A variable flip angle golden‐angle‐ordered 3D stack‐of‐radial MRI technique for simultaneous proton resonant frequency shift and T1‐based thermometry

Purpose To develop and evaluate a variable‐flip‐angle golden‐angle‐ordered 3D stack‐of‐radial MRI technique for simultaneous proton resonance frequency shift (PRF) and T1‐based thermometry in aqueous and adipose tissues, respectively. Methods The proposed technique acquires multiecho radial k‐space...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 82; no. 6; pp. 2062 - 2076
Main Authors Zhang, Le, Armstrong, Tess, Li, Xinzhou, Wu, Holden H.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To develop and evaluate a variable‐flip‐angle golden‐angle‐ordered 3D stack‐of‐radial MRI technique for simultaneous proton resonance frequency shift (PRF) and T1‐based thermometry in aqueous and adipose tissues, respectively. Methods The proposed technique acquires multiecho radial k‐space data in segments with alternating flip angles to measure 3D temperature maps dynamically on the basis of PRF and T1. A sliding‐window k‐space weighted image contrast filter is used to increase temporal resolution. PRF is measured in aqueous tissues and T1 in adipose tissues using fat/water masks. The accuracy for T1 quantification was evaluated in a reference T1/T2 phantom. In vivo nonheating experiments were conducted in healthy subjects to evaluate the stability of PRF and T1 in the brain, prostate, and breast. The proposed technique was used to monitor high‐intensity focused ultrasound (HIFU) ablation in ex vivo porcine fat/muscle tissues and compared to temperature probe readings. Results The proposed technique achieved 3D coverage with 1.1‐mm to 1.3‐mm in‐plane resolution and 2‐s to 5‐s temporal resolution. During 20 to 30 min of nonheating in vivo scans, the temporal coefficient of variation for T1 was <5% in the brain, prostate, and breast fatty tissues, while the standard deviation of relative PRF temperature change was within 3°C in aqueous tissues. During ex vivo HIFU ablation, the temperatures measured by PRF and T1 were consistent with temperature probe readings, with an absolute mean difference within 2°C. Conclusion The proposed technique achieves simultaneous PRF and T1‐based dynamic 3D MR temperature mapping in aqueous and adipose tissues. It may be used to improve MRI‐guided thermal procedures.
AbstractList To develop and evaluate a variable-flip-angle golden-angle-ordered 3D stack-of-radial MRI technique for simultaneous proton resonance frequency shift (PRF) and T1 -based thermometry in aqueous and adipose tissues, respectively.PURPOSETo develop and evaluate a variable-flip-angle golden-angle-ordered 3D stack-of-radial MRI technique for simultaneous proton resonance frequency shift (PRF) and T1 -based thermometry in aqueous and adipose tissues, respectively.The proposed technique acquires multiecho radial k-space data in segments with alternating flip angles to measure 3D temperature maps dynamically on the basis of PRF and T1 . A sliding-window k-space weighted image contrast filter is used to increase temporal resolution. PRF is measured in aqueous tissues and T1 in adipose tissues using fat/water masks. The accuracy for T1 quantification was evaluated in a reference T1 /T2 phantom. In vivo nonheating experiments were conducted in healthy subjects to evaluate the stability of PRF and T1 in the brain, prostate, and breast. The proposed technique was used to monitor high-intensity focused ultrasound (HIFU) ablation in ex vivo porcine fat/muscle tissues and compared to temperature probe readings.METHODSThe proposed technique acquires multiecho radial k-space data in segments with alternating flip angles to measure 3D temperature maps dynamically on the basis of PRF and T1 . A sliding-window k-space weighted image contrast filter is used to increase temporal resolution. PRF is measured in aqueous tissues and T1 in adipose tissues using fat/water masks. The accuracy for T1 quantification was evaluated in a reference T1 /T2 phantom. In vivo nonheating experiments were conducted in healthy subjects to evaluate the stability of PRF and T1 in the brain, prostate, and breast. The proposed technique was used to monitor high-intensity focused ultrasound (HIFU) ablation in ex vivo porcine fat/muscle tissues and compared to temperature probe readings.The proposed technique achieved 3D coverage with 1.1-mm to 1.3-mm in-plane resolution and 2-s to 5-s temporal resolution. During 20 to 30 min of nonheating in vivo scans, the temporal coefficient of variation for T1 was <5% in the brain, prostate, and breast fatty tissues, while the standard deviation of relative PRF temperature change was within 3°C in aqueous tissues. During ex vivo HIFU ablation, the temperatures measured by PRF and T1 were consistent with temperature probe readings, with an absolute mean difference within 2°C.RESULTSThe proposed technique achieved 3D coverage with 1.1-mm to 1.3-mm in-plane resolution and 2-s to 5-s temporal resolution. During 20 to 30 min of nonheating in vivo scans, the temporal coefficient of variation for T1 was <5% in the brain, prostate, and breast fatty tissues, while the standard deviation of relative PRF temperature change was within 3°C in aqueous tissues. During ex vivo HIFU ablation, the temperatures measured by PRF and T1 were consistent with temperature probe readings, with an absolute mean difference within 2°C.The proposed technique achieves simultaneous PRF and T1 -based dynamic 3D MR temperature mapping in aqueous and adipose tissues. It may be used to improve MRI-guided thermal procedures.CONCLUSIONThe proposed technique achieves simultaneous PRF and T1 -based dynamic 3D MR temperature mapping in aqueous and adipose tissues. It may be used to improve MRI-guided thermal procedures.
