Free‐breathing, non‐ECG, continuous myocardial T1 mapping with cardiovascular magnetic resonance multitasking

Purpose To evaluate the accuracy and repeatability of a free‐breathing, non‐electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV) mapping technique adapted from the Multitasking framework. Methods The Multitasking framework is adapted to quantify both myocardial native T1...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 81; no. 4; pp. 2450 - 2463
Main Authors Shaw, Jaime L., Yang, Qi, Zhou, Zhengwei, Deng, Zixin, Nguyen, Christopher, Li, Debiao, Christodoulou, Anthony G.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To evaluate the accuracy and repeatability of a free‐breathing, non‐electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV) mapping technique adapted from the Multitasking framework. Methods The Multitasking framework is adapted to quantify both myocardial native T1 and ECV with a free‐breathing, non‐ECG, continuous acquisition T1 mapping method. We acquire interleaved high–spatial resolution image data and high–temporal resolution auxiliary data following inversion‐recovery pulses at set intervals and perform low‐rank tensor imaging to reconstruct images at 344 inversion times, 20 cardiac phases, and 6 respiratory phases. The accuracy and repeatability of Multitasking T1 mapping in generating native T1 and ECV maps are compared with conventional techniques in a phantom, a simulation, 12 healthy subjects, and 10 acute myocardial infarction patients. Results In phantoms, Multitasking T1 mapping correlated strongly with the gold‐standard spin‐echo inversion recovery (R2 = 0.99). A simulation study demonstrated that Multitasking T1 mapping has similar myocardial sharpness to the fully sampled ground truth. In vivo native T1 and ECV values from Multitasking T1 mapping agree well with conventional MOLLI values and show good repeatability for native T1 and ECV mapping for 60 seconds, 30 seconds, or 15 seconds of data. Multitasking native T1 and ECV in myocardial infarction patients correlate positively with values from MOLLI. Conclusion Multitasking T1 mapping can quantify native T1 and ECV in the myocardium with free‐breathing, non‐ECG, continuous scans with good image quality and good repeatability in vivo in healthy subjects, and correlation with MOLLI T1 and ECV in acute myocardial infarction patients.
AbstractList Purpose To evaluate the accuracy and repeatability of a free‐breathing, non‐electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV) mapping technique adapted from the Multitasking framework. Methods The Multitasking framework is adapted to quantify both myocardial native T1 and ECV with a free‐breathing, non‐ECG, continuous acquisition T1 mapping method. We acquire interleaved high–spatial resolution image data and high–temporal resolution auxiliary data following inversion‐recovery pulses at set intervals and perform low‐rank tensor imaging to reconstruct images at 344 inversion times, 20 cardiac phases, and 6 respiratory phases. The accuracy and repeatability of Multitasking T1 mapping in generating native T1 and ECV maps are compared with conventional techniques in a phantom, a simulation, 12 healthy subjects, and 10 acute myocardial infarction patients. Results In phantoms, Multitasking T1 mapping correlated strongly with the gold‐standard spin‐echo inversion recovery (R2 = 0.99). A simulation study demonstrated that Multitasking T1 mapping has similar myocardial sharpness to the fully sampled ground truth. In vivo native T1 and ECV values from Multitasking T1 mapping agree well with conventional MOLLI values and show good repeatability for native T1 and ECV mapping for 60 seconds, 30 seconds, or 15 seconds of data. Multitasking native T1 and ECV in myocardial infarction patients correlate positively with values from MOLLI. Conclusion Multitasking T1 mapping can quantify native T1 and ECV in the myocardium with free‐breathing, non‐ECG, continuous scans with good image quality and good repeatability in vivo in healthy subjects, and correlation with MOLLI T1 and ECV in acute myocardial infarction patients.
