Semantic Segmentation of Urban Scenes via Domain Adaptation of SYNTHIA
Vision-based semantic Semantic segmentation in urban scenarios is a key functionality for autonomous driving. Recent revolutionary results of deep convolutional neural networks (CNNs) foreshadow the advent of reliable classifiers to perform such visual tasks. However, CNNs require learning of many p...
Saved in:
Published in | Domain Adaptation in Computer Vision Applications pp. 227 - 241 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2017
Springer International Publishing |
Series | Advances in Computer Vision and Pattern Recognition |
Subjects | |
Online Access | Get full text |
ISBN | 3319583468 9783319583464 |
ISSN | 2191-6586 2191-6594 |
DOI | 10.1007/978-3-319-58347-1_12 |
Cover
Loading…
Abstract | Vision-based semantic Semantic segmentation in urban scenarios is a key functionality for autonomous driving. Recent revolutionary results of deep convolutional neural networks (CNNs) foreshadow the advent of reliable classifiers to perform such visual tasks. However, CNNs require learning of many parameters from raw images; thus, having a sufficient amount of diverse images with class annotations is needed. These annotations are obtained via cumbersome, human labor which is particularly challenging for semantic segmentation since pixel-level annotations are required. In this chapter, we propose to use a combination of a virtual Virtual world to automatically generate realistic synthetic images with pixel-level annotations, and domain adaptation to transfer the models learned to correctly operate in real scenarios. We address the question of how useful synthetic Synthetic data can be for semantic segmentation—Semantic segmentation particular, when using a CNN paradigm. In order to answer this question we have generated a synthetic collection of diverse urban images, named SYNTHIA, with automatically generated class annotations and object identifiers. We use SYNTHIA in combination with publicly available real-world urban images with manually provided annotations. Then, we conduct experiments with CNNs that show that combining SYNTHIA with simple domain adaptation techniques in the training stage significantly improves performance on semantic segmentation. |
---|---|
AbstractList | Vision-based semantic Semantic segmentation in urban scenarios is a key functionality for autonomous driving. Recent revolutionary results of deep convolutional neural networks (CNNs) foreshadow the advent of reliable classifiers to perform such visual tasks. However, CNNs require learning of many parameters from raw images; thus, having a sufficient amount of diverse images with class annotations is needed. These annotations are obtained via cumbersome, human labor which is particularly challenging for semantic segmentation since pixel-level annotations are required. In this chapter, we propose to use a combination of a virtual Virtual world to automatically generate realistic synthetic images with pixel-level annotations, and domain adaptation to transfer the models learned to correctly operate in real scenarios. We address the question of how useful synthetic Synthetic data can be for semantic segmentation—Semantic segmentation particular, when using a CNN paradigm. In order to answer this question we have generated a synthetic collection of diverse urban images, named SYNTHIA, with automatically generated class annotations and object identifiers. We use SYNTHIA in combination with publicly available real-world urban images with manually provided annotations. Then, we conduct experiments with CNNs that show that combining SYNTHIA with simple domain adaptation techniques in the training stage significantly improves performance on semantic segmentation. |
