A Deep Learning Solution for Integrated Traffic Control Through Automatic License Plate Recognition

Nowadays, Smart Cities applications are becoming steadily popular, thanks to their main objective of improving people daily habits. The services provided by the aforementioned applications may be either addressed to the entire digital population or narrowed towards a specific kind of audience, like...

Full description

Saved in:
Bibliographic Details
Published inComputational Science and Its Applications - ICCSA 2021 Vol. 12951; pp. 211 - 226
Main Authors Balia, Riccardo, Barra, Silvio, Carta, Salvatore, Fenu, Gianni, Podda, Alessandro Sebastian, Sansoni, Nicola
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030869694
3030869695
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-86970-0_16

Cover

Loading…
Abstract Nowadays, Smart Cities applications are becoming steadily popular, thanks to their main objective of improving people daily habits. The services provided by the aforementioned applications may be either addressed to the entire digital population or narrowed towards a specific kind of audience, like drivers and pedestrians. In this sense, the proposed paper describes a Deep Learning solution designed to manage traffic control tasks in Smart Cities. It involves a network of smart lampposts, in charge of directly monitoring the traffic by means of a bullet camera, and equipped with an advanced System-on-Module where the data are efficiently processed. In particular, our solution provides both: i) a risk estimation module, and ii) a license plate recognition module. The first module analyses the scene by means of a Faster R-CNN, trained over an ad-hoc set of synthetically videos, to estimate the risk of potential traffic anomalies. Concurrently, the license plate recognition module, by leveraging on YOLO and Tesseract, is active for retrieving the plate number of the vehicles involved. Preliminary experimental findings, from a prototype of the solution applied in a real-world scenario, are provided.
AbstractList Nowadays, Smart Cities applications are becoming steadily popular, thanks to their main objective of improving people daily habits. The services provided by the aforementioned applications may be either addressed to the entire digital population or narrowed towards a specific kind of audience, like drivers and pedestrians. In this sense, the proposed paper describes a Deep Learning solution designed to manage traffic control tasks in Smart Cities. It involves a network of smart lampposts, in charge of directly monitoring the traffic by means of a bullet camera, and equipped with an advanced System-on-Module where the data are efficiently processed. In particular, our solution provides both: i) a risk estimation module, and ii) a license plate recognition module. The first module analyses the scene by means of a Faster R-CNN, trained over an ad-hoc set of synthetically videos, to estimate the risk of potential traffic anomalies. Concurrently, the license plate recognition module, by leveraging on YOLO and Tesseract, is active for retrieving the plate number of the vehicles involved. Preliminary experimental findings, from a prototype of the solution applied in a real-world scenario, are provided.
Author Carta, Salvatore
Sansoni, Nicola
Podda, Alessandro Sebastian
Barra, Silvio
Balia, Riccardo
Fenu, Gianni
Author_xml – sequence: 1
  givenname: Riccardo
  surname: Balia
  fullname: Balia, Riccardo
– sequence: 2
  givenname: Silvio
  surname: Barra
  fullname: Barra, Silvio
– sequence: 3
  givenname: Salvatore
  surname: Carta
  fullname: Carta, Salvatore
– sequence: 4
  givenname: Gianni
  surname: Fenu
  fullname: Fenu, Gianni
– sequence: 5
  givenname: Alessandro Sebastian
  surname: Podda
  fullname: Podda, Alessandro Sebastian
  email: sebastianpodda@unica.it
– sequence: 6
  givenname: Nicola
  surname: Sansoni
  fullname: Sansoni, Nicola
BookMark eNpNkM1OwzAQhA0URIG-AQe_gMH2unZyrMqvVAkE5Ww5yaYNBDs47vvjAgdOu5rdGWm-MzLxwSMhl4JfCc7NdWkKBowDZ4UuDWfcCn1AZlmGLP5o_JBMhRaCAajy6P9Nl2pCpnmXrDQKTsiZkLqQ2hR6fkpm4_jOOZdGcg0wJfWC3iAOdIUu-s5v6Gvod6kLnrYh0kefcBNdwoauo2vbrqbL4FMMPV1vY9httnSxS-HTpXxZdTX6Eelznw30Beuw8d0-6oIct64fcfY3z8nb3e16-cBWT_ePy8WKDVJBYk3rqkYCV2quQBsjdDGHCrRq0GDbNJWR6AoD1bxwlapMA5JL3qJs87cyDs6J_M0dh5irYLRVCB-jFZlfxmozIws2k7E_CO0eazapX9MQw9cOx2Rx78pVUnR9vXVDwjhabaQqC7AZm80bfAOP7Xf9
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DEWEY 004
DOI 10.1007/978-3-030-86970-0_16
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9783030869700
3030869709
EISSN 1611-3349
Editor Misra, Sanjay
Apduhan, Bernady O
Murgante, Beniamino
Torre, Carmelo Maria
Gervasi, Osvaldo
Taniar, David
Tarantino, Eufemia
Blečić, Ivan
Rocha, Ana Maria A. C
Garau, Chiara
Editor_xml – sequence: 1
  fullname: Misra, Sanjay
– sequence: 2
  fullname: Murgante, Beniamino
– sequence: 3
  fullname: Apduhan, Bernady O
– sequence: 4
  fullname: Torre, Carmelo Maria
– sequence: 5
  fullname: Gervasi, Osvaldo
– sequence: 6
  fullname: Taniar, David
– sequence: 7
  fullname: Tarantino, Eufemia
– sequence: 8
  fullname: Garau, Chiara
– sequence: 9
  fullname: Blečić, Ivan
– sequence: 10
  fullname: Rocha, Ana Maria A. C
EndPage 226
ExternalDocumentID EBC6724983_206_249
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-dfabd2304454367716853b364de7efddb72ea873b58ab4b7d32020fe2f36747a3
ISBN 9783030869694
3030869695
ISSN 0302-9743
IngestDate Tue Jul 29 20:40:07 EDT 2025
Fri Jun 06 21:47:45 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TK5105.5-5105.9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-dfabd2304454367716853b364de7efddb72ea873b58ab4b7d32020fe2f36747a3
OCLC 1268267865
PQID EBC6724983_206_249
PageCount 16
ParticipantIDs springer_books_10_1007_978_3_030_86970_0_16
proquest_ebookcentralchapters_6724983_206_249
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 21st International Conference, Cagliari, Italy, September 13-16, 2021, Proceedings, Part III
PublicationTitle Computational Science and Its Applications - ICCSA 2021
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002720633
ssj0002792
Score 2.2345526
Snippet Nowadays, Smart Cities applications are becoming steadily popular, thanks to their main objective of improving people daily habits. The services provided by...
SourceID springer
proquest
SourceType Publisher
StartPage 211
SubjectTerms Anomalies detection
Deep Learning
License plate recognition
Smart Cities
Title A Deep Learning Solution for Integrated Traffic Control Through Automatic License Plate Recognition
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6724983&ppg=249
http://link.springer.com/10.1007/978-3-030-86970-0_16
Volume 12951
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l4QIcgAKi5aE9cLOMYu_a6xw4mKiorUIPNEW9rWzvGkWqkip2euBH8ps6sw_bCb2Ui7XaWH7MfBnPzs58Q8hnBd-QqYpFmNZKhzwSZZgpBY5cwfikYBV4EFic_OMiPb3i59fJ9Wj0d5C1tG3LL9WfB-tK_kerMAd6xSrZR2i2uyhMwBj0C0fQMBz3nN_dMKvlFTD9GHwsz_9HTXpv21jv0meK-4wGFpzNZpd5EE_iTtLfCpcv-3MJYt6odf_DxvQgCi6XN3fLbnoGWLPTxc0drtg7ZIBotibMvsQ-SEMs5mDW9K3ncv0d-FicyXE884QVCpnWkdECyxBN_vzCNRHKt-3aUsvOwa6tGo29llrsOOGynxy2UOi6-Tp3-yIX69akmwW-dYWX0jDUEUd7oQ4f6twLlvbxup21MUMmnnSa2h7KvkYM7D-soKxJ1dbkp0jkyCxxamfGo4FHENua_n8-NsP8ErhyCHfDLj4ySg_Igcj4mDzJT87nv7qYH-55p6z3FJC80e5y2afC2iP_1Illh-rfYlD3-dAtd1ZIe5v6xldavCTPsX6GYmELyO8VGenVIXnhVUCdCg7JswEV5mtS5RQxQj1GqMcIBYzQHiPUYYQ6jFCHEdphhDqMUIMROsDIG3L1_WQxOw1dA5DwNuasDVVdlAp3LXjCWSpgaQ_OZclSrrTQtVKliHWRCVYmWVHyUigGqJnUOq7hbA7m5i0Zr9Yr_Y5Q5OlTVcJVXCse8aicwlCIelKBCJnOjkjoxSdNmoLLja6ssBqZiphPMyZBgxJGRyTwMpZ4eiM9_zcoRzIJypFGORKVc_yos9-Tpz36P5Bxu9nqj-D6tuUnh6h7MtSmIA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computational+Science+and+Its+Applications+%E2%80%93+ICCSA+2021&rft.au=Balia%2C+Riccardo&rft.au=Barra%2C+Silvio&rft.au=Carta%2C+Salvatore&rft.au=Fenu%2C+Gianni&rft.atitle=A+Deep+Learning+Solution+for+Integrated+Traffic+Control+Through+Automatic+License+Plate+Recognition&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030869694&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=211&rft.epage=226&rft_id=info:doi/10.1007%2F978-3-030-86970-0_16
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6724983-l.jpg