PurposeTo develop and evaluate a variable‐flip‐angle golden‐angle‐ordered 3D stack‐of‐radial MRI technique for simultaneous proton resonance frequency shift (PRF) and T1‐based thermometry in aqueous and adipose tissues, respectively.MethodsThe proposed technique acquires multiecho radial k‐space data in segments with alternating flip angles to measure 3D temperature maps dynamically on the basis of PRF and T1. A sliding‐window k‐space weighted image contrast filter is used to increase temporal resolution. PRF is measured in aqueous tissues and T1 in adipose tissues using fat/water masks. The accuracy for T1 quantification was evaluated in a reference T1/T2 phantom. In vivo nonheating experiments were conducted in healthy subjects to evaluate the stability of PRF and T1 in the brain, prostate, and breast. The proposed technique was used to monitor high‐intensity focused ultrasound (HIFU) ablation in ex vivo porcine fat/muscle tissues and compared to temperature probe readings.ResultsThe proposed technique achieved 3D coverage with 1.1‐mm to 1.3‐mm in‐plane resolution and 2‐s to 5‐s temporal resolution. During 20 to 30 min of nonheating in vivo scans, the temporal coefficient of variation for T1 was <5% in the brain, prostate, and breast fatty tissues, while the standard deviation of relative PRF temperature change was within 3°C in aqueous tissues. During ex vivo HIFU ablation, the temperatures measured by PRF and T1 were consistent with temperature probe readings, with an absolute mean difference within 2°C.ConclusionThe proposed technique achieves simultaneous PRF and T1‐based dynamic 3D MR temperature mapping in aqueous and adipose tissues. It may be used to improve MRI‐guided thermal procedures.
Purpose To develop and evaluate a variable‐flip‐angle golden‐angle‐ordered 3D stack‐of‐radial MRI technique for simultaneous proton resonance frequency shift (PRF) and T1‐based thermometry in aqueous and adipose tissues, respectively. Methods The proposed technique acquires multiecho radial k‐space data in segments with alternating flip angles to measure 3D temperature maps dynamically on the basis of PRF and T1. A sliding‐window k‐space weighted image contrast filter is used to increase temporal resolution. PRF is measured in aqueous tissues and T1 in adipose tissues using fat/water masks. The accuracy for T1 quantification was evaluated in a reference T1/T2 phantom. In vivo nonheating experiments were conducted in healthy subjects to evaluate the stability of PRF and T1 in the brain, prostate, and breast. The proposed technique was used to monitor high‐intensity focused ultrasound (HIFU) ablation in ex vivo porcine fat/muscle tissues and compared to temperature probe readings. Results The proposed technique achieved 3D coverage with 1.1‐mm to 1.3‐mm in‐plane resolution and 2‐s to 5‐s temporal resolution. During 20 to 30 min of nonheating in vivo scans, the temporal coefficient of variation for T1 was <5% in the brain, prostate, and breast fatty tissues, while the standard deviation of relative PRF temperature change was within 3°C in aqueous tissues. During ex vivo HIFU ablation, the temperatures measured by PRF and T1 were consistent with temperature probe readings, with an absolute mean difference within 2°C. Conclusion The proposed technique achieves simultaneous PRF and T1‐based dynamic 3D MR temperature mapping in aqueous and adipose tissues. It may be used to improve MRI‐guided thermal procedures.
