Feature Enhanced Capsule Networks for Robust Automatic Essay Scoring

Automatic Essay Scoring (AES) Engines have gained popularity amongst a multitude of institutions for scoring test-taker’s responses and therefore witnessed rising demand in recent times. However, several studies have demonstrated that the adversarial attacks severely hamper existing state-of-the-art...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Discovery in Databases. Applied Data Science Track Vol. 12979; pp. 365 - 380
Main Authors Sharma, Arushi, Kabra, Anubha, Kapoor, Rajiv
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030865160
3030865169
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-86517-7_23

Cover

Loading…
Abstract Automatic Essay Scoring (AES) Engines have gained popularity amongst a multitude of institutions for scoring test-taker’s responses and therefore witnessed rising demand in recent times. However, several studies have demonstrated that the adversarial attacks severely hamper existing state-of-the-art AES Engines’ performance. As a result, we propose a robust architecture for AES systems that leverages Capsule Neural Networks, contextual BERT-based text representation, and key textually extracted features. This end-to-end pipeline captures semantics, coherence, and organizational structure along with fundamental rule-based features such as grammatical and spelling errors. The proposed method is validated by extensive experimentation and comparison with the state-of-the-art baseline models. Our results demonstrate that this approach performs significantly better on 6 out of 8 prompts on the Automated Student Assessment Prize (ASAP) dataset. In addition, it shows an overall best performance with a Quadratic Weighted Kappa (QWK) metric of 81%. Moreover, we empirically demonstrate that it is successful in identifying adversarial responses and scoring them lower.
AbstractList Automatic Essay Scoring (AES) Engines have gained popularity amongst a multitude of institutions for scoring test-taker’s responses and therefore witnessed rising demand in recent times. However, several studies have demonstrated that the adversarial attacks severely hamper existing state-of-the-art AES Engines’ performance. As a result, we propose a robust architecture for AES systems that leverages Capsule Neural Networks, contextual BERT-based text representation, and key textually extracted features. This end-to-end pipeline captures semantics, coherence, and organizational structure along with fundamental rule-based features such as grammatical and spelling errors. The proposed method is validated by extensive experimentation and comparison with the state-of-the-art baseline models. Our results demonstrate that this approach performs significantly better on 6 out of 8 prompts on the Automated Student Assessment Prize (ASAP) dataset. In addition, it shows an overall best performance with a Quadratic Weighted Kappa (QWK) metric of 81%. Moreover, we empirically demonstrate that it is successful in identifying adversarial responses and scoring them lower.
Author Kapoor, Rajiv
Kabra, Anubha
Sharma, Arushi
Author_xml – sequence: 1
  givenname: Arushi
  orcidid: 0000-0003-4770-4577
  surname: Sharma
  fullname: Sharma, Arushi
– sequence: 2
  givenname: Anubha
  orcidid: 0000-0003-1874-7711
  surname: Kabra
  fullname: Kabra, Anubha
– sequence: 3
  givenname: Rajiv
  orcidid: 0000-0003-3020-1455
  surname: Kapoor
  fullname: Kapoor, Rajiv
  email: rajivkapoor@dce.ac.in
