FedPHP: Federated Personalization with Inherited Private Models
Federated Learning (FL) generates a single global model via collaborating distributed clients without leaking data privacy. However, the statistical heterogeneity of non-iid data across clients poses a fundamental challenge to the model personalization process of each client. Our significant observa...
Saved in:
Published in | Machine Learning and Knowledge Discovery in Databases. Research Track Vol. 12975; pp. 587 - 602 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
ISBN | 3030864855 9783030864859 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-86486-6_36 |
Cover
Loading…
Abstract | Federated Learning (FL) generates a single global model via collaborating distributed clients without leaking data privacy. However, the statistical heterogeneity of non-iid data across clients poses a fundamental challenge to the model personalization process of each client. Our significant observation is that the newly downloaded global model from the server may perform poorly on local clients, while it could become better after adequate personalization steps. Inspired by this, we advocate that the hard-won personalized model in each communication round should be rationally exploited, while standard FL methods directly overwrite the previous personalized models. Specifically, we propose a novel concept named “inHerited Private Model” (HPM) for each local client as a temporal ensembling of its historical personalized models and exploit it to supervise the personalization process in the next global round. We explore various types of knowledge transfer to facilitate the personalization process. We provide both theoretical analysis and abundant experimental studies to verify the superiorities of our algorithm. |
---|---|
AbstractList | Federated Learning (FL) generates a single global model via collaborating distributed clients without leaking data privacy. However, the statistical heterogeneity of non-iid data across clients poses a fundamental challenge to the model personalization process of each client. Our significant observation is that the newly downloaded global model from the server may perform poorly on local clients, while it could become better after adequate personalization steps. Inspired by this, we advocate that the hard-won personalized model in each communication round should be rationally exploited, while standard FL methods directly overwrite the previous personalized models. Specifically, we propose a novel concept named “inHerited Private Model” (HPM) for each local client as a temporal ensembling of its historical personalized models and exploit it to supervise the personalization process in the next global round. We explore various types of knowledge transfer to facilitate the personalization process. We provide both theoretical analysis and abundant experimental studies to verify the superiorities of our algorithm. |
Author | Li, Bingshuai Li, Xin-Chun Song, Shaoming Zhan, De-Chuan Shao, Yunfeng |
Author_xml | – sequence: 1 givenname: Xin-Chun orcidid: 0000-0001-9417-7971 surname: Li fullname: Li, Xin-Chun – sequence: 2 givenname: De-Chuan orcidid: 0000-0001-9303-2519 surname: Zhan fullname: Zhan, De-Chuan email: zhandc@nju.edu.cn – sequence: 3 givenname: Yunfeng surname: Shao fullname: Shao, Yunfeng – sequence: 4 givenname: Bingshuai surname: Li fullname: Li, Bingshuai – sequence: 5 givenname: Shaoming surname: Song fullname: Song, Shaoming |