Author Wu, Holden H.
Zhang, Le
Li, Xinzhou
Armstrong, Tess
Author_xml – sequence: 1
  givenname: Le
  orcidid: 0000-0003-1841-1986
  surname: Zhang
  fullname: Zhang, Le
  email: LeZh@mednet.ucla.edu
  organization: University of California Los Angeles
– sequence: 2
  givenname: Tess
  surname: Armstrong
  fullname: Armstrong, Tess
  organization: University of California Los Angeles
– sequence: 3
  givenname: Xinzhou
  surname: Li
  fullname: Li, Xinzhou
  organization: University of California Los Angeles
– sequence: 4
  givenname: Holden H.
  orcidid: 0000-0002-2585-5916
  surname: Wu
  fullname: Wu, Holden H.
  organization: University of California Los Angeles
BookMark eNpdkc1OGzEUhS0EUkNg0TewxKabCf4Zz88S0dIiJaqEYD26M75DDB472E6r7HiEvkHfrU9SJ-mqG99r69M5xzrn5NR5h4R85GzBGRPXU5gWom4aeUJmXAlRCNWWp2TG6pIVkrflB3Ie4wtjrG3rckZ-39AfEAz0FulozYaCe87rs7ca3Z_3X4drnj5oDKip_ExjguF1_zTmI4A2YOnq4Z4mHNbOvG2zkA80mmlrEzj020g3wSfvaMDoHbhEx4CZc8OOxrUZUzbV9JFnuR5iNklrDJOfMIXdBTkbwUa8_Dfn5Onuy-Ptt2L5_ev97c2y2AhVyYIL0FxpGBvd9Bq5KCspWQVCtzUoOZS1liNWWDJRgRp4pVtRQ6Vl2zTQN72ck09H3Rw1R4upm0wc0NrjDzohFKuEaLPZnFz9h774bXA5XaYaUXLJlcrU9ZH6aSzuuk0wE4Rdx1m376nLPXWHnrrVw-qwyL-aa5C9
ContentType Journal Article
Copyright 2019 International Society for Magnetic Resonance in Medicine
2019 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2019 International Society for Magnetic Resonance in Medicine
– notice: 2019 International Society for Magnetic Resonance in Medicine.
DBID 8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.27883
DatabaseName Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Biochemistry Abstracts 1

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2076
ExternalDocumentID MRM27883
Genre article
GrantInformation_xml – fundername: Siemens USA
– fundername: UCLA Radiological Sciences
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
8FD
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-p2563-12ad15daf8d8bde12463306a2d97a53c47d3fe6e4026a5c16d927a6d3988ab8b3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 07:05:46 EDT 2025
Sun Jul 20 15:11:42 EDT 2025
Wed Jan 22 17:20:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2563-12ad15daf8d8bde12463306a2d97a53c47d3fe6e4026a5c16d927a6d3988ab8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1841-1986
0000-0002-2585-5916
PQID 2282413155
PQPubID 1016391
PageCount 15
ParticipantIDs proquest_miscellaneous_2250622956
proquest_journals_2282413155
wiley_primary_10_1002_mrm_27883_MRM27883
PublicationCentury 2000
PublicationDate December 2019
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 20
2013; 69
1990; 16
2015; 102
2015; 73
2000; 43
1995; 34
1987; 5
2000; 44
2018; 80
2016; 75
2008; 35
1999; 42
1998; 40
2003; 50
2010; 63
2018; 47
2010; 64
2009; 54
2006; 23
2017; 77
2008; 27
2017; 78
2012; 67
2018; 31
2008; 60
2009; 15
2007; 26
2018; 79
2010; 37
2009; 62
1985; 4
2017; 27
2006; 55
2008; 18
1999; 22
2008; 246
2012; 36
2011; 38
2014; 40
2009; 36
2004; 52
2004; 51
2019; 81
2013; 38
2008; 49
2005; 53
2018
2014; 72
2016; 26
2014; 71
2012; 9
1998; 8
References_xml – volume: 50
  start-page: 1
  year: 2003
  end-page: 6
  article-title: Centering the projection reconstruction trajectory: Reducing gradient delay errors
  publication-title: Magn Reson Med
– volume: 69
  start-page: 62
  year: 2013
  end-page: 70
  article-title: Hybrid proton resonance frequency/T1 technique for simultaneous temperature monitoring in adipose and aqueous tissues
  publication-title: Magn Reson Med
– volume: 81
  start-page: 247