PurposeTo evaluate the accuracy and repeatability of a free‐breathing, non‐electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV) mapping technique adapted from the Multitasking framework.MethodsThe Multitasking framework is adapted to quantify both myocardial native T1 and ECV with a free‐breathing, non‐ECG, continuous acquisition T1 mapping method. We acquire interleaved high–spatial resolution image data and high–temporal resolution auxiliary data following inversion‐recovery pulses at set intervals and perform low‐rank tensor imaging to reconstruct images at 344 inversion times, 20 cardiac phases, and 6 respiratory phases. The accuracy and repeatability of Multitasking T1 mapping in generating native T1 and ECV maps are compared with conventional techniques in a phantom, a simulation, 12 healthy subjects, and 10 acute myocardial infarction patients.ResultsIn phantoms, Multitasking T1 mapping correlated strongly with the gold‐standard spin‐echo inversion recovery (R2 = 0.99). A simulation study demonstrated that Multitasking T1 mapping has similar myocardial sharpness to the fully sampled ground truth. In vivo native T1 and ECV values from Multitasking T1 mapping agree well with conventional MOLLI values and show good repeatability for native T1 and ECV mapping for 60 seconds, 30 seconds, or 15 seconds of data. Multitasking native T1 and ECV in myocardial infarction patients correlate positively with values from MOLLI.ConclusionMultitasking T1 mapping can quantify native T1 and ECV in the myocardium with free‐breathing, non‐ECG, continuous scans with good image quality and good repeatability in vivo in healthy subjects, and correlation with MOLLI T1 and ECV in acute myocardial infarction patients.
To evaluate the accuracy and repeatability of a free-breathing, non-electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV) mapping technique adapted from the Multitasking framework.PURPOSETo evaluate the accuracy and repeatability of a free-breathing, non-electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV) mapping technique adapted from the Multitasking framework.The Multitasking framework is adapted to quantify both myocardial native T1 and ECV with a free-breathing, non-ECG, continuous acquisition T1 mapping method. We acquire interleaved high-spatial resolution image data and high-temporal resolution auxiliary data following inversion-recovery pulses at set intervals and perform low-rank tensor imaging to reconstruct images at 344 inversion times, 20 cardiac phases, and 6 respiratory phases. The accuracy and repeatability of Multitasking T1 mapping in generating native T1 and ECV maps are compared with conventional techniques in a phantom, a simulation, 12 healthy subjects, and 10 acute myocardial infarction patients.METHODSThe Multitasking framework is adapted to quantify both myocardial native T1 and ECV with a free-breathing, non-ECG, continuous acquisition T1 mapping method. We acquire interleaved high-spatial resolution image data and high-temporal resolution auxiliary data following inversion-recovery pulses at set intervals and perform low-rank tensor imaging to reconstruct images at 344 inversion times, 20 cardiac phases, and 6 respiratory phases. The accuracy and repeatability of Multitasking T1 mapping in generating native T1 and ECV maps are compared with conventional techniques in a phantom, a simulation, 12 healthy subjects, and 10 acute myocardial infarction patients.In phantoms, Multitasking T1 mapping correlated strongly with the gold-standard spin-echo inversion recovery (R2 = 0.99). A simulation study demonstrated that Multitasking T1 mapping has similar myocardial sharpness to the fully sampled ground truth. In vivo native T1 and ECV values from Multitasking T1 mapping agree well with conventional MOLLI values and show good repeatability for native T1 and ECV mapping for 60 seconds, 30 seconds, or 15 seconds of data. Multitasking native T1 and ECV in myocardial infarction patients correlate positively with values from MOLLI.RESULTSIn phantoms, Multitasking T1 mapping correlated strongly with the gold-standard spin-echo inversion recovery (R2 = 0.99). A simulation study demonstrated that Multitasking T1 mapping has similar myocardial sharpness to the fully sampled ground truth. In vivo native T1 and ECV values from Multitasking T1 mapping agree well with conventional MOLLI values and show good repeatability for native T1 and ECV mapping for 60 seconds, 30 seconds, or 15 seconds of data. Multitasking native T1 and ECV in myocardial infarction patients correlate positively with values from MOLLI.Multitasking T1 mapping can quantify native T1 and ECV in the myocardium with free-breathing, non-ECG, continuous scans with good image quality and good repeatability in vivo in healthy subjects, and correlation with MOLLI T1 and ECV in acute myocardial infarction patients.CONCLUSIONMultitasking T1 mapping can quantify native T1 and ECV in the myocardium with free-breathing, non-ECG, continuous scans with good image quality and good repeatability in vivo in healthy subjects, and correlation with MOLLI T1 and ECV in acute myocardial infarction patients.
Author Nguyen, Christopher
Zhou, Zhengwei
Christodoulou, Anthony G.
Li, Debiao
Yang, Qi
Shaw, Jaime L.
