incDFM: Incremental Deep Feature Modeling for Continual Novelty Detection

Novelty detection is a key capability for practical machine learning in the real world, where models operate in non-stationary conditions and are repeatedly exposed to new, unseen data. Yet, most current novelty detection approaches have been developed exclusively for static, offline use. They scale...

Full description

Saved in:
Bibliographic Details
Published inComputer Vision - ECCV 2022 Vol. 13685; pp. 588 - 604
Main Authors Rios, Amanda, Ahuja, Nilesh, Ndiour, Ibrahima, Genc, Utku, Itti, Laurent, Tickoo, Omesh
Format Book Chapter
LanguageEnglish
Published Switzerland Springer 2022
Springer Nature Switzerland
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Novelty detection is a key capability for practical machine learning in the real world, where models operate in non-stationary conditions and are repeatedly exposed to new, unseen data. Yet, most current novelty detection approaches have been developed exclusively for static, offline use. They scale poorly under more realistic, continual learning regimes in which data distribution shifts occur. To address this critical gap, this paper proposes incDFM (incremental Deep Feature Modeling), a self-supervised continual novelty detector. The method builds a statistical model over the space of intermediate features produced by a deep network, and utilizes feature reconstruction errors as uncertainty scores to guide the detection of novel samples. Most importantly, incDFM estimates the statistical model incrementally (via several iterations within a task), instead of a single-shot. Each time it selects only the most confident novel samples which will then guide subsequent recruitment incrementally. For a certain task where the ML model encounters a mixture of old and novel data, the detector flags novel samples to incorporate them to old knowledge. Then the detector is updated with the flagged novel samples, in preparation for a next task. To quantify and benchmark performance, we adapted multiple datasets for continual learning: CIFAR-10, CIFAR-100, SVHN, iNaturalist, and the 8-dataset. Our experiments show that incDFM achieves state of the art continual novelty detection performance. Furthermore, when examined in the greater context of continual learning for classification, our method is successful in minimizing catastrophic forgetting and error propagation.
AbstractList Novelty detection is a key capability for practical machine learning in the real world, where models operate in non-stationary conditions and are repeatedly exposed to new, unseen data. Yet, most current novelty detection approaches have been developed exclusively for static, offline use. They scale poorly under more realistic, continual learning regimes in which data distribution shifts occur. To address this critical gap, this paper proposes incDFM (incremental Deep Feature Modeling), a self-supervised continual novelty detector. The method builds a statistical model over the space of intermediate features produced by a deep network, and utilizes feature reconstruction errors as uncertainty scores to guide the detection of novel samples. Most importantly, incDFM estimates the statistical model incrementally (via several iterations within a task), instead of a single-shot. Each time it selects only the most confident novel samples which will then guide subsequent recruitment incrementally. For a certain task where the ML model encounters a mixture of old and novel data, the detector flags novel samples to incorporate them to old knowledge. Then the detector is updated with the flagged novel samples, in preparation for a next task. To quantify and benchmark performance, we adapted multiple datasets for continual learning: CIFAR-10, CIFAR-100, SVHN, iNaturalist, and the 8-dataset. Our experiments show that incDFM achieves state of the art continual novelty detection performance. Furthermore, when examined in the greater context of continual learning for classification, our method is successful in minimizing catastrophic forgetting and error propagation.