  year: 2019
  end-page: 257
  article-title: Effect of k‐space‐weighted image contrast and ultrasound focus size on the accuracy of proton resonance frequency thermometry
  publication-title: Magn Reson Med
– volume: 15
  start-page: 3217
  year: 2009
  article-title: Characteristics of common solid liver lesions and recommendations for diagnostic workup
  publication-title: World J Gastroenterol
– volume: 31
  start-page: 771
  year: 2018
  end-page: 779
  article-title: Fast MR thermometry using an echo‐shifted sequence with simultaneous multi‐slice imaging
  publication-title: Magn Reson Mater Physics, Biol Med
– volume: 73
  start-page: 1914
  year: 2015
  end-page: 1925
  article-title: Accelerated MRI thermometry by direct estimation of temperature from undersampled k‐space data
  publication-title: Magn Reson Med
– volume: 51
  start-page: 1223
  year: 2004
  end-page: 1231
  article-title: Referenceless PRF shift thermometry
  publication-title: Magn Reson Med
– volume: 69
  start-page: 1122
  year: 2013
  end-page: 1130
  article-title: Irreversible change in the T1 temperature dependence with thermal dose using the proton resonance frequency‐T1 technique
  publication-title: Magn Reson Med
– volume: 62
  start-page: 406
  year: 2009
  end-page: 419
  article-title: Temporally constrained reconstruction applied to MRI temperature data
  publication-title: Magn Reson Med
– volume: 63
  start-page: 79
  year: 2010
  end-page: 90
  article-title: Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm
  publication-title: Magn Reson Med
– volume: 42
  start-page: 1061
  year: 1999
  end-page: 1071
  article-title: Analysis of changes in MR properties of tissues after heat treatment
  publication-title: Magn Reson Med
– volume: 54
  start-page: N1
  year: 2009
  end-page: N8
  article-title: Uncertainty in T1 mapping using the variable flip angle method with two flip angles
  publication-title: Phys Med Biol
– volume: 26
  start-page: 4037
  year: 2016
  end-page: 4046
  article-title: First clinical experience with a dedicated MRI‐guided high‐intensity focused ultrasound system for breast cancer ablation
  publication-title: Eur Radiol
– volume: 75
  start-page: 775
  year: 2016
  end-page: 788
  article-title: XD‐GRASP: Golden‐angle radial MRI with reconstruction of extra motion‐state dimensions using compressed sensing
  publication-title: Magn Reson Med
– volume: 37
  start-page: 5014
  year: 2010
  end-page: 5026
  article-title: Hybrid referenceless and multibaseline subtraction MR thermometry for monitoring thermal therapies in moving organs
  publication-title: Med Phys
– volume: 79
  start-page: 2003
  year: 2018
  end-page: 2013
  article-title: Volumetric MRI thermometry using a three‐dimensional stack‐of‐stars echo‐planar imaging pulse sequence
  publication-title: Magn Reson Med
– volume: 64
  start-page: 439
  year: 2010
  end-page: 446
  article-title: Rapid B1+ mapping using a preconditioning RF pulse with TurboFLASH readout
  publication-title: Magn Reson Med
– volume: 38
  start-page: 272
  year: 2011
  end-page: 282
  article-title: Quantification of near‐field heating during volumetric MR‐HIFU ablation
  publication-title: Med Phys
– volume: 67
  start-page: 724
  year: 2012
  end-page: 730
  article-title: Reconstruction of fully three‐dimensional high spatial and temporal resolution MR temperature maps for retrospective applications
  publication-title: Magn Reson Med
– volume: 43
  start-page: 682
  year: 2000
  end-page: 690
  article-title: Adaptive reconstruction of phased array MR imagery
  publication-title: Magn Reson Med
– volume: 80
  start-page: 1546
  year: 2018
  end-page: 1555
  article-title: Multiparameter estimation using multi‐echo spoiled gradient echo with variable flip angles and multicontrast compressed sensing
  publication-title: Magn Reson Med
– volume: 49
  start-page: 2055
  year: 2008
  end-page: 2062
  article-title: Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla
  publication-title: J Lipid Res
– volume: 79
  start-page: 370
  year: 2018
  end-page: 382
  article-title: Free‐breathing liver fat quantification using a multiecho 3D stack‐of‐radial technique
  publication-title: Magn Reson Med
– volume: 40
  start-page: 171
  year: 2014
  end-page: 180
  article-title: T1 Mapping using variable flip angle SPGR data with flip angle correction
  publication-title: J Magn Reson Imaging
– volume: 81
  start-page: 2385
  year: 2019
  end-page: 2398
  article-title: Multi‐echo MR thermometry using iterative separation of baseline water and fat images
  publication-title: Magn Reson Med
– volume: 8
  start-page: 188
  year: 1998
  end-page: 196
  article-title: Temperature monitoring of interstitial thermal tissue coagulation using MR phase images
  publication-title: J Magn Reson Imaging
– volume: 36
  start-page: 3521
  year: 2009
  end-page: 3535
  article-title: Volumetric HIFU ablation under 3D guidance of rapid MRI thermometry
  publication-title: Med Phys
– volume: 22
  start-page: 481
  year: 1999
  end-page: 504
  article-title: Surface Reconstruction by Voronoi Filtering
  publication-title: Discrete Comput Geom
– volume: 102
  start-page: 873
  year: 2015
  end-page: 882
  article-title: Systematic review of high‐intensity focused ultrasound ablation in the treatment of breast cancer
  publication-title: Br J Surg
– volume: 72
  start-page: 563
  year: 2014
  end-page: 569
  article-title: Phase reconstruction from multiple coil data using a virtual reference coil
  publication-title: Magn Reson Med
– volume: 27
  start-page: 376
  year: 2008
  end-page: 390
  article-title: MR thermometry
  publication-title: J Magn Reson Imaging
– volume: 78
  start-page: 2290
  year: 2017
  end-page: 2298
  article-title: Golden‐ratio rotated stack‐of‐stars acquisition for improved volumetric MRI
  publication-title: Magn Reson Med
– volume: 51
  start-page: 93
  year: 2004
  end-page: 102
  article-title: Self‐gated cardiac cine MRI
  publication-title: Magn Reson Med
– volume: 71
  start-page: 524
  year: 2014
  end-page: 533
  article-title: Fast accurate MR thermometry using phase referenced asymmetric spin‐echo EPI at high field
  publication-title: Magn Reson Med
– volume: 4
  start-page: 200
  year: 1985
  end-page: 207
  article-title: A Fast Sinc Function Gridding Algorithm for Fourier Inversion in Computer Tomography
  publication-title: IEEE Trans Med Imaging
– volume: 27
  start-page: 204
  year: 2008
  end-page: 208
  article-title: MRI‐guided radiofrequency ablation of breast cancer: preliminary clinical experience
  publication-title: J Magn Reson Imaging
– volume: 20
  start-page: 713
  year: 2004
  end-page: 724
  article-title: MR‐guided laser‐induced thermotherapy (LITT) of liver tumours: experimental and clinical data
  publication-title: Int J Hyperth
– volume: 5
  start-page: 201
  year: 1987
  end-page: 208
  article-title: Rapid calculation of T1 using variable flip angle gradient refocused imaging
  publication-title: Magn Reson Imaging
