmy6KmEbENgcwgJ5FAw-gylXW-63j20p_6E_sb-ks7Iu5ump5CbsSQQGo30ZvT0BPCOzua04CFTzvlMCsMzGzFwtcYbXhgpfHoOaHxWnVzK06vyagM-rO7C9PoQ64QbeUZar8nBje0Ob0VDJ7PJsFClIi1Q4moRIDq_lY7SuldgVpLWGS1XqkJ5cbhueQdV_otN0-YyegKfV93qOSVfh4u5Hbqf_yk2PrDfT-HxEnSyj_0seQYbod2BrfHyWH0HHiUeqOuew_fRLIQ_v35bwpKUnDpg7bTFH8dHnw4Y8dq_tIvpomOTH7gJ0uT6xi44mxiSebhmlNVl7g7FFcuuW7opyTCwn5K8R2CJxTg3HaXpd-FydHxxdJItX2XIbhAeycx5UVe141FHXuva5kFbEbUTIo9R-dpFk8c8IHaoYq6CL2Usos-NxNgqN6URL2ATex5eAoueV8bguISgpeOqttYZobjHuNlV1g1gb2WfZulaXYMxVC11jbBkAPvrYnQKOukwbcAxwDqirAQGt2oA75MxmptevKPpZZqLBs3QJDM04_Nx-nh1_6qvYRuBk-4ZPHuwOZ8twhsEJ3P7Ns3Cv91P5PM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVjwuLRQQS1swEgcOzTaOnTiWuKC2ywJND9VW6gVFflao3WzZxwFO_AR-Y39Jx87ulnJC3KLYlkaeGfub8fgzwNtwNicZdYkwxiacKZpoj4GrVlbRTHFm43NA1XHRP-Wfz_KzFXi_uAvT8kMsE27BM-J6HRw8JKT3bllDh-NhNxO54PdgLbzoHZjzD05uyaOkbDmYBQ8rjeQLXqE021sOvYMr_0SncXvpbcDXhWBtVclFdzbVXfPzL87G_5X8MazPcSf50BrKE1hxzSY8qOYn65twP5aCmslT-N4bO3f967cOcDLkp3ZJM2rwx-H-x10SStu_NbPRbEKGP3AfDPZ1SQaUDFVgejgnIbFLzJ0qV2w7b8JlSYKx_SgwfDgSCxmnahIy9c_gtHc42O8n84cZkitESDwxlpVFaaiXnpay1KmTmnlpGEu9F7Y0XqU-dQgfCp8KZ3PuM29TxTG8SlWu2HNYRcndCyDe0kIpnBfnJDdUlFobxQS1GDqbQpsObC8UVM-9a1JjGFVyWSIy6cCbZTP6RTjsUI3DOcA-LC8YxreiA--iNuqrlr-jbpmasxrVUEc11NVJFT9e_nvX1_CwP6iO6qNPx1-24BHiKNkW9GzD6nQ8czuIVab6VTTJGyHy6Q8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIiouBQoVKQWMxIFDN7XX3vVanFDbUB6pUNVKPSCt_KwQzSbN4wAnfkJ_Y38JY2-SUk6I22ptSyPPjP3NePwZ4HU8m1Oc-Uxa6zLBNctMwMDVaKdZrgV36Tmg_lF5eCo-nhVnK_B2cRem5YdYJtyiZ6T1Ojr4yIXdG9LQwXjQzWUhxR24K0qq4rsN-8c33FFKtRTMUsSFRokFrRDNd5dDb8HKP8Fp2l16D-DrQq62qOR7dzY1XfvzL8rG_xT8IazPUSd515rJI1jxzQas9efn6htwLxWC2sljuOyNvb_-dWUimIzZqR3SDBv8cbD3fofEwvZvzWw4m5DBD9wFo3VdkBNGBjryPJyTmNYl9laNK7adN_GqJMHIfhj5PTxJZYxTPYl5-idw2js42TvM5s8yZCPERyKzjldlZVlQgVWqMtQrw4OynNMQpKts0DRQj-ChDFR6V4iQB0e1wOCK6kLzTVhFyf1TIMGxUmucF--VsExWxljNJXMYONvS2A5sL_RTz31rUmMQVQlVIS7pwKtlM3pFPOrQjcc5wD68KDlGt7IDb5Iy6lHL3lG3PM15jWqokxrq_nE_fWz9e9eXsPZlv1d__nD06RncRxCl2mqebVidjmf-OQKVqXmRDPI3i03nvg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Free%E2%80%90breathing%2C+non%E2%80%90ECG%2C+continuous+myocardial+T1+mapping+with+cardiovascular+magnetic+resonance+multitasking&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Shaw%2C+Jaime+L.&rft.au=Yang%2C+Qi&rft.au=Zhou%2C+Zhengwei&rft.au=Deng%2C+Zixin&rft.date=2019-04-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=81&rft.issue=4&rft.spage=2450&rft.epage=2463&rft_id=info:doi/10.1002%2Fmrm.27574&rft.externalDBID=10.1002%252Fmrm.27574&rft.externalDocID=MRM27574 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |