Tip-Adapter: Training-Free Adaption of CLIP for Few-Shot Classification

Contrastive Vision-Language Pre-training, known as CLIP, has provided a new paradigm for learning visual representations using large-scale image-text pairs. It shows impressive performance on downstream tasks by zero-shot knowledge transfer. To further enhance CLIP’s adaption capability, existing me...

Full description

Saved in:
Bibliographic Details
Published inComputer Vision - ECCV 2022 Vol. 13695; pp. 493 - 510
Main Authors Zhang, Renrui, Zhang, Wei, Fang, Rongyao, Gao, Peng, Li, Kunchang, Dai, Jifeng, Qiao, Yu, Li, Hongsheng
Format Book Chapter
LanguageEnglish
Published Switzerland Springer 2022
Springer Nature Switzerland
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Contrastive Vision-Language Pre-training, known as CLIP, has provided a new paradigm for learning visual representations using large-scale image-text pairs. It shows impressive performance on downstream tasks by zero-shot knowledge transfer. To further enhance CLIP’s adaption capability, existing methods proposed to fine-tune additional learnable modules, which significantly improves the few-shot performance but introduces extra training time and computational resources. In this paper, we propose a Training-free adaption method for CLIP to conduct few-shot classification, termed as Tip-Adapter, which not only inherits the training-free advantage of zero-shot CLIP but also performs comparably to those training-required approaches. Tip-Adapter constructs the adapter via a key-value cache model from the few-shot training set, and updates the prior knowledge encoded in CLIP by feature retrieval. On top of that, the performance of Tip-Adapter can be further boosted to be state-of-the-art on ImageNet by fine-tuning the cache model for 10× $$\times $$ fewer epochs than existing methods, which is both effective and efficient. We conduct extensive experiments of few-shot classification on 11 datasets to demonstrate the superiority of our proposed methods. Code is released at https://github.com/gaopengcuhk/Tip-Adapter.
Bibliography:Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1007/978-3-031-19833-5_29.
Original Abstract: Contrastive Vision-Language Pre-training, known as CLIP, has provided a new paradigm for learning visual representations using large-scale image-text pairs. It shows impressive performance on downstream tasks by zero-shot knowledge transfer. To further enhance CLIP’s adaption capability, existing methods proposed to fine-tune additional learnable modules, which significantly improves the few-shot performance but introduces extra training time and computational resources. In this paper, we propose a Training-free adaption method for CLIP to conduct few-shot classification, termed as Tip-Adapter, which not only inherits the training-free advantage of zero-shot CLIP but also performs comparably to those training-required approaches. Tip-Adapter constructs the adapter via a key-value cache model from the few-shot training set, and updates the prior knowledge encoded in CLIP by feature retrieval. On top of that, the performance of Tip-Adapter can be further boosted to be state-of-the-art on ImageNet by fine-tuning the cache model for 10×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} fewer epochs than existing methods, which is both effective and efficient. We conduct extensive experiments of few-shot classification on 11 datasets to demonstrate the superiority of our proposed methods. Code is released at https://github.com/gaopengcuhk/Tip-Adapter.
R. Zhang and W. Zhang—Indicates equal contributions.
ISBN:9783031198328
3031198328
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-031-19833-5_29