– volume: 69
  start-page: 1768
  year: 2013
  end-page: 1776
  article-title: Gadgetron: An open source framework for medical image reconstruction
  publication-title: Magn Reson Med
– volume: 40
  start-page: 454
  year: 1998
  end-page: 459
  article-title: Ex vivo tissue‐type independence in proton‐resonance frequency shift MR thermometry
  publication-title: Magn Reson Med
– volume: 34
  start-page: 814
  year: 1995
  end-page: 823
  article-title: A precise and fast temperature mapping using water proton chemical shift
  publication-title: Magn Reson Med
– volume: 16
  start-page: 192
  year: 1990
  end-page: 225
  article-title: The NMR phased array
  publication-title: Magn Reson Med
– volume: 36
  start-page: 722
  year: 2012
  end-page: 732
  article-title: Fat‐referenced MR thermometry in the breast and prostate using IDEAL
  publication-title: J Magn Reson Imaging
– volume: 53
  start-page: 237
  year: 2005
  end-page: 241
  article-title: High‐resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2
  publication-title: Magn Reson Med
– volume: 38
  start-page: 4971
  year: 2011
  end-page: 4981
  article-title: The effect of electronically steering a phased array ultrasound transducer on near‐field tissue heating
  publication-title: Med Phys
– volume: 81
  start-page: 1876
  year: 2019
  end-page: 1889
  article-title: Simultaneous B1 and T1 mapping using spiral multislice variable flip angle acquisitions for whole‐brain coverage in less than one minute
  publication-title: Magn Reson Med
– volume: 79
  start-page: 48
  year: 2018
  end-page: 61
  article-title: Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom
  publication-title: Magn Reson Med
– volume: 60
  start-page: 1135
  year: 2008
  end-page: 1146
  article-title: Respiratory motion‐compensated radial dynamic contrast‐enhanced (DCE)‐MRI of chest and abdominal lesions
  publication-title: Magn Reson Med
– volume: 23
  start-page: 430
  year: 2006
  end-page: 434
  article-title: Investigation of proton density for measuring tissue temperature
  publication-title: J Magn Reson Imaging
– volume: 72
  start-page: 793
  year: 2014
  end-page: 799
  article-title: In vivo evaluation of multi‐echo hybrid PRF/T1 approach for temperature monitoring during breast MR‐guided focused ultrasound surgery treatments
  publication-title: Magn Reson Med
– volume: 79
  start-page: 1407
  year: 2018
  end-page: 1419
  article-title: Multiecho pseudo‐golden angle stack of stars thermometry with high spatial and temporal resolution using k‐space weighted image contrast
  publication-title: Magn Reson Med
– volume: 47
  start-page: 316
  year: 2018
  end-page: 331
  article-title: MR techniques for guiding high‐intensity focused ultrasound (HIFU) treatments
  publication-title: J Magn Reson Imaging
– volume: 27
  start-page: 673
  year: 2008
  end-page: 677
  article-title: Echo combination to reduce proton resonance frequency (PRF) thermometry errors from fat
  publication-title: J Magn Reson Imaging
– start-page: 4151
  year: 2018
– volume: 55
  start-page: 566
  year: 2006
  end-page: 574
  article-title: Rapid high‐resolution T1 mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity
  publication-title: Magn Reson Med
– volume: 9
  start-page: 721
  year: 2012
  end-page: 727
  article-title: Prostate focused ultrasound focal therapy‐imaging for the future
  publication-title: Nat Rev Clin Oncol
– volume: 26
  start-page: 68
  year: 2007
  end-page: 76