Deng, Zixin
Author_xml – sequence: 1
  givenname: Jaime L.
  orcidid: 0000-0003-2730-5982
  surname: Shaw
  fullname: Shaw, Jaime L.
  organization: Smidt Heart Institute, Cedars‐Sinai Medical Center
– sequence: 2
  givenname: Qi
  surname: Yang
  fullname: Yang, Qi
  organization: Xuanwu Hospital
– sequence: 3
  givenname: Zhengwei
  orcidid: 0000-0002-7469-2658
  surname: Zhou
  fullname: Zhou, Zhengwei
  organization: Biomedical Imaging Research Institute, Cedars‐Sinai Medical Center
– sequence: 4
  givenname: Zixin
  surname: Deng
  fullname: Deng, Zixin
  organization: University of California
– sequence: 5
  givenname: Christopher
  surname: Nguyen
  fullname: Nguyen, Christopher
  organization: Biomedical Imaging Research Institute, Cedars‐Sinai Medical Center
– sequence: 6
  givenname: Debiao
  surname: Li
  fullname: Li, Debiao
  organization: University of California
– sequence: 7
  givenname: Anthony G.
  orcidid: 0000-0002-9334-8684
  surname: Christodoulou
  fullname: Christodoulou, Anthony G.
  email: Anthony.Christodoulou@cshs.org
  organization: Biomedical Imaging Research Institute, Cedars‐Sinai Medical Center
BookMark eNpdkE1OwzAQhS0EEqWw4AaW2LAgZfyTOl6iqi1IICRU1pHr2GBInGAnVN1xBM7ISTCFFasZvfnmaeYdoX3feoPQKYEJAaCXTWgmVOSC76ERySnNaC75PhqB4JAxIvkhOorxBQCkFHyE3hbBmK-Pz3Uwqn92_ukCJ8ckzGfLC6xb3zs_tEPEzbbVKlRO1XhFcKO6LsF44_pnvNPbdxX1UKuQZk_e9E7jYGLrldcGN0Pdu17F17RzjA6sqqM5-atj9LiYr2bX2e398mZ2dZt1NJ_yTFesmBaaWGlJIYs1GLlmVmrGwFpRFdoqsGCAkqkFYaqcW2orUJxLCSpXbIzOf3270L4NJvZl46I2da28SQ-VlLB8ygQlIqFn_9CXdgg-XZcoUXBZUM4TdflLbVxttmUXXKPCtiRQ_iRfpuTLXfLl3cPdrmHfeSF9lQ
ContentType Journal Article
Copyright 2018 International Society for Magnetic Resonance in Medicine
2019 International Society for Magnetic Resonance in Medicine
2018 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2018 International Society for Magnetic Resonance in Medicine
– notice: 2019 International Society for Magnetic Resonance in Medicine
– notice: 2018 International Society for Magnetic Resonance in Medicine.
DBID 8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.27574
DatabaseName Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Biochemistry Abstracts 1
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2463
ExternalDocumentID MRM27574
Genre article
GrantInformation_xml – fundername: National Institutes of Health
  funderid: 1R01HL124649; T32HL116273
– fundername: American Heart Association
  funderid: 15PRE21590006
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
8FD
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-p2564-cd3868c1f9f1898b0e9b3f9c330ff7d8cfa0f0e0216f07ed54f2fd0a44990a5a3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 14:31:00 EDT 2025
Fri Jul 25 12:21:01 EDT 2025
Wed Jan 22 16:57:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2564-cd3868c1f9f1898b0e9b3f9c330ff7d8cfa0f0e0216f07ed54f2fd0a44990a5a3
Notes Funding information
National Institutes of Health (1R01HL124649 and NIH T32HL116273) and American Heart Association (15PRE21590006)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7469-2658
0000-0002-9334-8684
0000-0003-2730-5982
PQID 2178498244
PQPubID 1016391
PageCount 14
ParticipantIDs proquest_miscellaneous_2135637217
proquest_journals_2178498244
wiley_primary_10_1002_mrm_27574_MRM27574
PublicationCentury 2000
PublicationDate April 2019
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2015; 17
2015; 16
2013; 69
2010; 37
2009; 62
2000; 21
2015; 74
2000; 44
2010; 122
2016; 75
2013; 71
2013; 70
2012; 14
2016; 18
2013; 6
2012; 98
2016; 35
2004; 52
2018; 2
2013; 99
2016; 119
2015; 274
2014; 16
2013; 60
2017; 19
2014; 9
2014; 7
2014; 71
2001; 219
2008; 60
2018; 79
References_xml – volume: 7
  start-page: 471
  year: 2014
  end-page: 481