Author Genc, Utku
Ahuja, Nilesh
Rios, Amanda
Tickoo, Omesh
Ndiour, Ibrahima
Itti, Laurent
Author_xml – sequence: 1
  givenname: Amanda
  surname: Rios
  fullname: Rios, Amanda
  email: amanda.rios@intel.com
– sequence: 2
  givenname: Nilesh
  surname: Ahuja
  fullname: Ahuja, Nilesh
– sequence: 3
  givenname: Ibrahima
  surname: Ndiour
  fullname: Ndiour, Ibrahima
– sequence: 4
  givenname: Utku
  surname: Genc
  fullname: Genc, Utku
– sequence: 5
  givenname: Laurent
  surname: Itti
  fullname: Itti, Laurent
– sequence: 6
  givenname: Omesh
  surname: Tickoo
  fullname: Tickoo, Omesh
BookMark eNpFkMFOwzAQRA0URFv6BxzyAwbb6zg2N1QoVKJwgbPlJBsoBDskLhJ_j9sicVppdmY1-yZk5INHQs45u-CMFZem0BQoA0650UxRY0EekAkkZSeYQzLminMKIM3R_yJnIzJmwAQ1hYQTMuEgtdTaKDgls2F4Z4yJInm5HpPl2lc3i9VVtvRVj5_oo2uzG8QuW6CLmx6zVaixXfvXrAl9Ng8-rv0meR7DN7bxJ3kjVnEd_Bk5blw74OxvTsnL4vZ5fk8fnu6W8-sH2gkJkaJiqi5ROoU1KCYqYEZrx51oCp2zXOUliKZuhHa1cE6XZZGKls5w7rioNEyJ2N8duj7Vwt6WIXwMljO7xWYTNgs2sbA7SnaLLYXkPtT14WuDQ7S4TVXp39611ZvrIvaDLbYAjbA5l1ZJCb_Jd2zh
ContentType Book Chapter
Copyright The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Copyright_xml – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
DBID FFUUA
DEWEY 006.37
DOI 10.1007/978-3-031-19806-9_34
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 3031198069
9783031198069
EISSN 1611-3349
Editor Farinella, Giovanni Maria
Avidan, Shai
Cissé, Moustapha
Brostow, Gabriel
Hassner, Tal
Editor_xml – sequence: 1
  fullname: Avidan, Shai
– sequence: 1
  givenname: Shai
  surname: Avidan
  fullname: Avidan, Shai
  email: avidan@eng.tau.ac.il
– sequence: 2
  fullname: Cissé, Moustapha
– sequence: 2
  givenname: Gabriel
  orcidid: 0000-0001-8472-3828
  surname: Brostow
  fullname: Brostow, Gabriel
  email: g.brostow@cs.ucl.ac.uk
– sequence: 3
  fullname: Farinella, Giovanni Maria
– sequence: 3
  givenname: Moustapha
  surname: Cissé
  fullname: Cissé, Moustapha
  email: moustaphacisse@google.com
– sequence: 4
  fullname: Brostow, Gabriel
– sequence: 4
  givenname: Giovanni Maria
  orcidid: 0000-0002-6034-0432
  surname: Farinella
  fullname: Farinella, Giovanni Maria
  email: gfarinella@dmi.unict.it
– sequence: 5
  fullname: Hassner, Tal
– sequence: 5
  givenname: Tal
  orcidid: 0000-0003-2275-1406
  surname: Hassner
  fullname: Hassner, Tal
  email: talhassner@gmail.com
EndPage 604
ExternalDocumentID EBC7119892_514_644
GroupedDBID 38.
AABBV
AALIB
AAZWU
ABSVR
ABTHU
ABVND
ACHZO
ACPMC
ADNVS
AEDXK
AEJLV
AEKFX
AHVRR
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
IEZ
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z82
Z83
Z84
Z87
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-p243t-e606dbe4a6ed3602c30988a1a2f7850565b32fdf28ad2aa8bb7118ba911a12c83
ISBN 3031198050
9783031198052
ISSN 0302-9743
IngestDate Tue Oct 01 19:55:39 EDT 2024
Fri Jul 26 00:50:24 EDT 2024
IsPeerReviewed true
IsScholarly true
LCCallNum TA1634
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-e606dbe4a6ed3602c30988a1a2f7850565b32fdf28ad2aa8bb7118ba911a12c83
Notes Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1007/978-3-031-19806-9_34.
OCLC 1348488963
PQID EBC7119892_514_644
PageCount 17
ParticipantIDs springer_books_10_1007_978_3_031_19806_9_34
proquest_ebookcentralchapters_7119892_514_644
PublicationCentury 2000
PublicationDate 2022
20221020
PublicationDateYYYYMMDD 2022-01-01
2022-10-20
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXV
PublicationTitle Computer Vision - ECCV 2022
PublicationYear 2022
Publisher Springer
Springer Nature Switzerland
Publisher_xml – name: Springer
– name: Springer Nature Switzerland
RelatedPersons Hartmanis, Juris
Gao, Wen
Steffen, Bernhard
Bertino, Elisa
Goos, Gerhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002731118
ssj0002792
Score 2.1102688
Snippet Novelty detection is a key capability for practical machine learning in the real world, where models operate in non-stationary conditions and are repeatedly...
SourceID springer
proquest
SourceType Publisher
StartPage 588
SubjectTerms Continual learning
Out-of-distribution detection
Title incDFM: Incremental Deep Feature Modeling for Continual Novelty Detection
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7119892&ppg=644
http://link.springer.com/10.1007/978-3-031-19806-9_34
Volume 13685
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWc9FL0kK5ouoGH5iSokEitBXowHKeBkfjQxkZuBCnRiFrXDiK5BfId_YB-S7-sMyK1OMklvQgCIUjizMPjzHBmSMj7mCWRjv3QDTiGbsJAusqTiRtprGPMMp3URWGn0-h4FkzOw_PB4Hcva2lTqQ_Z9Z11Jf-jVRgDvWKV7D00274UBuAe9AtX0DBcbxi_22FW01fAnsfgzOvycKdJW-DOeDSaO8xjbeLwl8Ik0w1_yJ4HPrzYfJMGDUtddmHhvAB81dwBnvRF0RH3Z5w7jM-q75s-1IpVdnh0irEFYBsTb0Qy1frSQQsTtyjwyLWlTdo8GLGDoYdtsYq6t_90_VMvwRc41FWdF2ZwggLU5acTu8cxXVd16pjTTtuyUj9sAR4v8D3zboUtMScb3_L1V1Fdm_rmLQ8XVljfT_HchR4xcmBx8IMMMWpD3BG2Y-Sm_akl49AcGGjX9cgcc3xryehnicDHXPxa5KaCBztkJ06BNR8Mx5OTeRu5A4MPFoiuJz22YDR7VeavsIKo-WvbVaybRa96865Pbvk5N7bma4vn7DF5hFUwFMtTQNhPyECvnpI967NQK_sShhp9NGPPyMTg4SPtoYEiGqhFA23QQAENf_-0SKAWCbRFwnMyOxqfjY5de2SHe8kCXrka_OFc6UBGOueRxzLupUkifckWcYLGdqg4W-QLlsicSZkoFYMolYQlV_osS_gLsrtar_RLQjnLVKgUDyLuB7EOUg3eRbpYZDyMcu2H-8RtRCXqxAKbzZwZwZQiRpGnTIBLIMDq3ydOI0-Bj5ei6dgNihBcgCJErQiBinh1r6dfk4cdxt-Q3epqo9-CsVqpdxY9_wBSGYcl
link.rule.ids 782,783,787,796,27937
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Vision+%E2%80%93+ECCV+2022&rft.au=Rios%2C+Amanda&rft.au=Ahuja%2C+Nilesh&rft.au=Ndiour%2C+Ibrahima&rft.au=Genc%2C+Utku&rft.atitle=incDFM%3A+Incremental+Deep+Feature+Modeling+for%C2%A0Continual+Novelty+Detection&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2022-10-20&rft.pub=Springer+Nature+Switzerland&rft.isbn=9783031198052&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=588&rft.epage=604&rft_id=info:doi/10.1007%2F978-3-031-19806-9_34
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7119892-l.jpg