A Framework for Deep Quantification Learning

A quantification learning task estimates class ratios or class distribution given a test set. Quantification learning is useful for a variety of application domains such as commerce, public health, and politics. For instance, it is desirable to automatically estimate the proportion of customer satis...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Discovery in Databases Vol. 12457; pp. 232 - 248
Main Authors Qi, Lei, Khaleel, Mohammed, Tavanapong, Wallapak, Sukul, Adisak, Peterson, David
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A quantification learning task estimates class ratios or class distribution given a test set. Quantification learning is useful for a variety of application domains such as commerce, public health, and politics. For instance, it is desirable to automatically estimate the proportion of customer satisfaction in different aspects from product reviews to improve customer relationships. We formulate the quantification learning problem as a maximum likelihood problem and propose the first end-to-end Deep Quantification Network (DQN) framework. DQN jointly learns quantification feature representations and directly predicts the class distribution. Compared to classification-based quantification methods, DQN avoids three separate steps: classification of individual instances, calculation of the predicted class ratios, and class ratio adjustment to account for classification errors. We evaluated DQN on four public datasets, ranging from movie and product reviews to multi-class news. We compared DQN against six existing quantification methods and conducted a sensitivity analysis of DQN performance. Compared to the best existing method in our study, (1) DQN reduces Mean Absolute Error (MAE) by about 35%. (2) DQN uses around 40% less training samples to achieve a comparable MAE.
AbstractList A quantification learning task estimates class ratios or class distribution given a test set. Quantification learning is useful for a variety of application domains such as commerce, public health, and politics. For instance, it is desirable to automatically estimate the proportion of customer satisfaction in different aspects from product reviews to improve customer relationships. We formulate the quantification learning problem as a maximum likelihood problem and propose the first end-to-end Deep Quantification Network (DQN) framework. DQN jointly learns quantification feature representations and directly predicts the class distribution. Compared to classification-based quantification methods, DQN avoids three separate steps: classification of individual instances, calculation of the predicted class ratios, and class ratio adjustment to account for classification errors. We evaluated DQN on four public datasets, ranging from movie and product reviews to multi-class news. We compared DQN against six existing quantification methods and conducted a sensitivity analysis of DQN performance. Compared to the best existing method in our study, (1) DQN reduces Mean Absolute Error (MAE) by about 35%. (2) DQN uses around 40% less training samples to achieve a comparable MAE.
Author Sukul, Adisak
Khaleel, Mohammed
Peterson, David
Tavanapong, Wallapak
Qi, Lei
Author_xml – sequence: 1
  givenname: Lei
  surname: Qi
  fullname: Qi, Lei
  email: leiqi@iastate.edu
– sequence: 2
  givenname: Mohammed
  surname: Khaleel
  fullname: Khaleel, Mohammed
– sequence: 3
  givenname: Wallapak
  surname: Tavanapong
  fullname: Tavanapong, Wallapak
– sequence: 4
  givenname: Adisak
  surname: Sukul