  article-title: Determination of location, size, and transmurality of chronic myocardial infarction without exogenous contrast media by using cardiac magnetic resonance imaging at 3 T
  publication-title: Circ Cardiovasc Imaging
– volume: 14
  start-page: 63
  year: 2012
  article-title: Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method
  publication-title: J Cardiovasc Magn Reson
– volume: 79
  start-page: 2087
  year: 2018
  end-page: 2100
  article-title: Temporally resolved parametric assessment of Z‐magnetization recovery (TOPAZ): dynamic myocardial T1 mapping using a cine steady‐state look‐locker approach
  publication-title: Magn Reson Med
– volume: 6
  start-page: 373
  year: 2013
  end-page: 383
  article-title: Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume
  publication-title: Circ Cardiovasc Imaging
– volume: 62
  start-page: 699
  year: 2009
  end-page: 705
  article-title: Assessment of magnetization transfer effects in myocardial tissue using balanced steady‐state free precession (bSSFP) cine MRI
  publication-title: Magn Reson Med
– volume: 17
  start-page: 29
  year: 2015
  article-title: Normal values for cardiovascular magnetic resonance in adults and children
  publication-title: J Cardiovasc Magn Reson
– volume: 6
  start-page: 488
  year: 2013
  end-page: 497
  article-title: Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis
  publication-title: JACC Cardiovasc Imaging
– volume: 71
  start-page: 2082
  year: 2013
  end-page: 2095
  article-title: Saturation recovery single‐shot acquisition (SASHA) for myocardial T1 mapping
  publication-title: Magn Reson Med
– volume: 9
  start-page: e98441
  year: 2014
  article-title: Multidimensional compressed sensing MRI using tensor decomposition‐based sparsifying transform
  publication-title: PLoS One
– volume: 52
  start-page: 141
  year: 2004
  end-page: 146
  article-title: Modified Look‐Locker inversion recovery (MOLLI) for high‐resolution T1 mapping of the heart
  publication-title: Magn Reson Med
– volume: 74
  start-page: 115
  year: 2015
  end-page: 124
  article-title: Free‐breathing multislice native myocardial T mapping using the slice‐interleaved T (STONE) sequence
  publication-title: Magn Reson Med
– volume: 2
  start-page: 215
  year: 2018
  end-page: 226
  article-title: Magnetic resonance multitasking for motion‐ resolved quantitative cardiovascular imaging
  publication-title: Nature Biomed Eng
– volume: 16
  start-page: 2
  year: 2014
  article-title: T1‐mapping in the heart: accuracy and precision
  publication-title: J Cardiovasc Magn Reson
– volume: 71
  start-page: 1024
  year: 2014
  end-page: 1034
  article-title: Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability
  publication-title: Magn Reson Med
– volume: 69
  start-page: 1408
  year: 2013
  end-page: 1420
  article-title: Phase‐sensitive inversion recovery for myocardial T1 mapping with motion correction and parametric fitting
  publication-title: Magn Reson Med
– volume: 18
  start-page: 13
  year: 2016
  article-title: Systolic MOLLI T1 mapping with heart‐rate‐ dependent pulse sequence sampling scheme is feasible in patients with atrial fibrillation
  publication-title: J Cardiovasc Magn Reson
– volume: 19
  start-page: 75
  year: 2017
  article-title: Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI)
  publication-title: J Cardiovasc Magn Reson
– volume: 122
  start-page: 138
  year: 2010
  end-page: 144
  article-title: Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans
  publication-title: Circulation
– volume: 70
  start-page: 664
  year: 2013
  end-page: 670
  article-title: T1 measurements in the human myocardium: the effects of magnetization transfer on the SASHA and MOLLI sequences