Author | Villalonga, Gabriel Molero, Francisco Vazquez, David Ramirez, Didier Escobar, Eduardo Perez, Francisco Sellart, Laura Ros, German Garcia, Marc Cedeño, Adriana Gomez, Jose Luis Maidanik, Elias Lopez, Antonio M. |
Author_xml | – sequence: 1 givenname: German surname: Ros fullname: Ros, German email: gros@cvc.uab.es organization: Computer Vision Center, Barcelona, Spain – sequence: 2 givenname: Laura surname: Sellart fullname: Sellart, Laura organization: Computer Vision Center, Barcelona, Spain – sequence: 3 givenname: Gabriel surname: Villalonga fullname: Villalonga, Gabriel organization: Computer Vision Center, Barcelona, Spain – sequence: 4 givenname: Elias surname: Maidanik fullname: Maidanik, Elias organization: Computer Vision Center, Barcelona, Spain – sequence: 5 givenname: Francisco surname: Molero fullname: Molero, Francisco organization: Computer Vision Center, Barcelona, Spain – sequence: 6 givenname: Marc surname: Garcia fullname: Garcia, Marc organization: Computer Vision Center, Barcelona, Spain – sequence: 7 givenname: Adriana surname: Cedeño fullname: Cedeño, Adriana organization: Computer Vision Center, Barcelona, Spain – sequence: 8 givenname: Francisco surname: Perez fullname: Perez, Francisco organization: Computer Vision Center, Barcelona, Spain – sequence: 9 givenname: Didier surname: Ramirez fullname: Ramirez, Didier organization: Computer Vision Center, Barcelona, Spain – sequence: 10 givenname: Eduardo surname: Escobar fullname: Escobar, Eduardo organization: Computer Vision Center, Barcelona, Spain – sequence: 11 givenname: Jose Luis surname: Gomez fullname: Gomez, Jose Luis organization: Computer Vision Center, Barcelona, Spain – sequence: 12 givenname: David surname: Vazquez fullname: Vazquez, David organization: Computer Vision Center, Barcelona, Spain – sequence: 13 givenname: Antonio M. surname: Lopez fullname: Lopez, Antonio M. organization: Computer Vision Center, Barcelona, Spain |
BookMark | eNpFkM9SwjAQxqOiIyBv4KEvEM0m26Q5MijCDKOHwsFTJi0pViHFpvr8BvHPZXfm-_bb2f0NSM833hFyDewGGFO3WmVUUAGapplARcEAPyGjKIsofmtwSvocNFCZajwjg19DZr0_I5MXZBAXokAtAS_JKIRXxhhkKsVU9Mk0dzvru7pMcrfZOd_Zrm580lTJqi2sT_LSeReSz9omd83O1j4Zr-3-fyp_flzO5uMrcl7ZbXCjnz4kq-n9cjKji6eH-WS8oHuOoqOlUghaaC0LXqpYUTi7zhjTFmW1xsJBqQoRL6tYUWClnBClQm5RpbYCKYaEH_eGfVv7jWtN0TRvwQAzB2wm8jHCRBDmG5E5YIshPIb2bfP-4UJn3CEVP-tauy1f4j-uDSZlmEIqDAAazqX4Au38a5k |
ContentType | Book Chapter |
Copyright | Springer International Publishing AG 2017 |
Copyright_xml | – notice: Springer International Publishing AG 2017 |
DBID | FFUUA |
DEWEY | 006.37 |
DOI | 10.1007/978-3-319-58347-1_12 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9783319583471 3319583476 |
EISSN | 2191-6594 |
Editor | Csurka, Gabriela |
Editor_xml | – sequence: 1 fullname: Csurka, Gabriela |
EndPage | 241 |
ExternalDocumentID | EBC5045153_114_226 |
