FedPHP: Federated Personalization with Inherited Private Models

Federated Learning (FL) generates a single global model via collaborating distributed clients without leaking data privacy. However, the statistical heterogeneity of non-iid data across clients poses a fundamental challenge to the model personalization process of each client. Our significant observa...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Discovery in Databases. Research Track Vol. 12975; pp. 587 - 602
Main Authors Li, Xin-Chun, Zhan, De-Chuan, Shao, Yunfeng, Li, Bingshuai, Song, Shaoming
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text
ISBN3030864855
9783030864859
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-86486-6_36

Cover

Loading…
Abstract Federated Learning (FL) generates a single global model via collaborating distributed clients without leaking data privacy. However, the statistical heterogeneity of non-iid data across clients poses a fundamental challenge to the model personalization process of each client. Our significant observation is that the newly downloaded global model from the server may perform poorly on local clients, while it could become better after adequate personalization steps. Inspired by this, we advocate that the hard-won personalized model in each communication round should be rationally exploited, while standard FL methods directly overwrite the previous personalized models. Specifically, we propose a novel concept named “inHerited Private Model” (HPM) for each local client as a temporal ensembling of its historical personalized models and exploit it to supervise the personalization process in the next global round. We explore various types of knowledge transfer to facilitate the personalization process. We provide both theoretical analysis and abundant experimental studies to verify the superiorities of our algorithm.
AbstractList Federated Learning (FL) generates a single global model via collaborating distributed clients without leaking data privacy. However, the statistical heterogeneity of non-iid data across clients poses a fundamental challenge to the model personalization process of each client. Our significant observation is that the newly downloaded global model from the server may perform poorly on local clients, while it could become better after adequate personalization steps. Inspired by this, we advocate that the hard-won personalized model in each communication round should be rationally exploited, while standard FL methods directly overwrite the previous personalized models. Specifically, we propose a novel concept named “inHerited Private Model” (HPM) for each local client as a temporal ensembling of its historical personalized models and exploit it to supervise the personalization process in the next global round. We explore various types of knowledge transfer to facilitate the personalization process. We provide both theoretical analysis and abundant experimental studies to verify the superiorities of our algorithm.
Author Li, Bingshuai
Li, Xin-Chun
Song, Shaoming
Zhan, De-Chuan
Shao, Yunfeng
Author_xml – sequence: 1
  givenname: Xin-Chun
  orcidid: 0000-0001-9417-7971
  surname: Li
  fullname: Li, Xin-Chun
– sequence: 2
  givenname: De-Chuan
  orcidid: 0000-0001-9303-2519
  surname: Zhan
  fullname: Zhan, De-Chuan
  email: zhandc@nju.edu.cn
– sequence: 3
  givenname: Yunfeng
  surname: Shao
  fullname: Shao, Yunfeng
– sequence: 4
  givenname: Bingshuai
  surname: Li
  fullname: Li, Bingshuai
– sequence: 5
  givenname: Shaoming
  surname: Song
  fullname: Song, Shaoming