  article-title: An Optimal Radial Profile Order Based on the Golden Ratio for Time‐Resolved MRI
  publication-title: IEEE Trans Med Imaging
– volume: 18
  start-page: 1431
  year: 2008
  end-page: 1441
  article-title: Image‐guided focused ultrasound ablation of breast cancer: current status, challenges, and future directions
  publication-title: Eur Radiol
– volume: 52
  start-page: 815
  year: 2004
  end-page: 824
  article-title: Dynamic MRI with projection reconstruction and KWIC processing for simultaneous high spatial and temporal resolution
  publication-title: Magn Reson Med
– volume: 27
  start-page: 1467
  year: 2017
  end-page: 1476
  article-title: MR‐guided microwave ablation in hepatic tumours: initial results in clinical routine
  publication-title: Eur Radiol
– volume: 77
  start-page: 1201
  year: 2017
  end-page: 1207
  article-title: Estimating absolute‐phase maps using ESPIRiT and virtual conjugate coils
  publication-title: Magn Reson Med
– volume: 44
  start-page: 825
  year: 2000
  end-page: 832
  article-title: k‐Space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI
  publication-title: Magn Reson Med
– volume: 50
  start-page: 1003
  year: 2003
  end-page: 1010
  article-title: Triggered, navigated, multi‐baseline method for proton resonance frequency temperature mapping with respiratory motion
  publication-title: Magn Reson Med
– volume: 35
  start-page: 1346
  year: 2008
  end-page: 1357
  article-title: MRI‐compatible transurethral ultrasound system for the treatment of localized prostate cancer using rotational control
  publication-title: Med Phys
– volume: 246
  start-page: 833
  year: 2008
  end-page: 844
  article-title: MR Imaging of Prostate after Treatment with High‐Intensity Focused Ultrasound
  publication-title: Radiology
– volume: 81
  start-page: 3138
  year: 2019
  end-page: 3152
  article-title: Simultaneous proton resonance frequency shift thermometry and T1 measurements using a single reference variable flip angle T1 method
  publication-title: Magn Reson Med
– volume: 67
  start-page: 457
  year: 2012
  end-page: 463
  article-title: Simultaneous T1 measurements and proton resonance frequency shift based thermometry using variable flip angles
  publication-title: Magn Reson Med
– volume: 81
  start-page: 1322
  year: 2019
  end-page: 1334
  article-title: Dual‐step iterative temperature estimation method for accurate and precise fat‐referenced PRFS temperature imaging
  publication-title: Magn Reson Med
– volume: 38
  start-page: 1462
  year: 2013
  end-page: 1471
  article-title: Comparison of temperature processing methods for monitoring focused ultrasound ablation in the brain
  publication-title: J Magn Reson Imaging
– volume: 79
  start-page: 2057
  year: 2018
  end-page: 2066
  article-title: Simultaneous multi‐slice MRI using cartesian and radial FLASH and regularized nonlinear inversion: SMS‐NLINV
  publication-title: Magn Reson Med
SSID ssj0009974
Score 2.412569
Snippet Purpose To develop and evaluate a variable‐flip‐angle golden‐angle‐ordered 3D stack‐of‐radial MRI technique for simultaneous proton resonance frequency shift...
PurposeTo develop and evaluate a variable‐flip‐angle golden‐angle‐ordered 3D stack‐of‐radial MRI technique for simultaneous proton resonance frequency shift...
To develop and evaluate a variable-flip-angle golden-angle-ordered 3D stack-of-radial MRI technique for simultaneous proton resonance frequency shift (PRF) and...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 2062
SubjectTerms Ablation
