Improved Brain Lesion Segmentation with Anatomical Priors from Healthy Subjects
Convolutional neural networks (CNNs) have greatly improved the performance of brain lesion segmentation. However, accurate segmentation of brain lesions can still be challenging when the appearance of lesions is similar to normal brain tissue. To address this problem, in this work we seek to exploit...
Saved in:
Published in | Medical Image Computing and Computer Assisted Intervention - MICCAI 2021 Vol. 12901; pp. 186 - 195 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3030871924 9783030871925 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-87193-2_18 |
Cover
Abstract | Convolutional neural networks (CNNs) have greatly improved the performance of brain lesion segmentation. However, accurate segmentation of brain lesions can still be challenging when the appearance of lesions is similar to normal brain tissue. To address this problem, in this work we seek to exploit the information in scans of healthy subjects to improve brain lesion segmentation, where anatomical priors about normal brain tissue can be taken into account for better discrimination of lesions. To incorporate such prior knowledge, we propose to register a set of reference scans of healthy subjects to each scan with lesions, and the registered reference scans provide reference intensity samples of normal tissue at each voxel. In this way, the spatially adaptive prior knowledge can indicate the existence of abnormal voxels even when their intensities are similar to normal tissue, because their locations contradict with the prior knowledge about normal tissue. Specifically, with the reference scans, we compute anomaly score maps for the scan with lesions, and these maps are used as auxiliary inputs to the segmentation network to aid brain lesion segmentation. The proposed strategy was evaluated on different brain lesion segmentation tasks, and the results indicate the benefit of incorporating the anatomical priors using our approach. |
---|---|
AbstractList | Convolutional neural networks (CNNs) have greatly improved the performance of brain lesion segmentation. However, accurate segmentation of brain lesions can still be challenging when the appearance of lesions is similar to normal brain tissue. To address this problem, in this work we seek to exploit the information in scans of healthy subjects to improve brain lesion segmentation, where anatomical priors about normal brain tissue can be taken into account for better discrimination of lesions. To incorporate such prior knowledge, we propose to register a set of reference scans of healthy subjects to each scan with lesions, and the registered reference scans provide reference intensity samples of normal tissue at each voxel. In this way, the spatially adaptive prior knowledge can indicate the existence of abnormal voxels even when their intensities are similar to normal tissue, because their locations contradict with the prior knowledge about normal tissue. Specifically, with the reference scans, we compute anomaly score maps for the scan with lesions, and these maps are used as auxiliary inputs to the segmentation network to aid brain lesion segmentation. The proposed strategy was evaluated on different brain lesion segmentation tasks, and the results indicate the benefit of incorporating the anatomical priors using our approach. |
Author | Liang, Kongming Liu, Chenghao Zeng, Xiangzhu Ye, Chuyang Yu, Yizhou |
Author_xml | – sequence: 1 givenname: Chenghao surname: Liu fullname: Liu, Chenghao – sequence: 2 givenname: Xiangzhu surname: Zeng fullname: Zeng, Xiangzhu – sequence: 3 givenname: Kongming surname: Liang fullname: Liang, Kongming – sequence: 4 givenname: Yizhou surname: Yu fullname: Yu, Yizhou – sequence: 5 givenname: Chuyang surname: Ye fullname: Ye, Chuyang email: chuyang.ye@bit.edu.cn |
