Generating Textual Entailment Using Residual LSTMs

Generating textual entailment (GTE) is a recently proposed task to study how to infer a sentence from a given premise. Current sequence-to-sequence GTE models are prone to produce invalid sentences when facing with complex enough premises. Moreover, the lack of appropriate evaluation criteria hinder...

Full description

Saved in:
Bibliographic Details
Published inChinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data Vol. 10565; pp. 263 - 272
Main Authors Guo, Maosheng, Zhang, Yu, Zhao, Dezhi, Liu, Ting
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2017
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Generating textual entailment (GTE) is a recently proposed task to study how to infer a sentence from a given premise. Current sequence-to-sequence GTE models are prone to produce invalid sentences when facing with complex enough premises. Moreover, the lack of appropriate evaluation criteria hinders researches on GTE. In this paper, we conjecture that the unpowerful encoder is the major bottleneck in generating more meaningful sequences, and improve this by employing the residual LSTM network. With the extended model, we obtain state-of-the-art results. Furthermore, we propose a novel metric for GTE, namely EBR (Evaluated By Recognizing textual entailment), which could evaluate different GTE approaches in an objective and fair way without human effort while also considering the diversity of inferences. In the end, we point out the limitation of adapting a general sequence-to-sequence framework under GTE settings, with some proposals for future research, hoping to generate more public discussion.
AbstractList Generating textual entailment (GTE) is a recently proposed task to study how to infer a sentence from a given premise. Current sequence-to-sequence GTE models are prone to produce invalid sentences when facing with complex enough premises. Moreover, the lack of appropriate evaluation criteria hinders researches on GTE. In this paper, we conjecture that the unpowerful encoder is the major bottleneck in generating more meaningful sequences, and improve this by employing the residual LSTM network. With the extended model, we obtain state-of-the-art results. Furthermore, we propose a novel metric for GTE, namely EBR (Evaluated By Recognizing textual entailment), which could evaluate different GTE approaches in an objective and fair way without human effort while also considering the diversity of inferences. In the end, we point out the limitation of adapting a general sequence-to-sequence framework under GTE settings, with some proposals for future research, hoping to generate more public discussion.
Author Zhao, Dezhi
Zhang, Yu
Guo, Maosheng
Liu, Ting
Author_xml – sequence: 1
  givenname: Maosheng
  orcidid: 0000-0002-3829-1179
  surname: Guo
  fullname: Guo, Maosheng
  email: msguo@ir.hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  email: zhangyu@ir.hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
– sequence: 3
  givenname: Dezhi
  surname: Zhao
  fullname: Zhao, Dezhi
  email: dzzhao@ir.hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
– sequence: 4
  givenname: Ting
  surname: Liu
  fullname: Liu, Ting
  email: tliu@ir.hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
BookMark eNpFkM1OwzAQhA0URFv6Bhz6Aoa11z_xEVWlIBUhQXu28rOBQkhCnEo8Pk6LxGmlGc1o55uwUd3UxNi1gBsBYG-dTThyFI4bB6C58VKesAlG5SCIUzYWRgiOqNzZv6FwxMaAILmzCi_YJLZpJyVqdclmIXwAgHAIYNSYyRXV1KX9rn6bb-in36fVfFn36a76orqfb8NgvFDYFYOzft08hSt2XqZVoNnfnbLt_XKzeODr59Xj4m7NW6mw54XNyrQwJqMyl1QAuKJQGeokd2VuSZdWoCWDUFqbaqUzUplJhJEIOSSJwimTx97QdvEL6nzWNJ_BC_ADHx_5ePRxtD_g8AOfGFLHUNs133sKvachlccxXVrl72nbUxe8jkA0xjwqL63GX2ZfZOA
ContentType Book Chapter
Copyright Springer International Publishing AG 2017
Copyright_xml – notice: Springer International Publishing AG 2017
DBID FFUUA
DEWEY 6.35
DOI 10.1007/978-3-319-69005-6_22
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Computer Science
EISBN 3319690051