GroupedDBID | 0D6 0DA 20A 38. AABBV AALVI ABHTH ABQUB ACBPT ACDJR ADCXD AEJLV AEKFX AETDV AEZAY AGIGN AGYGE AIODD ALBAV ALMA_UNASSIGNED_HOLDINGS AZZ BATQV BBABE CRSEL CZZ FFUUA I4C IEZ JJU SBO SWYDZ TPJZQ Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 |
ID | FETCH-LOGICAL-p243t-c774193996b2c796b43ead8009a46fd4be1c7b3453f0bb4f7e33c742a475af163 |
ISBN | 3319583468 9783319583464 |
ISSN | 2191-6586 |
IngestDate | Tue Jul 29 20:02:39 EDT 2025 Mon Apr 07 01:52:08 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCallNum | TA1634 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p243t-c774193996b2c796b43ead8009a46fd4be1c7b3453f0bb4f7e33c742a475af163 |
OCLC | 1004349614 |
PQID | EBC5045153_114_226 |
PageCount | 15 |
ParticipantIDs | springer_books_10_1007_978_3_319_58347_1_12 proquest_ebookcentralchapters_5045153_114_226 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesTitle | Advances in Computer Vision and Pattern Recognition |
PublicationSeriesTitleAlternate | Advs Comp. Vision, Pattern Recognition |
PublicationTitle | Domain Adaptation in Computer Vision Applications |
PublicationYear | 2017 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Kang, Sing Bing |
RelatedPersons_xml | – sequence: 1 givenname: Sing Bing surname: Kang fullname: Kang, Sing Bing organization: Microsoft Research, Microsoft (United States), Redmond, USA |
SSID | ssj0001875453 ssib023166760 ssib006652368 |
Score | 1.5195348 |
Snippet | Vision-based semantic Semantic segmentation in urban scenarios is a key functionality for autonomous driving. Recent revolutionary results of deep... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 227 |
SubjectTerms | Artificial intelligence Image processing Public administration |
Title | Semantic Segmentation of Urban Scenes via Domain Adaptation of SYNTHIA |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5045153&ppg=226 http://link.springer.com/10.1007/978-3-319-58347-1_12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swECVcdyk69BtNv8Chm8FCEinRHjIERVI3KLLENtKJICWyMJrIQeR06C_Lz-sdSVmy4yVdBEMgZPF4ON47vXck5HMipUnHpmAl7HVM6FyySVE5ZnSVV2Jcudx6lu9ZMZ2L04v8YjC467GWbtfmS_l3r67kf1YV7sG6okr2ASu7eSjcgN-wvnCFFYbrTvK7XWYNXJbVlcZiRaWvI2PQC_jCIQ2jhdeMhySzX5ULhymGajjqBTYVFmRBBfkOSqU3wXqBpxJdrupQf_2mDUDrjkqol5Wul78jPywSjaIDnlt4PLaDPbe_rqLCyeem8xvjgwpG2dGfpR7dnwkqaX6ezabfg3-hMW1zeBT4Cs2-iXrRg-8Vip8kIikqulwsaqRyp6jRFjV3yqJdZW4LBXOOHXO4CO3QQ_CEQJwyyK5im-3-vYnoB-zQmSDu_VlownVvW-kzSVD1hf8mWarweOtHcpwPyeOj49Mfiy6SFQDwOyAHSTRyiZOu-gcwUfgWqZsXReFRO5FxaA3VTawn-tz3FlvwaOeLvk-UZs_JUxTPUFS1gElfkIGtX5JnEerQuJE0r8hJ6x207x105aj3Dhq8g4J30OAdtPMOHBW94zWZnxzPvk5ZPNKDXWeCr1kJaAMgA4Bsk5USroJDKAPQMtGicJUwNi2l4WAalxgjnLScl1JkWshcO8AOb8iwXtX2LaGZs0lWwqBsYoWrLDwBwIFOHOTY2A__gLDWJsoTDyLbuQwWaFSOrZVyjrp8BSDkgIxawykc3qi2ozdYXHEFFlfe4got_u5Bo9-TJ52XfyDD9c2t_QjJ7Np8ip7zD83elaY |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Domain+Adaptation+in+Computer+Vision+Applications&rft.au=Ros%2C+German&rft.au=Sellart%2C+Laura&rft.au=Villalonga%2C+Gabriel&rft.au=Maidanik%2C+Elias&rft.atitle=Semantic+Segmentation+of+Urban+Scenes+via+Domain+Adaptation+of+SYNTHIA&rft.series=Advances+in+Computer+Vision+and+Pattern+Recognition&rft.date=2017-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319583464&rft.issn=2191-6586&rft.eissn=2191-6594&rft.spage=227&rft.epage=241&rft_id=info:doi/10.1007%2F978-3-319-58347-1_12 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5045153-l.jpg |