A Framework for Deep Quantification Learning
A quantification learning task estimates class ratios or class distribution given a test set. Quantification learning is useful for a variety of application domains such as commerce, public health, and politics. For instance, it is desirable to automatically estimate the proportion of customer satis...
Saved in:
Published in | Machine Learning and Knowledge Discovery in Databases Vol. 12457; pp. 232 - 248 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A quantification learning task estimates class ratios or class distribution given a test set. Quantification learning is useful for a variety of application domains such as commerce, public health, and politics. For instance, it is desirable to automatically estimate the proportion of customer satisfaction in different aspects from product reviews to improve customer relationships. We formulate the quantification learning problem as a maximum likelihood problem and propose the first end-to-end Deep Quantification Network (DQN) framework. DQN jointly learns quantification feature representations and directly predicts the class distribution. Compared to classification-based quantification methods, DQN avoids three separate steps: classification of individual instances, calculation of the predicted class ratios, and class ratio adjustment to account for classification errors. We evaluated DQN on four public datasets, ranging from movie and product reviews to multi-class news. We compared DQN against six existing quantification methods and conducted a sensitivity analysis of DQN performance. Compared to the best existing method in our study, (1) DQN reduces Mean Absolute Error (MAE) by about 35%. (2) DQN uses around 40% less training samples to achieve a comparable MAE. |
---|---|
AbstractList | A quantification learning task estimates class ratios or class distribution given a test set. Quantification learning is useful for a variety of application domains such as commerce, public health, and politics. For instance, it is desirable to automatically estimate the proportion of customer satisfaction in different aspects from product reviews to improve customer relationships. We formulate the quantification learning problem as a maximum likelihood problem and propose the first end-to-end Deep Quantification Network (DQN) framework. DQN jointly learns quantification feature representations and directly predicts the class distribution. Compared to classification-based quantification methods, DQN avoids three separate steps: classification of individual instances, calculation of the predicted class ratios, and class ratio adjustment to account for classification errors. We evaluated DQN on four public datasets, ranging from movie and product reviews to multi-class news. We compared DQN against six existing quantification methods and conducted a sensitivity analysis of DQN performance. Compared to the best existing method in our study, (1) DQN reduces Mean Absolute Error (MAE) by about 35%. (2) DQN uses around 40% less training samples to achieve a comparable MAE. |
Author | Sukul, Adisak Khaleel, Mohammed Peterson, David Tavanapong, Wallapak Qi, Lei |
Author_xml | – sequence: 1 givenname: Lei surname: Qi fullname: Qi, Lei email: leiqi@iastate.edu – sequence: 2 givenname: Mohammed surname: Khaleel fullname: Khaleel, Mohammed – sequence: 3 givenname: Wallapak surname: Tavanapong fullname: Tavanapong, Wallapak – sequence: 4 givenname: Adisak surname: Sukul fullname: Sukul, Adisak – sequence: 5 givenname: David surname: Peterson fullname: Peterson, David |
