Improved Brain Lesion Segmentation with Anatomical Priors from Healthy Subjects

Convolutional neural networks (CNNs) have greatly improved the performance of brain lesion segmentation. However, accurate segmentation of brain lesions can still be challenging when the appearance of lesions is similar to normal brain tissue. To address this problem, in this work we seek to exploit...

Full description

Saved in:
Bibliographic Details
Published inMedical Image Computing and Computer Assisted Intervention - MICCAI 2021 Vol. 12901; pp. 186 - 195
Main Authors Liu, Chenghao, Zeng, Xiangzhu, Liang, Kongming, Yu, Yizhou, Ye, Chuyang
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030871924
9783030871925
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-87193-2_18

Cover

Abstract Convolutional neural networks (CNNs) have greatly improved the performance of brain lesion segmentation. However, accurate segmentation of brain lesions can still be challenging when the appearance of lesions is similar to normal brain tissue. To address this problem, in this work we seek to exploit the information in scans of healthy subjects to improve brain lesion segmentation, where anatomical priors about normal brain tissue can be taken into account for better discrimination of lesions. To incorporate such prior knowledge, we propose to register a set of reference scans of healthy subjects to each scan with lesions, and the registered reference scans provide reference intensity samples of normal tissue at each voxel. In this way, the spatially adaptive prior knowledge can indicate the existence of abnormal voxels even when their intensities are similar to normal tissue, because their locations contradict with the prior knowledge about normal tissue. Specifically, with the reference scans, we compute anomaly score maps for the scan with lesions, and these maps are used as auxiliary inputs to the segmentation network to aid brain lesion segmentation. The proposed strategy was evaluated on different brain lesion segmentation tasks, and the results indicate the benefit of incorporating the anatomical priors using our approach.
AbstractList Convolutional neural networks (CNNs) have greatly improved the performance of brain lesion segmentation. However, accurate segmentation of brain lesions can still be challenging when the appearance of lesions is similar to normal brain tissue. To address this problem, in this work we seek to exploit the information in scans of healthy subjects to improve brain lesion segmentation, where anatomical priors about normal brain tissue can be taken into account for better discrimination of lesions. To incorporate such prior knowledge, we propose to register a set of reference scans of healthy subjects to each scan with lesions, and the registered reference scans provide reference intensity samples of normal tissue at each voxel. In this way, the spatially adaptive prior knowledge can indicate the existence of abnormal voxels even when their intensities are similar to normal tissue, because their locations contradict with the prior knowledge about normal tissue. Specifically, with the reference scans, we compute anomaly score maps for the scan with lesions, and these maps are used as auxiliary inputs to the segmentation network to aid brain lesion segmentation. The proposed strategy was evaluated on different brain lesion segmentation tasks, and the results indicate the benefit of incorporating the anatomical priors using our approach.
Author Liang, Kongming
Liu, Chenghao
Zeng, Xiangzhu
Ye, Chuyang
Yu, Yizhou
Author_xml – sequence: 1
  givenname: Chenghao
  surname: Liu
  fullname: Liu, Chenghao
– sequence: 2
  givenname: Xiangzhu
  surname: Zeng
  fullname: Zeng, Xiangzhu
– sequence: 3
  givenname: Kongming
  surname: Liang
  fullname: Liang, Kongming
– sequence: 4
  givenname: Yizhou
  surname: Yu
  fullname: Yu, Yizhou
– sequence: 5
  givenname: Chuyang
  surname: Ye
  fullname: Ye, Chuyang
  email: chuyang.ye@bit.edu.cn
BookMark eNpFkN1OAjEQRquiEZA38GJfoDr92e32EokKCQkm6HXT3Z2FRdjFtmh8e4uYeDUzZ_JNMmdAem3XIiG3DO4YgLrXKqeCggCaK6YF5YblZ2QgIvkF_Jz0WcYYFULqi_8Flz3Sjz2nWklxRQaMK55nQuf6moy83wBAJCko1SeL2W7vuk-skgdnmzaZo2-6NlniaodtsOE4fDVhnYxbG7pdU9pt8uKazvmkdt0umaLdhvV3sjwUGyyDvyGXtd16HP3VIXl7enydTOl88TybjOd0z6UItLJK1swKqGwJpUpBC1bovEKoVSZRigzLOi0QBc_KVALHCEEiU1BUKa_FkPDTXb93TbtCZ4que_eGgTnKM1GeESZaML-uzFFeDMlTKL78cUAfDB5TZfzU2W25tvuAzptMRaOQG6aV4ZyLH73dcAY
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DEWEY 616.0754
DOI 10.1007/978-3-030-87193-2_18
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Applied Sciences
Computer Science
EISBN 3030871932
9783030871932
EISSN 1611-3349
Editor Cotin, Stéphane
Essert, Caroline
de Bruijne, Marleen
Cattin, Philippe C
Speidel, Stefanie
Padoy, Nicolas
Zheng, Yefeng
Editor_xml – sequence: 1
  fullname: Cotin, Stéphane
– sequence: 2
  fullname: Essert, Caroline
– sequence: 3
  fullname: Cattin, Philippe C
– sequence: 4
  fullname: de Bruijne, Marleen
– sequence: 5
  fullname: Speidel, Stefanie
– sequence: 6
  fullname: Padoy, Nicolas
– sequence: 7
  fullname: Zheng, Yefeng
EndPage 195
ExternalDocumentID EBC6733408_197_222
GroupedDBID 38.
AABBV
AABLV
ABLLD
ABNDO
ACBPT
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-da74f1a30dac0c750931b98de0f764e436ecf5bee326c5402e4e404e170bd52f3
ISBN 3030871924
9783030871925
ISSN 0302-9743
IngestDate Tue Jul 29 20:27:45 EDT 2025
Thu Apr 17 08:09:01 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TA1634
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-da74f1a30dac0c750931b98de0f764e436ecf5bee326c5402e4e404e170bd52f3
OCLC 1272863989
PQID EBC6733408_197_222
PageCount 10
ParticipantIDs springer_books_10_1007_978_3_030_87193_2_18
proquest_ebookcentralchapters_6733408_197_222
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part I
PublicationTitle Medical Image Computing and Computer Assisted Intervention - MICCAI 2021
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002725077
ssj0002792
Score 2.0188067
Snippet Convolutional neural networks (CNNs) have greatly improved the performance of brain lesion segmentation. However, accurate segmentation of brain lesions can...
SourceID springer
proquest
SourceType Publisher
StartPage 186
SubjectTerms Anatomical priors
Brain lesion segmentation
Convolutional neural network
Title Improved Brain Lesion Segmentation with Anatomical Priors from Healthy Subjects
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6733408&ppg=222
http://link.springer.com/10.1007/978-3-030-87193-2_18
Volume 12901
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYcdyk69I2mL3DoZqgQH7KYoUMapEhSN-2QFN4ESqJsD7aKSF7863unI23ZzZIugk0Ietz34XR3vAdjn0RsclthUrtNsKm2sZEpkyKSqUmcsXGZJ1g7_ON6fHGrr6bJdDDodwhet_nnYnNvXcn_oAprgCtWyT4A2e1FYQF-A75wBITheGD87odZF6FNLQr4colpNzSdIVQchlkNKH3EsaTIX8htDBkOagQgnJ1ejmQst6KfLNa0D-9Ws7mtt5FlR1phCnyabebr3ek-4vy9Xs2W4UPYjfrq1PtiM6_XfWJSGAMe6StOpxhNXEM6a7b0ZVBUWI7tUtqamhn8ulvgTKCuFIbqpjqNhyEkcglQ2q75MvEbItd12-WZ7eTgVVg_xiHFQYwjxDgPoqS7QN2eU6y6LodguSY9XapA8YPrRLrUka4fYwdHRR1Tvf4WoS83_aP5n_98ZfqJJXDlCO-mIpkJc8SOUqOH7NHp-dXk9zbYJ1OwNNNtJCDGro20vUVPhUVH4ampW2XvLXoFn_fdcs81OtjN74ykm2fsCRbOcKxoAfk9ZwO3esGeejeHewQaWAqohLWX7GcgBe9IwYkUvE8KjqTgO1JwIgVHUnBPCh5I8Yrdfju_ObuI_KiP6I_Uqo1Km-pKWBWXtogLtGKVyE9M6eIqHWun1dgVVZI7B95GAU6GdLAYayfSOC8TWanXbLiqV-4N47pUJqlsActCaydzYdIysaW2Vlhr5TGLgryyLiHBZ0EXJJ0GMx2Vjk0mTtIMrOdjNgpCzfD0JgudvgGNTGWARtahkSEabx909jv2eEf392zY3q3dBzBy2_yjp9BfhMGf_w
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Medical+Image+Computing+and+Computer+Assisted+Intervention+%E2%80%93+MICCAI+2021&rft.au=Liu%2C+Chenghao&rft.au=Zeng%2C+Xiangzhu&rft.au=Liang%2C+Kongming&rft.au=Yu%2C+Yizhou&rft.atitle=Improved+Brain+Lesion+Segmentation+with+Anatomical+Priors+from+Healthy+Subjects&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030871925&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=186&rft.epage=195&rft_id=info:doi/10.1007%2F978-3-030-87193-2_18
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6733408-l.jpg