  fullname: Sukul, Adisak
– sequence: 5
  givenname: David
  surname: Peterson
  fullname: Peterson, David
BookMark eNo1kN1OwzAMhQMMxDb2Blz0AQg4zl9zOQEDpEkICa6jNEuhbDQl7cTrk21wZfvYx5a_CRm1sQ2EXDK4ZgD6xuiScgocqNJKlhQtE0dkwrOyF_QxGTPFGOVcmBMyy_P_PS1HZJxzpEYLfkYmDAUDpbRW52TW958AgBKQoRmTq3mxSO4r_MS0LuqYirsQuuJl69qhqRvvhia2xTK41Dbt-wU5rd2mD7O_OCVvi_vX20e6fH54up0vaYeCD3RVKuHdauUrjlwoVTIP0huDldPotatdkEpKBK9YnR2h9lh5RIWVNLniU4KHvX2X8tmQbBXjurcM7A6Ozc9abvOLds_C7uBkkziYuhS_t6EfbNi5fGiH5Db-w3VDSL1VEhhosAjCYubzC07LYxo
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DOI 10.1007/978-3-030-67658-2_14
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 3030676587
9783030676582
EISSN 1611-3349
Editor Kersting, Kristian
Hutter, Frank
Lijffijt, Jefrey
Valera, Isabel
Editor_xml – sequence: 1
  fullname: Kersting, Kristian
– sequence: 2
  fullname: Hutter, Frank
– sequence: 3
  fullname: Lijffijt, Jefrey
– sequence: 4
  fullname: Valera, Isabel
EndPage 248
ExternalDocumentID EBC6501070_204_274
GroupedDBID AABBV
AABLV
ABNDO
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7U
Z7W
Z7X
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-d864caddcb32346681c05c992ba72c7afae565520c61f243efc2bc2262b593ef3
ISBN 9783030676575
3030676579
ISSN 0302-9743
IngestDate Tue Jul 29 20:13:51 EDT 2025
Thu May 29 15:53:05 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.D343
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-d864caddcb32346681c05c992ba72c7afae565520c61f243efc2bc2262b593ef3
Notes This work is partially supported in part by the NSF SBE Grant No. 1729775.
OCLC 1241066776
PQID EBC6501070_204_274
PageCount 17
ParticipantIDs springer_books_10_1007_978_3_030_67658_2_14
proquest_ebookcentralchapters_6501070_204_274
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle European Conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part I
PublicationTitle Machine Learning and Knowledge Discovery in Databases
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002502129
ssj0002792
Score 1.9977536
Snippet A quantification learning task estimates class ratios or class distribution given a test set. Quantification learning is useful for a variety of application...
SourceID springer
proquest
SourceType Publisher
StartPage 232
SubjectTerms Class distribution estimate
Deep learning
Quantification learning
Title A Framework for Deep Quantification Learning
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6501070&ppg=274
http://link.springer.com/10.1007/978-3-030-67658-2_14
Volume 12457
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLIiBtygvZWCDoMR23HgsbaEqiKlF3azEdcZS0bDw67mL4zYJXcoSJVZsOfc59t35vjMhdzKLuWRc-GLGtM8TsFnjTMAjLCcmjgJjbLTFuxhO-GgaTddHXhbskjx91D8beSX_QRXKAFdkyW6B7KpRKIB7wBeugDBcG8pv3c1anjCEYZDGZUi1VMNX5yLDtJoawzMLXl8_yRNcr5bVEdJFrdVGZhXBhn1jFhjkacOH7MBwjVedAzRsOAecc7DhXqx4uLovNYOSFSYEbsbUZkjKbRbpP_NtNcQCqvpYFzBSlhhaT29NO43CYhUdPPVASQQjNFA04Ape2iW7nThqkb3uYPT2sXKYga4Gy6xEfo7rpLQZlNadrnAjN_WpZkU0Nr4LfWJ8RA6QY-Ih-QN6eUx2zPyEHLoTNrxywj0lD11vhZEHGHmIkVfHyHMYnZHJ82DcG_rl-Rb-gnKW-7NYcA3ri04Zhd9FxKEOIi0lTZMO1Z0kSwyo2xENtAgzqGEyTVMN-jJNIwlP7Jy05p9zc0E8k4TMhNwIkYU8lalETS3m3PCEYcKhNvHdl6tiF74M_dX2O5eqgUGb3DvxKHx9qVx6a5CrYgrkqgq5KpTr5ZatX5H99WC9Jq3869vcgG6Xp7cl6r9qaUcm
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases&rft.atitle=A+Framework+for+Deep+Quantification+Learning&rft.date=2021-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030676575&rft.volume=12457&rft_id=info:doi/10.1007%2F978-3-030-67658-2_14&rft.externalDBID=274&rft.externalDocID=EBC6501070_204_274
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6501070-l.jpg