  publication-title: Magn Reson Med
– volume: 60
  start-page: 683
  year: 2008
  end-page: 690
  article-title: Prospective self‐gating for simultaneous compensation of cardiac and respiratory motion
  publication-title: Magn Reson Med
– volume: 99
  start-page: 932
  year: 2013
  end-page: 937
  article-title: Human non‐contrast T1 values and correlation with histology in diffuse fibrosis
  publication-title: Heart
– volume: 98
  start-page: 1436
  year: 2012
  end-page: 1441
  article-title: Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease
  publication-title: Heart
– volume: 14
  start-page: 88
  year: 2012
  article-title: Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath‐hold T1 quantification equilibrium contrast CMR
  publication-title: J Cardiovasc Magn Reson
– volume: 16
  start-page: 102
  year: 2014
  article-title: Simultaneous three‐dimensional myocardial T1 and T2 mapping in one breath hold with 3D‐QALAS
  publication-title: J Cardiovasc Magn Reson
– volume: 44
  start-page: 825
  year: 2000
  end-page: 832
  article-title: k‐space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI
  publication-title: Magn Reson Med
– volume: 6
  start-page: 475
  year: 2013
  end-page: 484
  article-title: Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy
  publication-title: JACC Cardiovasc Imaging
– volume: 35
  start-page: 2119
  year: 2016
  end-page: 2129
  article-title: Accelerated high‐dimensional MR imaging with sparse sampling using low‐rank tensors
  publication-title: IEEE Trans Med Imaging
– volume: 17
  start-page: 77
  year: 2015
  article-title: Systolic ShMOLLI myocardial T1‐mapping for improved robustness to partial‐volume effects and applications in tachyarrhythmias
  publication-title: J Cardiovasc Magn Reson
– volume: 37
  start-page: 4902
  year: 2010
  end-page: 4915
  article-title: 4D XCAT phantom for multimodality imaging research
  publication-title: Med Phys
– volume: 60
  start-page: 3083
  year: 2013
  end-page: 3092
  article-title: High‐resolution cardiovascular MRI by integrating parallel imaging with low‐rank and sparse modeling
  publication-title: IEEE Trans Biomed Eng
– volume: 219
  start-page: 270
  year: 2001
  end-page: 277
  article-title: Coronary arteries: magnetization‐prepared contrast‐enhanced three‐dimensional volume‐targeted breath‐hold MR angiography
  publication-title: Radiology
– volume: 21
  start-page: 1253
  year: 2000
  end-page: 1278
  article-title: A multilinear singular value decomposition
  publication-title: SIAM J Matrix Anal Appl
– volume: 119
  start-page: 277
  year: 2016
  end-page: 299
  article-title: T1 Mapping in characterizing myocardial disease: a comprehensive review
  publication-title: Circ Res
– volume: 274
  start-page: 879
  year: 2015
  end-page: 887
  article-title: Myocardial T1: quantification by using an ECG‐triggered radial single‐shot inversion‐recovery MR imaging sequence
  publication-title: Radiology
– volume: 12
  start-page: 69
  year: 2010
  article-title: Shortened modified Look‐Locker inversion recovery (ShMOLLI) for clinical myocardial T1‐mapping at 1.5 and 3 T within a 9 heartbeat breathhold
  publication-title: J Cardiovasc Magn Reson
– volume: 75
  start-page: 775
  year: 2016
  end-page: 788
  article-title: XD‐GRASP: golden‐angle radial MRI with reconstruction of extra motion‐state dimensions using compressed sensing
  publication-title: Magn Reson Med
– volume: 16
  start-page: 210
  year: 2015
  end-page: 216
  article-title: T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy.
  publication-title: Imaging
SSID ssj0009974
Score 2.5283382
Snippet Purpose To evaluate the accuracy and repeatability of a free‐breathing, non‐electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV)...