BookMark | eNo1kN1OwzAMhQMMxDb2Blz0AQg4zl9zOQEDpEkICa6jNEuhbDQl7cTrk21wZfvYx5a_CRm1sQ2EXDK4ZgD6xuiScgocqNJKlhQtE0dkwrOyF_QxGTPFGOVcmBMyy_P_PS1HZJxzpEYLfkYmDAUDpbRW52TW958AgBKQoRmTq3mxSO4r_MS0LuqYirsQuuJl69qhqRvvhia2xTK41Dbt-wU5rd2mD7O_OCVvi_vX20e6fH54up0vaYeCD3RVKuHdauUrjlwoVTIP0huDldPotatdkEpKBK9YnR2h9lh5RIWVNLniU4KHvX2X8tmQbBXjurcM7A6Ozc9abvOLds_C7uBkkziYuhS_t6EfbNi5fGiH5Db-w3VDSL1VEhhosAjCYubzC07LYxo |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2021 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
DBID | FFUUA |
DOI | 10.1007/978-3-030-67658-2_14 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 3030676587 9783030676582 |
EISSN | 1611-3349 |
Editor | Kersting, Kristian Hutter, Frank Lijffijt, Jefrey Valera, Isabel |
Editor_xml | – sequence: 1 fullname: Kersting, Kristian – sequence: 2 fullname: Hutter, Frank – sequence: 3 fullname: Lijffijt, Jefrey – sequence: 4 fullname: Valera, Isabel |
EndPage | 248 |
ExternalDocumentID | EBC6501070_204_274 |
GroupedDBID | AABBV AABLV ABNDO ACWLQ AEDXK AEJLV AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY FFUUA I4C IEZ OCUHQ ORHYB SBO TPJZQ TSXQS Z5O Z7R Z7U Z7W Z7X Z7Z Z81 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p243t-d864caddcb32346681c05c992ba72c7afae565520c61f243efc2bc2262b593ef3 |
ISBN | 9783030676575 3030676579 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:13:51 EDT 2025 Thu May 29 15:53:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | QA76.9.D343 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p243t-d864caddcb32346681c05c992ba72c7afae565520c61f243efc2bc2262b593ef3 |
Notes | This work is partially supported in part by the NSF SBE Grant No. 1729775. |
OCLC | 1241066776 |
PQID | EBC6501070_204_274 |
PageCount | 17 |
ParticipantIDs | springer_books_10_1007_978_3_030_67658_2_14 proquest_ebookcentralchapters_6501070_204_274 |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | European Conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part I |
PublicationTitle | Machine Learning and Knowledge Discovery in Databases |
PublicationYear | 2021 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti surname: Yung fullname: Yung, Moti |
SSID | ssj0002502129 ssj0002792 |
Score | 1.9977536 |
Snippet | A quantification learning task estimates class ratios or class distribution given a test set. Quantification learning is useful for a variety of application... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 232 |
SubjectTerms | Class distribution estimate Deep learning Quantification learning |
Title | A Framework for Deep Quantification Learning |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6501070&ppg=274 http://link.springer.com/10.1007/978-3-030-67658-2_14 |
Volume | 12457 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLIiBtygvZWCDoMR23HgsbaEqiKlF3azEdcZS0bDw67mL4zYJXcoSJVZsOfc59t35vjMhdzKLuWRc-GLGtM8TsFnjTMAjLCcmjgJjbLTFuxhO-GgaTddHXhbskjx91D8beSX_QRXKAFdkyW6B7KpRKIB7wBeugDBcG8pv3c1anjCEYZDGZUi1VMNX5yLDtJoawzMLXl8_yRNcr5bVEdJFrdVGZhXBhn1jFhjkacOH7MBwjVedAzRsOAecc7DhXqx4uLovNYOSFSYEbsbUZkjKbRbpP_NtNcQCqvpYFzBSlhhaT29NO43CYhUdPPVASQQjNFA04Ape2iW7nThqkb3uYPT2sXKYga4Gy6xEfo7rpLQZlNadrnAjN_WpZkU0Nr4LfWJ8RA6QY-Ih-QN6eUx2zPyEHLoTNrxywj0lD11vhZEHGHmIkVfHyHMYnZHJ82DcG_rl-Rb-gnKW-7NYcA3ri04Zhd9FxKEOIi0lTZMO1Z0kSwyo2xENtAgzqGEyTVMN-jJNIwlP7Jy05p9zc0E8k4TMhNwIkYU8lalETS3m3PCEYcKhNvHdl6tiF74M_dX2O5eqgUGb3DvxKHx9qVx6a5CrYgrkqgq5KpTr5ZatX5H99WC9Jq3869vcgG6Xp7cl6r9qaUcm |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases&rft.atitle=A+Framework+for+Deep+Quantification+Learning&rft.date=2021-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030676575&rft.volume=12457&rft_id=info:doi/10.1007%2F978-3-030-67658-2_14&rft.externalDBID=274&rft.externalDocID=EBC6501070_204_274 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6501070-l.jpg |