NN-Based Czech Sign Language Synthesis

This paper describes our Czech sign language synthesis that converts a Czech text into a series of skeletal poses. Our main goal is to avoid demanding handcrafted annotations of videos and to avoid a manual mapping between sign language glosses and skeletal poses. Thus, instead of solving these task...

Full description

Saved in:
Bibliographic Details
Published inSpeech and Computer Vol. 11658; pp. 559 - 568
Main Authors Zelinka, Jan, Kanis, Jakub, Salajka, Petr
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030260607
9783030260606
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-26061-3_57

Cover

Abstract This paper describes our Czech sign language synthesis that converts a Czech text into a series of skeletal poses. Our main goal is to avoid demanding handcrafted annotations of videos and to avoid a manual mapping between sign language glosses and skeletal poses. Thus, instead of solving these task separately, we join a model of an implicit neural-network-based translator and a model of the mapping between sign language glosses and we train both models together. For this purpose, we propose a simple differentiable operation that decomposes input symbols and it allows to produce a required series without any recurrent mechanism. We used The OpenPose toolbox to automatically extract skeletal poses and we designed a gradient-descend-based algorithm that converts a 2D skeleton model to a 3D skeleton model in order to fix misplaced and missing joints. Weather forecast parts of The daily news in Czech sign language were used to obtain our training and testing data. Our experiments demonstrate the benefit of the implicit translator and an ability of the designed sign language synthesis system to produce naturally formed skeletal poses.
AbstractList This paper describes our Czech sign language synthesis that converts a Czech text into a series of skeletal poses. Our main goal is to avoid demanding handcrafted annotations of videos and to avoid a manual mapping between sign language glosses and skeletal poses. Thus, instead of solving these task separately, we join a model of an implicit neural-network-based translator and a model of the mapping between sign language glosses and we train both models together. For this purpose, we propose a simple differentiable operation that decomposes input symbols and it allows to produce a required series without any recurrent mechanism. We used The OpenPose toolbox to automatically extract skeletal poses and we designed a gradient-descend-based algorithm that converts a 2D skeleton model to a 3D skeleton model in order to fix misplaced and missing joints. Weather forecast parts of The daily news in Czech sign language were used to obtain our training and testing data. Our experiments demonstrate the benefit of the implicit translator and an ability of the designed sign language synthesis system to produce naturally formed skeletal poses.
Author Salajka, Petr
Zelinka, Jan
Kanis, Jakub
Author_xml – sequence: 1
  givenname: Jan
  surname: Zelinka
  fullname: Zelinka, Jan
  email: zelinka@kky.zcu.cz
  organization: Faculty of Applied Sciences, New Technologies for the Information Society, University of West Bohemia, Pilsen, Czech Republic
– sequence: 2
  givenname: Jakub
  surname: Kanis
  fullname: Kanis, Jakub
  email: jkanis@kky.zcu.cz
  organization: Faculty of Applied Sciences, New Technologies for the Information Society, University of West Bohemia, Pilsen, Czech Republic
– sequence: 3
  givenname: Petr
  surname: Salajka
  fullname: Salajka, Petr
  email: salajka@kky.zcu.cz
  organization: Faculty of Applied Sciences, New Technologies for the Information Society, University of West Bohemia, Pilsen, Czech Republic
BookMark eNo1kM1Ow0AMhBcoiLb0DTjkxG3BjjfZ-AgVf1JVDoXzaps6aQGlIZse4OlJWjjZmtFna2akBtW2EqUuEa4RwN6wzTRpINBxCilqcok9UpNOpk7ca3Sshphi55HhEzX6N8AO1LDfNVtDZ2qEiCZhNoTnahLCOwDEMTDabKiu5nN954OsoumP5OtosSmraOarcudLiRbfVbuWsAkX6rTwn0Emf3Os3h7uX6dPevby-Dy9nek6NtRqKYwnKwkQ2-5Bxr5AtJyZlCGn1GfMQGKTZWqLnArx3tvMLjNPK6Qiz2ms4sPdUDebqpTGLbfbj-AQXF-L6_I7cl04t6_A9bV0kDlAdbP92klonfRULlXb-M987etWmuASjpETdqmFnqJfoyFf7A