Adipose tissue
Brain
Breast
Coefficient of variation
Frequency shift
Image contrast
Image filters
Magnetic resonance imaging
Mapping
Masks
MR thermometry
Muscles
Prostate
Proton resonance
proton resonant frequency shift
radial MRI
Resonant frequencies
Stability analysis
T1 mapping
Temperature effects
Temperature probes
Temporal resolution
Thermometry
Ultrasound
Title A variable flip angle golden‐angle‐ordered 3D stack‐of‐radial MRI technique for simultaneous proton resonant frequency shift and T1‐based thermometry
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27883
https://www.proquest.com/docview/2282413155
https://www.proquest.com/docview/2250622956
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQUlEvpYWiQmllpB56yZLYiddRT6gtAqRwWIHEASly_AMrdpNVkkWipz5C36Dv1ifpjL270J6qXhLnz3E0Hs838cxnQj6IWFvNwFMF02uiNHdJJK3k4KoITEU3PHaY4Fyci5PL9Owqu1ojn5a5MIEfYvXDDTXDj9eo4KrqDh9JQ6ftdMDAgUOmT4zVQkA0eqSOyvPAwDxMcZzJ0yWrUMwOV0_-gSqfYlNvXI43yfWyWSGm5G4w76uB_vYXY-N_tvslebEAnfQo9JJXZM3WW2SjWEyrb5FnPg5Ud9vk5xG9B-8Z86mom4xnVNU3ULxpJjA-_fr-wx_C3jN2WkP5FwrwUt_hKQebFqkOJrQYndIVOywFXEy7MYYuqto2844iOURTU_D0G4zDoa4NAd0PtLsdux5eauhFAtWhjTUUMeq0mdq-fXhNLo-_Xnw-iRZrOEQzAFM8SpgySWaUk0ZWxgKaEBy8FMVMPlQZ1-nQcGeFBTdWqEwnwuRsqIThuZSqkhXfIet1U9s3hMYcmYccq5i2qXVaaquci1WsM2kTI3bJ_lKa5UIRu5KBSwl2GlDTLjlYXQYVwnmR8NFwTxYLXNYcqvjoRVfOAtVHGUidWQlCK73QymJU-MLev9_6ljwHmJWHIJh9st63c_sOoExfvfd99jcnqvgk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKK34uBUoRhQJG4sAl28ROvI7EpaJUW2h6WG2lXlDk-KesupuskixSOfUR-ga8G0_SmXh3WzghLomTOI6jsT3f2DOfCXkvQm01A0sVVK8J4tRFgbSSg6kiMBTd8NBhgHN2Igan8Zez5GyNfFzGwnh-iNWEG_aMbrzGDo4T0nu3rKHTetpjYMHxe2QDd_RG5vyD4S15VJp6DuZ-jCNNGi95hUK2t3r1D1x5F5126uXwMfm2rJj3Krnozduip3_-xdn4vzV_QjYXuJPu-4bylKzZcos8yBYr61vkfucKqptn5Nc-_QEGNIZUUTcZz6gqzyF5Xk1giPp9dd1dwrkj7bSG8gMKCFNf4C0HhxrZDiY0Gx7RFUEsBWhMmzF6L6rSVvOGIj9EVVIw9it0xaGu9j7dl7T5PnYtfNTQUQTFoZo1FGHqtJratr7cJqeHn0efBsFiG4dgBniKBxFTJkqMctLIwlgAFIKDoaKYSfsq4TruG-6ssGDJCpXoSJiU9ZUwPJVSFbLgz8l6WZX2BaEhR_IhxwqmbWydltoq50IV6kTayIgdsrsUZ77oi03OwKoEVQ3AaYe8Wz2GXoRLI_6nIU8SCtzZHIr40Mkun3m2j9zzOrMchJZ3QsuzYdYlXv571rfk4WCUHefHRydfX5FHgLpS7xOzS9bbem5fA7JpizddA74BiOH8QA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEVUvPAoVfQBG4sAl28ROvLZ6qlhWLZAKrVqpB6TI8aOsupuskixSe-In8A_63_gljO3dLXBCXBLn5Tgaj-ebeOYzQm9YrIwi4KmC6dVRKmwSccMpuCrMpaJrGluX4JyfsuPz9MNFdrGGDpe5MIEfYvXDzWmGH6-dgs-0PbgjDZ020x4BB47eQ_dTFgu3bsNgdMcdJUSgYO6nbqAR6ZJWKCYHq0f_gJW_g1NvXYaP0Jdlu0JQyVVv3pU9dfMXZeN_NvwxerhAnfgodJMnaM1UW2gjX8yrb6EHPhBUtU_R7RH-Bu6zS6jCdjKeYVldQvGynsAA9fP7D38Ie0_ZaTSmAwz4Ul25UxY2jeM6mOB8dIJX9LAYgDFuxy52UVamnrfYsUPUFQZXv3aBONg2IaL7Grdfx7aDl2p8lkB1zshq7EDqtJ6arrl-hs6H78_eHUeLRRyiGaApGiVE6iTT0nLNS20ATjAKbookWvRlRlXa19QaZsCPZTJTCdOC9CXTVHAuS17SbbRe1ZV5jnBMHfWQJSVRJjVWcWWktbGMVcZNotkO2l9Ks1hoYlsQ8CnBUANs2kGvV5dBh9zESPhouCeLmVvXHKp460VXzALXRxFYnUkBQiu80Ip8lPvC7r_f-gptfB4Mi08npx_30CZALhECYvbRetfMzQuANV350nffX7OE-u8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+variable+flip+angle+golden%E2%80%90angle%E2%80%90ordered+3D+stack%E2%80%90of%E2%80%90radial+MRI+technique+for+simultaneous+proton+resonant+frequency+shift+and+T1%E2%80%90based+thermometry&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Zhang%2C+Le&rft.au=Armstrong%2C+Tess&rft.au=Li%2C+Xinzhou&rft.au=Wu%2C+Holden+H.&rft.date=2019-12-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=82&rft.issue=6&rft.spage=2062&rft.epage=2076&rft_id=info:doi/10.1002%2Fmrm.27883&rft.externalDBID=10.1002%252Fmrm.27883&rft.externalDocID=MRM27883
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon