Estimate All the {LWE, NTRU} Schemes

We consider all LWE- and NTRU-based encryption, key encapsulation, and digital signature schemes proposed for standardisation as part of the Post-Quantum Cryptography process run by the US National Institute of Standards and Technology (NIST). In particular, we investigate the impact that different...

Full description

Saved in:
Bibliographic Details
Published inSecurity and Cryptography for Networks Vol. 11035; pp. 351 - 367
Main Authors Albrecht, Martin R., Curtis, Benjamin R., Deo, Amit, Davidson, Alex, Player, Rachel, Postlethwaite, Eamonn W., Virdia, Fernando, Wunderer, Thomas
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text

Cover

Loading…
More Information
Summary:We consider all LWE- and NTRU-based encryption, key encapsulation, and digital signature schemes proposed for standardisation as part of the Post-Quantum Cryptography process run by the US National Institute of Standards and Technology (NIST). In particular, we investigate the impact that different estimates for the asymptotic runtime of (block-wise) lattice reduction have on the predicted security of these schemes. Relying on the “LWE estimator” of Albrecht et al., we estimate the cost of running primal and dual lattice attacks against every LWE-based scheme, using every cost model proposed as part of a submission. Furthermore, we estimate the security of the proposed NTRU-based schemes against the primal attack under all cost models for lattice reduction.
Bibliography:T. Wunderer—The research of Albrecht was supported by EPSRC grant “Bit Security of Learning with Errors for Post-Quantum Cryptography and Fully Homomorphic Encryption” (EP/P009417/1) and by the European Union PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant 780701). The research of Curtis, Deo and Davidson was supported by the EPSRC and the UK government as part of the Centre for Doctoral Training in Cyber Security at Royal Holloway, University of London (EP/K035584/1). The research of Player was partially supported by the French Programme d’Investissement d’Avenir under national project RISQ P141580. The research of Postlethwaite and Virdia was supported by the EPSRC and the UK government as part of the Centre for Doctoral Training in Cyber Security at Royal Holloway, University of London (EP/P009301/1). The research of Wunderer was supported by the DFG as part of project P1 within the CRC 1119 CROSSING.
ISBN:9783319981123
3319981129
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-98113-0_19