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DBID FFUUA
DEWEY 6.35
DOI 10.1007/978-3-030-26061-3_57
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030260613
3030260615
EISSN 1611-3349
Editor Salah, Albert Ali
Potapova, Rodmonga
Karpov, Alexey
Editor_xml – sequence: 1
  fullname: Salah, Albert Ali
– sequence: 2
  fullname: Karpov, Alexey
– sequence: 3
  fullname: Potapova, Rodmonga
EndPage 568
ExternalDocumentID EBC5921959_670_573
GroupedDBID 38.
AABBV
AEDXK
AEJLV
AEKFX
AIFIR
ALMA_UNASSIGNED_HOLDINGS
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
FFUUA
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-p243t-ef4a37e5039709189af117984690c36a89903e75b67fc3feaaa787b8a3d13fcc3
ISBN 3030260607
9783030260606
ISSN 0302-9743
IngestDate Tue Jul 29 19:56:57 EDT 2025
Fri Apr 11 21:40:43 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-ef4a37e5039709189af117984690c36a89903e75b67fc3feaaa787b8a3d13fcc3
Notes This work was supported by the European Regional Development Fund under the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466). Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042), is greatly appreciated.
OCLC 1114599431
PQID EBC5921959_670_573
PageCount 10
ParticipantIDs springer_books_10_1007_978_3_030_26061_3_57
proquest_ebookcentralchapters_5921959_670_573
PublicationCentury 2000
PublicationDate 2019
20190724
PublicationDateYYYYMMDD 2019-01-01
2019-07-24
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 21st International Conference, SPECOM 2019, Istanbul, Turkey, August 20-25, 2019, Proceedings
PublicationTitle Speech and Computer
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
  organization: Karlsruhe Institute of Technology, Karlsruhe, Germany
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
  organization: Cornell University, Ithaca, USA
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
  organization: Purdue University, West Lafayette, USA
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
  organization: Peking University, Beijing, China
– sequence: 5
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: TU Dortmund University, Dortmund, Germany
– sequence: 6
  givenname: Gerhard
  surname: Woeginger
  fullname: Woeginger, Gerhard
  organization: RWTH Aachen, Aachen, Germany
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
  organization: Columbia University, New York, USA
SSID ssj0002209178
ssj0002792
Score 1.975818
Snippet This paper describes our Czech sign language synthesis that converts a Czech text into a series of skeletal poses. Our main goal is to avoid demanding...
SourceID springer
proquest
SourceType Publisher
StartPage 559
SubjectTerms 3D skeleton reconstruction
Implicit translation
Sign language synthesis
Title NN-Based Czech Sign Language Synthesis
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5921959&ppg=573
http://link.springer.com/10.1007/978-3-030-26061-3_57
Volume 11658
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbK9lL1wKOtuoWiHFAvyFUaJ3E4cABEhVbLXoCKmzV2HImHAuqGA_x6ZmI7yS5c4BJFluXHfNZ4PPZ8w9hOEWtd4cmCS9TAPJUAvCil4GiapmlsiJKc_JCns_zkIp1cZpd9ttE2uqTRv83Tq3El70EVyxBXipJ9A7Jdo1iA_4gvfhFh_C4Zv4tuVhfDcW-tcXFpITVD5wWmIPMb_wq2v2aH2hEKTODmQXeuFbiFa1eXsmsNl9Bsxg9xk8P2n6inM0rhOfX-zd2zxxptx_mVs8lpuna-P_U3ErO7pn3o1Y0s6JChk6GNa-LJSyfjkpuy95QtnEpxVySmsjzOB8oMizieXZwys07Z5kShKBxlqVegmecHd3tx5lLuvFDzw5cd2DKn3rAplckVtiKLdMQ-HhxPpv86b1uSoF0kex55ok1090tuVBT1E0YtHS9TP4tBxOVrXS6cTZau01sr5XyNfabIlYhCSlB-6-yDrTfYaoAg8hB8Yb8CsFELbETARgHYqAP2K7v4e3x-dMJ9vgx-n6Si4bZKQUibxWhj4nSLPaiI8K8gD4gROeDROhZWZjqXlRGVBQBU17oAUf4RlTHiGxvVd7X9ziLQJWRVQmRskBopwBpRVrK0wpS4I-kx42HOqr3V90-JjZvhXGV7CdEWqVzGKCIxZrtBMIqqz1Wgy0aJKqFQoqqVqCKJ_nhT7U32qV-yW2zU_H-wP9FSbPS2XwbP2qhb5A
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Speech+and+Computer&rft.au=Zelinka%2C+Jan&rft.au=Kanis%2C+Jakub&rft.au=Salajka%2C+Petr&rft.atitle=NN-Based+Czech+Sign+Language+Synthesis&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2019-07-24&rft.pub=Springer+International+Publishing&rft.isbn=9783030260606&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=559&rft.epage=568&rft_id=info:doi/10.1007%2F978-3-030-26061-3_57
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5921959-l.jpg