BookMark | eNpFkN1OAjEQRquiEZA38GJfoDr92e32EokKCQkm6HXT3Z2FRdjFtmh8e4uYeDUzZ_JNMmdAem3XIiG3DO4YgLrXKqeCggCaK6YF5YblZ2QgIvkF_Jz0WcYYFULqi_8Flz3Sjz2nWklxRQaMK55nQuf6moy83wBAJCko1SeL2W7vuk-skgdnmzaZo2-6NlniaodtsOE4fDVhnYxbG7pdU9pt8uKazvmkdt0umaLdhvV3sjwUGyyDvyGXtd16HP3VIXl7enydTOl88TybjOd0z6UItLJK1swKqGwJpUpBC1bovEKoVSZRigzLOi0QBc_KVALHCEEiU1BUKa_FkPDTXb93TbtCZ4que_eGgTnKM1GeESZaML-uzFFeDMlTKL78cUAfDB5TZfzU2W25tvuAzptMRaOQG6aV4ZyLH73dcAY |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2021 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
DBID | FFUUA |
DEWEY | 616.0754 |
DOI | 10.1007/978-3-030-87193-2_18 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Applied Sciences Computer Science |
EISBN | 3030871932 9783030871932 |
EISSN | 1611-3349 |
Editor | Cotin, Stéphane Essert, Caroline de Bruijne, Marleen Cattin, Philippe C Speidel, Stefanie Padoy, Nicolas Zheng, Yefeng |
Editor_xml | – sequence: 1 fullname: Cotin, Stéphane – sequence: 2 fullname: Essert, Caroline – sequence: 3 fullname: Cattin, Philippe C – sequence: 4 fullname: de Bruijne, Marleen – sequence: 5 fullname: Speidel, Stefanie – sequence: 6 fullname: Padoy, Nicolas – sequence: 7 fullname: Zheng, Yefeng |
EndPage | 195 |
ExternalDocumentID | EBC6733408_197_222 |
GroupedDBID | 38. AABBV AABLV ABLLD ABNDO ACBPT ACWLQ AEDXK AEJLV AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY FFUUA I4C IEZ OCUHQ ORHYB SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p243t-da74f1a30dac0c750931b98de0f764e436ecf5bee326c5402e4e404e170bd52f3 |
ISBN | 3030871924 9783030871925 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:27:45 EDT 2025 Thu Apr 17 08:09:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | TA1634 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p243t-da74f1a30dac0c750931b98de0f764e436ecf5bee326c5402e4e404e170bd52f3 |
OCLC | 1272863989 |
PQID | EBC6733408_197_222 |
PageCount | 10 |
ParticipantIDs | springer_books_10_1007_978_3_030_87193_2_18 proquest_ebookcentralchapters_6733408_197_222 |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part I |
PublicationTitle | Medical Image Computing and Computer Assisted Intervention - MICCAI 2021 |
PublicationYear | 2021 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
SSID | ssj0002725077 ssj0002792 |
Score | 2.0188067 |
Snippet | Convolutional neural networks (CNNs) have greatly improved the performance of brain lesion segmentation. However, accurate segmentation of brain lesions can... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 186 |
SubjectTerms | Anatomical priors Brain lesion segmentation Convolutional neural network |
Title | Improved Brain Lesion Segmentation with Anatomical Priors from Healthy Subjects |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6733408&ppg=222 http://link.springer.com/10.1007/978-3-030-87193-2_18 |
Volume | 12901 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYcdyk69I2mL3DoZqgQH7KYoUMapEhSN-2QFN4ESqJsD7aKSF7863unI23ZzZIugk0Ietz34XR3vAdjn0RsclthUrtNsKm2sZEpkyKSqUmcsXGZJ1g7_ON6fHGrr6bJdDDodwhet_nnYnNvXcn_oAprgCtWyT4A2e1FYQF-A75wBITheGD87odZF6FNLQr4colpNzSdIVQchlkNKH3EsaTIX8htDBkOagQgnJ1ejmQst6KfLNa0D-9Ws7mtt5FlR1phCnyabebr3ek-4vy9Xs2W4UPYjfrq1PtiM6_XfWJSGAMe6StOpxhNXEM6a7b0ZVBUWI7tUtqamhn8ulvgTKCuFIbqpjqNhyEkcglQ2q75MvEbItd12-WZ7eTgVVg_xiHFQYwjxDgPoqS7QN2eU6y6LodguSY9XapA8YPrRLrUka4fYwdHRR1Tvf4WoS83_aP5n_98ZfqJJXDlCO-mIpkJc8SOUqOH7NHp-dXk9zbYJ1OwNNNtJCDGro20vUVPhUVH4ampW2XvLXoFn_fdcs81OtjN74ykm2fsCRbOcKxoAfk9ZwO3esGeejeHewQaWAqohLWX7GcgBe9IwYkUvE8KjqTgO1JwIgVHUnBPCh5I8Yrdfju_ObuI_KiP6I_Uqo1Km-pKWBWXtogLtGKVyE9M6eIqHWun1dgVVZI7B95GAU6GdLAYayfSOC8TWanXbLiqV-4N47pUJqlsActCaydzYdIysaW2Vlhr5TGLgryyLiHBZ0EXJJ0GMx2Vjk0mTtIMrOdjNgpCzfD0JgudvgGNTGWARtahkSEabx909jv2eEf392zY3q3dBzBy2_yjp9BfhMGf_w |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Medical+Image+Computing+and+Computer+Assisted+Intervention+%E2%80%93+MICCAI+2021&rft.au=Liu%2C+Chenghao&rft.au=Zeng%2C+Xiangzhu&rft.au=Liang%2C+Kongming&rft.au=Yu%2C+Yizhou&rft.atitle=Improved+Brain+Lesion+Segmentation+with+Anatomical+Priors+from+Healthy+Subjects&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030871925&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=186&rft.epage=195&rft_id=info:doi/10.1007%2F978-3-030-87193-2_18 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6733408-l.jpg |