BookMark eNo1kMFOwzAMhgMMxDb2Bhz6AgHHSZOUC0ITY5OG2AHOUdqmrFC1JSkg8fRkG_hi67d_y_4mZNR2rSPkksEVA1DXmdKUU-BAtRRaUmm4PCKzKPMo7jV5TMZMMkY5F9kJmfw30nRExrFGminBz8iEodQoY4hzMgvhDQBQoVBcjMntwpWb5eYmidl5O7gy2TgfutY29Y8d6q5Nvuthm6zarfP1vu3rrziXPHala8IFOa1sE9zsL0_Jy-L-eb6k66eH1fxuTXsUfKAV5AKqtFBYos6ZxrRUCgoHzKaK20qBTkFhvFqUTnLIM2VRywxyZLJkjk8JHvaG3tftq_Mm77r3YBiYHS8TwRhuot_s2Zgdr2gSB1Pvu49PFwbjdq7CtYO3TbG1_RB_NTLCkEKYVKKRiPwXs2NpCw
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DOI 10.1007/978-3-030-86486-6_36
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030864866
3030864863
EISSN 1611-3349
Editor Pérez-Cruz, Fernando
Lozano, Jose A
Oliver, Nuria
Kramer, Stefan
Read, Jesse
Editor_xml – sequence: 1
  fullname: Oliver, Nuria
– sequence: 2
  fullname: Kramer, Stefan
– sequence: 3
  fullname: Pérez-Cruz, Fernando
– sequence: 4
  fullname: Lozano, Jose A
– sequence: 5
  fullname: Read, Jesse
EndPage 602
ExternalDocumentID EBC6724644_562_622
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-f0b40f5c72d28b1825d770ce01a573af70850720304de630b97a28690b216d1e3
ISBN 3030864855
9783030864859
ISSN 0302-9743
IngestDate Tue Jul 29 20:12:52 EDT 2025
Mon Jan 13 02:23:04 EST 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-f0b40f5c72d28b1825d770ce01a573af70850720304de630b97a28690b216d1e3
OCLC 1268266664
ORCID 0000-0001-9303-2519
0000-0001-9417-7971
PQID EBC6724644_562_622
PageCount 16
ParticipantIDs springer_books_10_1007_978_3_030_86486_6_36
proquest_ebookcentralchapters_6724644_562_622
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings, Part I
PublicationTitle Machine Learning and Knowledge Discovery in Databases. Research Track
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002724734
ssj0002792
Score 2.340009
Snippet Federated Learning (FL) generates a single global model via collaborating distributed clients without leaking data privacy. However, the statistical...
SourceID springer
proquest
SourceType Publisher
StartPage 587
Title FedPHP: Federated Personalization with Inherited Private Models
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6724644&ppg=622
http://link.springer.com/10.1007/978-3-030-86486-6_36
Volume 12975
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWmw6ZiwVuUl7Kgq8pV4jh2goREGToaylCNRIuGVeQ4jloJpaiT2fA1_AN_wJdxrx-ZB92UTTRjWY5zj2VfH99zTchrwbTIC5VRkxY55aJKaK7jhqpYMa7rJGlSFAp_PhWTc34yz-aDwe-1qKVlVx3qnzfqSv4HVSgDXFElewtk-0ahAH4DvvAEhOG55fxu0qz-hiEMgzQhQ6qTGn4KFBmm1dQYnml1fR9Up3C9Whz2oXaY1lz3Mp2pPdSfX7Z0dLHsxwuyyW5SwuLVOPpyoSzD-m3ZNsYvfX0j75F7h9qX66NxbOrZZIb0wxizVyj0c2dhH-CUoJYS3h-x_aP4Y4uqRFvnGm9fM_bKtu_O_UfLmsXbqT_8OL3qbEzZQbifIkxX63wGS7b4jMBnbjGiK1JuYwOcYrodwXOfVdwLwWCSh22SmzeNm9cFZmtMXXZUP1dnfqV3y76wwu9_V5T1IBJomeLbBBVlKnbIjsyzIblzdHwy_doTe0wyLjHn3m74X_ijLNcrFBiFXmcuBdTqK9bEnTe9cmMbtHVybx2is_vkLopkIlSvgP0ekIFpH5J7AYLIQ_CIvHPAv4l62KMt2COE_c-vHvLIQx45yB-T8_Hx2WhC_aUd9AfjaUebuOJxk2nJapZXsHvNailjbeJEZTJVjcQciXj2H_PaiDSuCqkYXotWsUTUiUmfkGF71ZqnJKrBnWW8iIXKKg7b7KJJqqLWukkKXksl9wgN1ihtaIGPZ9bu2xelACjA3y_Bxy8FY3vkIJisxOqLMuTsBluXaQl9Kq2tS7T1s1vVfk52V4P5BRl210vzEtzVrnrlB8hfnc6LiA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases.+Research+Track&rft.au=Li%2C+Xin-Chun&rft.au=Zhan%2C+De-Chuan&rft.au=Shao%2C+Yunfeng&rft.au=Li%2C+Bingshuai&rft.atitle=FedPHP%3A+Federated+Personalization+with%C2%A0Inherited+Private+Models&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030864859&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=587&rft.epage=602&rft_id=info:doi/10.1007%2F978-3-030-86486-6_36
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6724644-l.jpg