Feature Enhanced Capsule Networks for Robust Automatic Essay Scoring
Automatic Essay Scoring (AES) Engines have gained popularity amongst a multitude of institutions for scoring test-taker’s responses and therefore witnessed rising demand in recent times. However, several studies have demonstrated that the adversarial attacks severely hamper existing state-of-the-art...
Saved in:
Published in | Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track Vol. 12979; pp. 365 - 380 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783030865160 3030865169 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-86517-7_23 |
Cover
Loading…
Abstract | Automatic Essay Scoring (AES) Engines have gained popularity amongst a multitude of institutions for scoring test-taker’s responses and therefore witnessed rising demand in recent times. However, several studies have demonstrated that the adversarial attacks severely hamper existing state-of-the-art AES Engines’ performance. As a result, we propose a robust architecture for AES systems that leverages Capsule Neural Networks, contextual BERT-based text representation, and key textually extracted features. This end-to-end pipeline captures semantics, coherence, and organizational structure along with fundamental rule-based features such as grammatical and spelling errors. The proposed method is validated by extensive experimentation and comparison with the state-of-the-art baseline models. Our results demonstrate that this approach performs significantly better on 6 out of 8 prompts on the Automated Student Assessment Prize (ASAP) dataset. In addition, it shows an overall best performance with a Quadratic Weighted Kappa (QWK) metric of 81%. Moreover, we empirically demonstrate that it is successful in identifying adversarial responses and scoring them lower. |
---|---|
AbstractList | Automatic Essay Scoring (AES) Engines have gained popularity amongst a multitude of institutions for scoring test-taker’s responses and therefore witnessed rising demand in recent times. However, several studies have demonstrated that the adversarial attacks severely hamper existing state-of-the-art AES Engines’ performance. As a result, we propose a robust architecture for AES systems that leverages Capsule Neural Networks, contextual BERT-based text representation, and key textually extracted features. This end-to-end pipeline captures semantics, coherence, and organizational structure along with fundamental rule-based features such as grammatical and spelling errors. The proposed method is validated by extensive experimentation and comparison with the state-of-the-art baseline models. Our results demonstrate that this approach performs significantly better on 6 out of 8 prompts on the Automated Student Assessment Prize (ASAP) dataset. In addition, it shows an overall best performance with a Quadratic Weighted Kappa (QWK) metric of 81%. Moreover, we empirically demonstrate that it is successful in identifying adversarial responses and scoring them lower. |
Author | Kapoor, Rajiv Kabra, Anubha Sharma, Arushi |
Author_xml | – sequence: 1 givenname: Arushi orcidid: 0000-0003-4770-4577 surname: Sharma fullname: Sharma, Arushi – sequence: 2 givenname: Anubha orcidid: 0000-0003-1874-7711 surname: Kabra fullname: Kabra, Anubha – sequence: 3 givenname: Rajiv orcidid: 0000-0003-3020-1455 surname: Kapoor fullname: Kapoor, Rajiv email: rajivkapoor@dce.ac.in |