BookMark eNpVkM1OwzAQhA0URFv6BhzyAgbb69jJsSotIFUg8XO2bMehpSUOtiPE25MULpx2NaPZ1XwTNGp84xC6pOSKEiKvS1lgwAQILkROJZaKwRGa9TL04kGTx2hMBaUYgJcn_zxBRmjc7wyXksMZmlAmCiaEzNk5msX4TghhknEJMEY3K6dTF1y2bDa6sa7KFrqN3d5lDy59-bCLWe1D9uRNF1M275L_0Glrs2WM-jt7tj5sm7cLdFrrfXSzvzlFr6vly-IOrx9v7xfzNW4Zh4QrndMylwXLKVQ8Lxgn3BpOna1pSZnp_ToXwhjNCidqa6h1hlemrljBatAwRez3bmyHty4o4_0uKkrUwE31EBSovro6MFIDtz7Ef0Nt8J-di0m5IWVdk4Le241ukwtRiZ6IoEKBoApKgB8Iqm1Y
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DOI 10.1007/978-3-030-86517-7_23
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030865177
3030865177
EISSN 1611-3349
Editor Kourtellis, Nicolas
Lozano, Jose A
Hammer, Barbara
Dong, Yuxiao
Editor_xml – sequence: 1
  fullname: Kourtellis, Nicolas
– sequence: 2
  fullname: Dong, Yuxiao
– sequence: 3
  fullname: Lozano, Jose A
– sequence: 4
  fullname: Hammer, Barbara
EndPage 380
ExternalDocumentID EBC6724616_361_393
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACBPT
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-da5195782513d4582404cb41ecf1912bda5f566bba28e6fcb1ceb4dbfd282f3a3
ISBN 9783030865160
3030865169
ISSN 0302-9743
IngestDate Tue Jul 29 20:18:05 EDT 2025
Thu May 29 16:44:15 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-da5195782513d4582404cb41ecf1912bda5f566bba28e6fcb1ceb4dbfd282f3a3
Notes A. Sharma and A. Kabra—Equal Contribution - work done in Delhi Technological University.
OCLC 1268266752
ORCID 0000-0003-1874-7711
0000-0003-4770-4577
0000-0003-3020-1455
PQID EBC6724616_361_393
PageCount 16
ParticipantIDs springer_books_10_1007_978_3_030_86517_7_23
proquest_ebookcentralchapters_6724616_361_393
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings, Part V
PublicationTitle Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002724733
ssj0002792
Score 2.0397227
Snippet Automatic Essay Scoring (AES) Engines have gained popularity amongst a multitude of institutions for scoring test-taker’s responses and therefore witnessed...
SourceID springer
proquest
SourceType Publisher
StartPage 365
SubjectTerms Adversarial testing
Automatic scoring
BERT
Capsule Neural Networks
Machine learning
Title Feature Enhanced Capsule Networks for Robust Automatic Essay Scoring
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6724616&ppg=393
http://link.springer.com/10.1007/978-3-030-86517-7_23
Volume 12979
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYcdyk6pOkDTZsGHLoFDCyR1mMqHEdtkD6mpMhGkBSJDoVTVPLSX587PhRZzZIugkFTAnUfRd4d77sj5AN8PwYZ1qwquGWizA2rkODj1MLmsFS62qAf8tv34uJaXN4sb2azj6OopW2vT83fB3kl_4MqtAGuyJJ9BLLDQ6EBfgO-cAWE4TpRfnfdrLHCEIZB2pQhNVANvyQXGabVNBie6Xl956pXuF91p4PaiU3Dlw07VkyOH2cPaoZ4tNBsfoYQgbUCc_oXxkP6sHGfxQHDsrddf7La9rch82vTdQoWI-Oj-sYOhTybOBSSQ3Hikhx5xVafd4xQjilvimUW6gIMq2pehyox_6zR47AMuJXhvSUrZeAd76bE5vWk0e-8zdm6KDERXiF5kUnotEf2ymo5J09WzeXXH4OTLYdeJcdaHsMg65B16X7QIz7lQ2PasTwmh-VeB7l6Tp4hL4UiYQRGeUBmdvOC7KeqHDRC-ZKcR-xowo5G7GjCjgJ2NGBHB-yox45G7F6R60_N1fqCxVoZ7HcueM9ahWmCSiQi8xbPQsVCGC0yaxxY5LmG_x1o7lqrvLKFMzozVotWuxZsbscVf03mm9uNfUOosctFpivHQRsG9Q7kWgnralG12UKBNX9IWJKI9Cf6MYzYhPfv5ASbQ3KSxCaxeydTqmyQt-QS5C29vCXK--0jn_6OPL2fxEdk3v_Z2vegJ_b6OM6GO6LNY88
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases.+Applied+Data+Science+Track&rft.atitle=Feature+Enhanced+Capsule+Networks+for+Robust+Automatic+Essay+Scoring&rft.date=2021-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030865160&rft.volume=12979&rft_id=info:doi/10.1007%2F978-3-030-86517-7_23&rft.externalDBID=393&rft.externalDocID=EBC6724616_361_393
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6724616-l.jpg