9783319690056
EISSN 1611-3349
Editor Xiong, Deyi
Chang, Baobao
Sun, Maosong
Wang, Xiaojie
Editor_xml – sequence: 1
  fullname: Chang, Baobao
– sequence: 2
  fullname: Xiong, Deyi
– sequence: 3
  fullname: Sun, Maosong
– sequence: 4
  fullname: Wang, Xiaojie
EndPage 272
ExternalDocumentID EBC5592538_334_275
GroupedDBID 0D6
0DA
38.
AABBV
AALVI
ABBVZ
ABHTH
ABQUB
ACDJR
ADCXD
AEDXK
AEJLV
AEKFX
AETDV
AEZAY
AGIGN
AGYGE
AIODD
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BATQV
BBABE
CVWCR
CZZ
FFUUA
I4C
IEZ
SBO
SWYDZ
TPJZQ
TSXQS
Z81
Z83
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-d7bfad66befc2ed009dd4b358c9fc7e5f7137e630f77a545be4b6816230c08843
ISBN 3319690043
9783319690049
ISSN 0302-9743
IngestDate Tue Jul 29 20:08:43 EDT 2025
Wed May 28 23:23:48 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.N38
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-d7bfad66befc2ed009dd4b358c9fc7e5f7137e630f77a545be4b6816230c08843
OCLC 1005922354
ORCID 0000-0002-3829-1179
PQID EBC5592538_334_275
PageCount 10
ParticipantIDs springer_books_10_1007_978_3_319_69005_6_22
proquest_ebookcentralchapters_5592538_334_275
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 16th China National Conference, CCL 2017, and 5th International Symposium, NLP-NABD 2017, Nanjing, China, October 13-15, 2017, Proceedings
PublicationTitle Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data
PublicationYear 2017
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, United Kingdom
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, United Kingdom
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: CNB H 104.2, ETH Zurich, Zürich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Madras, Indian Institute of Technology, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: Fakultät Informatik, TU Dortmund, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max Planck Institute for Informatics, Saarbrücken, Germany
SSID ssj0001930064
ssj0002792
Score 1.8361984
Snippet Generating textual entailment (GTE) is a recently proposed task to study how to infer a sentence from a given premise. Current sequence-to-sequence GTE models...
SourceID springer
proquest
SourceType Publisher
StartPage 263
SubjectTerms Artificial intelligence
Generating textual entailment
Natural language generation
Natural language processing
Title Generating Textual Entailment Using Residual LSTMs
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5592538&ppg=275
http://link.springer.com/10.1007/978-3-319-69005-6_22
Volume 10565
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcEEcgPJoy0M-IC6WUeJdP3Lg0KJAVZkcIEXltPJ6d5tIyEbYPrR_jL_HjHfXdkIv5WJF1iZ25lvNa-ebIeStyLVMC1oEEH3kAZOpCvJ5zoIw1jlLIoFkTqy2WMVnF-z8MrqcTP6MqpbaRrwvbm7llfwPqnAPcEWW7B2Q7X8UbsBnwBeugDBc95zf3TSr6Suw6aZH-mYug8vpQWx51Y6aL69y01gjs3lJxwzADMEpWDCJpwV20c9r_6QsK3Q_pX-6vYIt0fRa-3NbGW5PVW-UNXfjhPOPdnSrMqrsZrPtC362rdka7qt25EDX9borvV6DmUAuy7LEotauRsHUM3xVtWGMZd_WX0wIgNJV9YfMHoCsqqarK_PdjAqnssY5jXmyl9NwOc29rOiQmNsJgilqkQWGOiPdSUHRQ6hkdKcyuj3Gjo3ULrP62mpXY_pDM0XoH6syLiRB0hc-LQpiHoLtv5ek0ZTcP1meZ9-H5N6Coq_XuwTYpdEcZ5m3QpKRe2tq2kAN_2JE8LztkTuh0N7pfecUrR-Th0iU8ZDBAvJ7QiaqPCCPHASeheCAvHB7r_beeVnfxrt-SsIBfs_C7w3wex38noPf6-B_Ri4-LdcfzwI7xCP4FTLaBDIROpdxLJQuQiXBpZeSCRqlxUIXiYp0MqeJiulMJ0kO7rxQTMTpHLzyWQEWkNHnZFpWpTokXjQTmqYKPHKpGYsXIhX5fKZ1KqJUg6o5IoGTDO9KDWx9c2HkUHOInkMw8Bw2AQ-T6Ij4Tnwcl9fc9fAGuXPKQe68kztHuR_fafVL8mDY2K_ItPndqtfgvjbijd0sfwEAA5P5
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Chinese+Computational+Linguistics+and+Natural+Language+Processing+Based+on+Naturally+Annotated+Big+Data&rft.au=Guo%2C+Maosheng&rft.au=Zhang%2C+Yu&rft.au=Zhao%2C+Dezhi&rft.au=Liu%2C+Ting&rft.atitle=Generating+Textual+Entailment+Using+Residual+LSTMs&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2017-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319690049&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=263&rft.epage=272&rft_id=info:doi/10.1007%2F978-3-319-69005-6_22
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5592538-l.jpg