BookMark | eNo1kMFOwzAMhgMMxDb2Bhz6AgHHSZOUC0ITY5OG2AHOUdqmrFC1JSkg8fRkG_hi67d_y_4mZNR2rSPkksEVA1DXmdKUU-BAtRRaUmm4PCKzKPMo7jV5TMZMMkY5F9kJmfw30nRExrFGminBz8iEodQoY4hzMgvhDQBQoVBcjMntwpWb5eYmidl5O7gy2TgfutY29Y8d6q5Nvuthm6zarfP1vu3rrziXPHala8IFOa1sE9zsL0_Jy-L-eb6k66eH1fxuTXsUfKAV5AKqtFBYos6ZxrRUCgoHzKaK20qBTkFhvFqUTnLIM2VRywxyZLJkjk8JHvaG3tftq_Mm77r3YBiYHS8TwRhuot_s2Zgdr2gSB1Pvu49PFwbjdq7CtYO3TbG1_RB_NTLCkEKYVKKRiPwXs2NpCw |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2021 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
DBID | FFUUA |
DOI | 10.1007/978-3-030-86486-6_36 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9783030864866 3030864863 |
EISSN | 1611-3349 |
Editor | Pérez-Cruz, Fernando Lozano, Jose A Oliver, Nuria Kramer, Stefan Read, Jesse |
Editor_xml | – sequence: 1 fullname: Oliver, Nuria – sequence: 2 fullname: Kramer, Stefan – sequence: 3 fullname: Pérez-Cruz, Fernando – sequence: 4 fullname: Lozano, Jose A – sequence: 5 fullname: Read, Jesse |
EndPage | 602 |
ExternalDocumentID | EBC6724644_562_622 |
GroupedDBID | 38. AABBV AABLV ABNDO ACWLQ AEDXK AEJLV AEKFX AELOD ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY FFUUA I4C IEZ OCUHQ ORHYB SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p243t-f0b40f5c72d28b1825d770ce01a573af70850720304de630b97a28690b216d1e3 |
ISBN | 3030864855 9783030864859 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:12:52 EDT 2025 Mon Jan 13 02:23:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q334-342 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p243t-f0b40f5c72d28b1825d770ce01a573af70850720304de630b97a28690b216d1e3 |
OCLC | 1268266664 |
ORCID | 0000-0001-9303-2519 0000-0001-9417-7971 |
PQID | EBC6724644_562_622 |
PageCount | 16 |
ParticipantIDs | springer_books_10_1007_978_3_030_86486_6_36 proquest_ebookcentralchapters_6724644_562_622 |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings, Part I |
PublicationTitle | Machine Learning and Knowledge Discovery in Databases. Research Track |
PublicationYear | 2021 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
SSID | ssj0002724734 ssj0002792 |
Score | 2.340009 |
Snippet | Federated Learning (FL) generates a single global model via collaborating distributed clients without leaking data privacy. However, the statistical... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 587 |
Title | FedPHP: Federated Personalization with Inherited Private Models |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6724644&ppg=622 http://link.springer.com/10.1007/978-3-030-86486-6_36 |
Volume | 12975 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWmw6ZiwVuUl7Kgq8pV4jh2goREGToaylCNRIuGVeQ4jloJpaiT2fA1_AN_wJdxrx-ZB92UTTRjWY5zj2VfH99zTchrwbTIC5VRkxY55aJKaK7jhqpYMa7rJGlSFAp_PhWTc34yz-aDwe-1qKVlVx3qnzfqSv4HVSgDXFElewtk-0ahAH4DvvAEhOG55fxu0qz-hiEMgzQhQ6qTGn4KFBmm1dQYnml1fR9Up3C9Whz2oXaY1lz3Mp2pPdSfX7Z0dLHsxwuyyW5SwuLVOPpyoSzD-m3ZNsYvfX0j75F7h9qX66NxbOrZZIb0wxizVyj0c2dhH-CUoJYS3h-x_aP4Y4uqRFvnGm9fM_bKtu_O_UfLmsXbqT_8OL3qbEzZQbifIkxX63wGS7b4jMBnbjGiK1JuYwOcYrodwXOfVdwLwWCSh22SmzeNm9cFZmtMXXZUP1dnfqV3y76wwu9_V5T1IBJomeLbBBVlKnbIjsyzIblzdHwy_doTe0wyLjHn3m74X_ijLNcrFBiFXmcuBdTqK9bEnTe9cmMbtHVybx2is_vkLopkIlSvgP0ekIFpH5J7AYLIQ_CIvHPAv4l62KMt2COE_c-vHvLIQx45yB-T8_Hx2WhC_aUd9AfjaUebuOJxk2nJapZXsHvNailjbeJEZTJVjcQciXj2H_PaiDSuCqkYXotWsUTUiUmfkGF71ZqnJKrBnWW8iIXKKg7b7KJJqqLWukkKXksl9wgN1ihtaIGPZ9bu2xelACjA3y_Bxy8FY3vkIJisxOqLMuTsBluXaQl9Kq2tS7T1s1vVfk52V4P5BRl210vzEtzVrnrlB8hfnc6LiA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases.+Research+Track&rft.au=Li%2C+Xin-Chun&rft.au=Zhan%2C+De-Chuan&rft.au=Shao%2C+Yunfeng&rft.au=Li%2C+Bingshuai&rft.atitle=FedPHP%3A+Federated+Personalization+with%C2%A0Inherited+Private+Models&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030864859&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=587&rft.epage=602&rft_id=info:doi/10.1007%2F978-3-030-86486-6_36 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6724644-l.jpg |