BookMark | eNpVkM1OwzAQhA0URFv6BhzyAgbb69jJsSotIFUg8XO2bMehpSUOtiPE25MULpx2NaPZ1XwTNGp84xC6pOSKEiKvS1lgwAQILkROJZaKwRGa9TL04kGTx2hMBaUYgJcn_zxBRmjc7wyXksMZmlAmCiaEzNk5msX4TghhknEJMEY3K6dTF1y2bDa6sa7KFrqN3d5lDy59-bCLWe1D9uRNF1M275L_0Glrs2WM-jt7tj5sm7cLdFrrfXSzvzlFr6vly-IOrx9v7xfzNW4Zh4QrndMylwXLKVQ8Lxgn3BpOna1pSZnp_ToXwhjNCidqa6h1hlemrljBatAwRez3bmyHty4o4_0uKkrUwE31EBSovro6MFIDtz7Ef0Nt8J-di0m5IWVdk4Le241ukwtRiZ6IoEKBoApKgB8Iqm1Y |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2021 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
DBID | FFUUA |
DOI | 10.1007/978-3-030-86517-7_23 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9783030865177 3030865177 |
EISSN | 1611-3349 |
Editor | Kourtellis, Nicolas Lozano, Jose A Hammer, Barbara Dong, Yuxiao |
Editor_xml | – sequence: 1 fullname: Kourtellis, Nicolas – sequence: 2 fullname: Dong, Yuxiao – sequence: 3 fullname: Lozano, Jose A – sequence: 4 fullname: Hammer, Barbara |
EndPage | 380 |
ExternalDocumentID | EBC6724616_361_393 |
GroupedDBID | 38. AABBV AABLV ABNDO ACBPT ACWLQ AEDXK AEJLV AEKFX AELOD ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY FFUUA I4C IEZ OCUHQ ORHYB SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p243t-da5195782513d4582404cb41ecf1912bda5f566bba28e6fcb1ceb4dbfd282f3a3 |
ISBN | 9783030865160 3030865169 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:18:05 EDT 2025 Thu May 29 16:44:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q334-342 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p243t-da5195782513d4582404cb41ecf1912bda5f566bba28e6fcb1ceb4dbfd282f3a3 |
Notes | A. Sharma and A. Kabra—Equal Contribution - work done in Delhi Technological University. |
OCLC | 1268266752 |
ORCID | 0000-0003-1874-7711 0000-0003-4770-4577 0000-0003-3020-1455 |
PQID | EBC6724616_361_393 |
PageCount | 16 |
ParticipantIDs | springer_books_10_1007_978_3_030_86517_7_23 proquest_ebookcentralchapters_6724616_361_393 |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings, Part V |
PublicationTitle | Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track |
PublicationYear | 2021 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
SSID | ssj0002724733 ssj0002792 |
Score | 2.0397227 |
Snippet | Automatic Essay Scoring (AES) Engines have gained popularity amongst a multitude of institutions for scoring test-taker’s responses and therefore witnessed... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 365 |
SubjectTerms | Adversarial testing Automatic scoring BERT Capsule Neural Networks Machine learning |
Title | Feature Enhanced Capsule Networks for Robust Automatic Essay Scoring |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6724616&ppg=393 http://link.springer.com/10.1007/978-3-030-86517-7_23 |
Volume | 12979 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYcdyk6pOkDTZsGHLoFDCyR1mMqHEdtkD6mpMhGkBSJDoVTVPLSX587PhRZzZIugkFTAnUfRd4d77sj5AN8PwYZ1qwquGWizA2rkODj1MLmsFS62qAf8tv34uJaXN4sb2azj6OopW2vT83fB3kl_4MqtAGuyJJ9BLLDQ6EBfgO-cAWE4TpRfnfdrLHCEIZB2pQhNVANvyQXGabVNBie6Xl956pXuF91p4PaiU3Dlw07VkyOH2cPaoZ4tNBsfoYQgbUCc_oXxkP6sHGfxQHDsrddf7La9rch82vTdQoWI-Oj-sYOhTybOBSSQ3Hikhx5xVafd4xQjilvimUW6gIMq2pehyox_6zR47AMuJXhvSUrZeAd76bE5vWk0e-8zdm6KDERXiF5kUnotEf2ymo5J09WzeXXH4OTLYdeJcdaHsMg65B16X7QIz7lQ2PasTwmh-VeB7l6Tp4hL4UiYQRGeUBmdvOC7KeqHDRC-ZKcR-xowo5G7GjCjgJ2NGBHB-yox45G7F6R60_N1fqCxVoZ7HcueM9ahWmCSiQi8xbPQsVCGC0yaxxY5LmG_x1o7lqrvLKFMzozVotWuxZsbscVf03mm9uNfUOosctFpivHQRsG9Q7kWgnralG12UKBNX9IWJKI9Cf6MYzYhPfv5ASbQ3KSxCaxeydTqmyQt-QS5C29vCXK--0jn_6OPL2fxEdk3v_Z2vegJ_b6OM6GO6LNY88 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases.+Applied+Data+Science+Track&rft.atitle=Feature+Enhanced+Capsule+Networks+for+Robust+Automatic+Essay+Scoring&rft.date=2021-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030865160&rft.volume=12979&rft_id=info:doi/10.1007%2F978-3-030-86517-7_23&rft.externalDBID=393&rft.externalDocID=EBC6724616_361_393 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6724616-l.jpg |