PurposeTo evaluate the accuracy and repeatability of a free‐breathing, non‐electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV)...
To evaluate the accuracy and repeatability of a free-breathing, non-electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV) mapping...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 2450
SubjectTerms Breathing
cardiac imaging
Correlation
Data recovery
Echocardiography
EKG
Electrocardiography
Ground truth
Heart attacks
Image acquisition
Image quality
Image reconstruction
Magnetic resonance
Mapping
Multitasking
Myocardial infarction
Myocardium
Patients
Reproducibility
Respiration
Sharpness
Spatial data
Spatial discrimination
Spatial resolution
T1 mapping
Temporal resolution
Tensors
tissue characterization
Title Free‐breathing, non‐ECG, continuous myocardial T1 mapping with cardiovascular magnetic resonance multitasking
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27574
https://www.proquest.com/docview/2178498244
https://www.proquest.com/docview/2135637217
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB1CoCGXfqQp3TYtCvTQQ7yxLNmy6KmEbENgcwgJ5FAw-gylXW-63j20p_6E_sb-ks7Iu5ump5CbsSQQGo30ZvT0BPCOzua04CFTzvlMCsMzGzFwtcYbXhgpfHoOaHxWnVzK06vyagM-rO7C9PoQ64QbeUZar8nBje0Ob0VDJ7PJsFClIi1Q4moRIDq_lY7SuldgVpLWGS1XqkJ5cbhueQdV_otN0-YyegKfV93qOSVfh4u5Hbqf_yk2PrDfT-HxEnSyj_0seQYbod2BrfHyWH0HHiUeqOuew_fRLIQ_v35bwpKUnDpg7bTFH8dHnw4Y8dq_tIvpomOTH7gJ0uT6xi44mxiSebhmlNVl7g7FFcuuW7opyTCwn5K8R2CJxTg3HaXpd-FydHxxdJItX2XIbhAeycx5UVe141FHXuva5kFbEbUTIo9R-dpFk8c8IHaoYq6CL2Usos-NxNgqN6URL2ATex5eAoueV8bguISgpeOqttYZobjHuNlV1g1gb2WfZulaXYMxVC11jbBkAPvrYnQKOukwbcAxwDqirAQGt2oA75MxmptevKPpZZqLBs3QJDM04_Nx-nh1_6qvYRuBk-4ZPHuwOZ8twhsEJ3P7Ns3Cv91P5PM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVjwuLRQQS1swEgcOzTaOnTiWuKC2ywJND9VW6gVFflao3WzZxwFO_AR-Y39Jx87ulnJC3KLYlkaeGfub8fgzwNtwNicZdYkwxiacKZpoj4GrVlbRTHFm43NA1XHRP-Wfz_KzFXi_uAvT8kMsE27BM-J6HRw8JKT3bllDh-NhNxO54PdgLbzoHZjzD05uyaOkbDmYBQ8rjeQLXqE021sOvYMr_0SncXvpbcDXhWBtVclFdzbVXfPzL87G_5X8MazPcSf50BrKE1hxzSY8qOYn65twP5aCmslT-N4bO3f967cOcDLkp3ZJM2rwx-H-x10SStu_NbPRbEKGP3AfDPZ1SQaUDFVgejgnIbFLzJ0qV2w7b8JlSYKx_SgwfDgSCxmnahIy9c_gtHc42O8n84cZkitESDwxlpVFaaiXnpay1KmTmnlpGEu9F7Y0XqU-dQgfCp8KZ3PuM29TxTG8SlWu2HNYRcndCyDe0kIpnBfnJDdUlFobxQS1GDqbQpsObC8UVM-9a1JjGFVyWSIy6cCbZTP6RTjsUI3DOcA-LC8YxreiA--iNuqrlr-jbpmasxrVUEc11NVJFT9e_nvX1_CwP6iO6qNPx1-24BHiKNkW9GzD6nQ8czuIVab6VTTJGyHy6Q8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIiouBQoVKQWMxIFDN7XX3vVanFDbUB6pUNVKPSCt_KwQzSbN4wAnfkJ_Y38JY2-SUk6I22ptSyPPjP3NePwZ4HU8m1Oc-Uxa6zLBNctMwMDVaKdZrgV36Tmg_lF5eCo-nhVnK_B2cRem5YdYJtyiZ6T1Ojr4yIXdG9LQwXjQzWUhxR24K0qq4rsN-8c33FFKtRTMUsSFRokFrRDNd5dDb8HKP8Fp2l16D-DrQq62qOR7dzY1XfvzL8rG_xT8IazPUSd515rJI1jxzQas9efn6htwLxWC2sljuOyNvb_-dWUimIzZqR3SDBv8cbD3fofEwvZvzWw4m5DBD9wFo3VdkBNGBjryPJyTmNYl9laNK7adN_GqJMHIfhj5PTxJZYxTPYl5-idw2js42TvM5s8yZCPERyKzjldlZVlQgVWqMtQrw4OynNMQpKts0DRQj-ChDFR6V4iQB0e1wOCK6kLzTVhFyf1TIMGxUmucF--VsExWxljNJXMYONvS2A5sL_RTz31rUmMQVQlVIS7pwKtlM3pFPOrQjcc5wD68KDlGt7IDb5Iy6lHL3lG3PM15jWqokxrq_nE_fWz9e9eXsPZlv1d__nD06RncRxCl2mqebVidjmf-OQKVqXmRDPI3i03nvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Free%E2%80%90breathing%2C+non%E2%80%90ECG%2C+continuous+myocardial+T1+mapping+with+cardiovascular+magnetic+resonance+multitasking&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Shaw%2C+Jaime+L.&rft.au=Yang%2C+Qi&rft.au=Zhou%2C+Zhengwei&rft.au=Deng%2C+Zixin&rft.date=2019-04-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=81&rft.issue=4&rft.spage=2450&rft.epage=2463&rft_id=info:doi/10.1002%2Fmrm.27574&rft.externalDBID=10.1002%252Fmrm.27574&rft.externalDocID=MRM27574
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon