A Deep Learning Solution for Integrated Traffic Control Through Automatic License Plate Recognition
Nowadays, Smart Cities applications are becoming steadily popular, thanks to their main objective of improving people daily habits. The services provided by the aforementioned applications may be either addressed to the entire digital population or narrowed towards a specific kind of audience, like...
Saved in:
Published in | Computational Science and Its Applications - ICCSA 2021 Vol. 12951; pp. 211 - 226 |
---|---|
Main Authors | , , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783030869694 3030869695 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-86970-0_16 |
Cover
Loading…
Abstract | Nowadays, Smart Cities applications are becoming steadily popular, thanks to their main objective of improving people daily habits. The services provided by the aforementioned applications may be either addressed to the entire digital population or narrowed towards a specific kind of audience, like drivers and pedestrians. In this sense, the proposed paper describes a Deep Learning solution designed to manage traffic control tasks in Smart Cities. It involves a network of smart lampposts, in charge of directly monitoring the traffic by means of a bullet camera, and equipped with an advanced System-on-Module where the data are efficiently processed. In particular, our solution provides both: i) a risk estimation module, and ii) a license plate recognition module. The first module analyses the scene by means of a Faster R-CNN, trained over an ad-hoc set of synthetically videos, to estimate the risk of potential traffic anomalies. Concurrently, the license plate recognition module, by leveraging on YOLO and Tesseract, is active for retrieving the plate number of the vehicles involved. Preliminary experimental findings, from a prototype of the solution applied in a real-world scenario, are provided. |
---|---|
AbstractList | Nowadays, Smart Cities applications are becoming steadily popular, thanks to their main objective of improving people daily habits. The services provided by the aforementioned applications may be either addressed to the entire digital population or narrowed towards a specific kind of audience, like drivers and pedestrians. In this sense, the proposed paper describes a Deep Learning solution designed to manage traffic control tasks in Smart Cities. It involves a network of smart lampposts, in charge of directly monitoring the traffic by means of a bullet camera, and equipped with an advanced System-on-Module where the data are efficiently processed. In particular, our solution provides both: i) a risk estimation module, and ii) a license plate recognition module. The first module analyses the scene by means of a Faster R-CNN, trained over an ad-hoc set of synthetically videos, to estimate the risk of potential traffic anomalies. Concurrently, the license plate recognition module, by leveraging on YOLO and Tesseract, is active for retrieving the plate number of the vehicles involved. Preliminary experimental findings, from a prototype of the solution applied in a real-world scenario, are provided. |
Author | Carta, Salvatore Sansoni, Nicola Podda, Alessandro Sebastian Barra, Silvio Balia, Riccardo Fenu, Gianni |
Author_xml | – sequence: 1 givenname: Riccardo surname: Balia fullname: Balia, Riccardo – sequence: 2 givenname: Silvio surname: Barra fullname: Barra, Silvio – sequence: 3 givenname: Salvatore surname: Carta fullname: Carta, Salvatore – sequence: 4 givenname: Gianni surname: Fenu fullname: Fenu, Gianni – sequence: 5 givenname: Alessandro Sebastian surname: Podda fullname: Podda, Alessandro Sebastian email: sebastianpodda@unica.it – sequence: 6 givenname: Nicola surname: Sansoni fullname: Sansoni, Nicola |
BookMark | eNpNkM1OwzAQhA0URIG-AQe_gMH2unZyrMqvVAkE5Ww5yaYNBDs47vvjAgdOu5rdGWm-MzLxwSMhl4JfCc7NdWkKBowDZ4UuDWfcCn1AZlmGLP5o_JBMhRaCAajy6P9Nl2pCpnmXrDQKTsiZkLqQ2hR6fkpm4_jOOZdGcg0wJfWC3iAOdIUu-s5v6Gvod6kLnrYh0kefcBNdwoauo2vbrqbL4FMMPV1vY9httnSxS-HTpXxZdTX6Eelznw30Beuw8d0-6oIct64fcfY3z8nb3e16-cBWT_ePy8WKDVJBYk3rqkYCV2quQBsjdDGHCrRq0GDbNJWR6AoD1bxwlapMA5JL3qJs87cyDs6J_M0dh5irYLRVCB-jFZlfxmozIws2k7E_CO0eazapX9MQw9cOx2Rx78pVUnR9vXVDwjhabaQqC7AZm80bfAOP7Xf9 |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2021 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
DBID | FFUUA |
DEWEY | 004 |
DOI | 10.1007/978-3-030-86970-0_16 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISBN | 9783030869700 3030869709 |
EISSN | 1611-3349 |
Editor | Misra, Sanjay Apduhan, Bernady O Murgante, Beniamino Torre, Carmelo Maria Gervasi, Osvaldo Taniar, David Tarantino, Eufemia Blečić, Ivan Rocha, Ana Maria A. C Garau, Chiara |
Editor_xml | – sequence: 1 fullname: Misra, Sanjay – sequence: 2 fullname: Murgante, Beniamino – sequence: 3 fullname: Apduhan, Bernady O – sequence: 4 fullname: Torre, Carmelo Maria – sequence: 5 fullname: Gervasi, Osvaldo – sequence: 6 fullname: Taniar, David – sequence: 7 fullname: Tarantino, Eufemia – sequence: 8 fullname: Garau, Chiara – sequence: 9 fullname: Blečić, Ivan – sequence: 10 fullname: Rocha, Ana Maria A. C |
EndPage | 226 |
ExternalDocumentID | EBC6724983_206_249 |
GroupedDBID | 38. AABBV AABLV ABNDO ACWLQ AEDXK AEJLV AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE DBWEY FFUUA I4C IEZ OCUHQ ORHYB SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p243t-dfabd2304454367716853b364de7efddb72ea873b58ab4b7d32020fe2f36747a3 |
ISBN | 9783030869694 3030869695 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:40:07 EDT 2025 Fri Jun 06 21:47:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | TK5105.5-5105.9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p243t-dfabd2304454367716853b364de7efddb72ea873b58ab4b7d32020fe2f36747a3 |
OCLC | 1268267865 |
PQID | EBC6724983_206_249 |
PageCount | 16 |
ParticipantIDs | springer_books_10_1007_978_3_030_86970_0_16 proquest_ebookcentralchapters_6724983_206_249 |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Theoretical Computer Science and General Issues |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 21st International Conference, Cagliari, Italy, September 13-16, 2021, Proceedings, Part III |
PublicationTitle | Computational Science and Its Applications - ICCSA 2021 |
PublicationYear | 2021 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
SSID | ssj0002720633 ssj0002792 |
Score | 2.2345526 |
Snippet | Nowadays, Smart Cities applications are becoming steadily popular, thanks to their main objective of improving people daily habits. The services provided by... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 211 |
SubjectTerms | Anomalies detection Deep Learning License plate recognition Smart Cities |
Title | A Deep Learning Solution for Integrated Traffic Control Through Automatic License Plate Recognition |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6724983&ppg=249 http://link.springer.com/10.1007/978-3-030-86970-0_16 |
Volume | 12951 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l4QIcgAKi5aE9cLOMYu_a6xw4mKiorUIPNEW9rWzvGkWqkip2euBH8ps6sw_bCb2Ui7XaWH7MfBnPzs58Q8hnBd-QqYpFmNZKhzwSZZgpBY5cwfikYBV4EFic_OMiPb3i59fJ9Wj0d5C1tG3LL9WfB-tK_kerMAd6xSrZR2i2uyhMwBj0C0fQMBz3nN_dMKvlFTD9GHwsz_9HTXpv21jv0meK-4wGFpzNZpd5EE_iTtLfCpcv-3MJYt6odf_DxvQgCi6XN3fLbnoGWLPTxc0drtg7ZIBotibMvsQ-SEMs5mDW9K3ncv0d-FicyXE884QVCpnWkdECyxBN_vzCNRHKt-3aUsvOwa6tGo29llrsOOGynxy2UOi6-Tp3-yIX69akmwW-dYWX0jDUEUd7oQ4f6twLlvbxup21MUMmnnSa2h7KvkYM7D-soKxJ1dbkp0jkyCxxamfGo4FHENua_n8-NsP8ErhyCHfDLj4ySg_Igcj4mDzJT87nv7qYH-55p6z3FJC80e5y2afC2iP_1Illh-rfYlD3-dAtd1ZIe5v6xldavCTPsX6GYmELyO8VGenVIXnhVUCdCg7JswEV5mtS5RQxQj1GqMcIBYzQHiPUYYQ6jFCHEdphhDqMUIMROsDIG3L1_WQxOw1dA5DwNuasDVVdlAp3LXjCWSpgaQ_OZclSrrTQtVKliHWRCVYmWVHyUigGqJnUOq7hbA7m5i0Zr9Yr_Y5Q5OlTVcJVXCse8aicwlCIelKBCJnOjkjoxSdNmoLLja6ssBqZiphPMyZBgxJGRyTwMpZ4eiM9_zcoRzIJypFGORKVc_yos9-Tpz36P5Bxu9nqj-D6tuUnh6h7MtSmIA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computational+Science+and+Its+Applications+%E2%80%93+ICCSA+2021&rft.au=Balia%2C+Riccardo&rft.au=Barra%2C+Silvio&rft.au=Carta%2C+Salvatore&rft.au=Fenu%2C+Gianni&rft.atitle=A+Deep+Learning+Solution+for+Integrated+Traffic+Control+Through+Automatic+License+Plate+Recognition&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030869694&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=211&rft.epage=226&rft_id=info:doi/10.1007%2F978-3-030-86970-0_16 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6724983-l.jpg |