WGAN Domain Adaptation for EEG-Based Emotion Recognition

In this paper, we propose a novel Wasserstein generative adversarial network domain adaptation (WGANDA) framework for building cross-subject electroencephalography (EEG)-based emotion recognition models. The proposed framework consists of GANs-like components and a two-step training procedure with p...

Full description

Saved in:
Bibliographic Details
Published inNeural Information Processing Vol. 11305; pp. 275 - 286
Main Authors Luo, Yun, Zhang, Si-Yang, Zheng, Wei-Long, Lu, Bao-Liang
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a novel Wasserstein generative adversarial network domain adaptation (WGANDA) framework for building cross-subject electroencephalography (EEG)-based emotion recognition models. The proposed framework consists of GANs-like components and a two-step training procedure with pre-training and adversarial training. Pre-training is to map source domain and target domain to a common feature space, and adversarial-training is to narrow down the gap between the mappings of the source and target domains on the common feature space. A Wasserstein GAN gradient penalty loss is applied to adversarial-training to guarantee the stability and convergence of the framework. We evaluate the framework on two public EEG datasets for emotion recognition, SEED and DEAP. The experimental results demonstrate that our WGANDA framework successfully handles the domain shift problem in cross-subject EEG-based emotion recognition and significantly outperforms the state-of-the-art domain adaptation methods.
AbstractList In this paper, we propose a novel Wasserstein generative adversarial network domain adaptation (WGANDA) framework for building cross-subject electroencephalography (EEG)-based emotion recognition models. The proposed framework consists of GANs-like components and a two-step training procedure with pre-training and adversarial training. Pre-training is to map source domain and target domain to a common feature space, and adversarial-training is to narrow down the gap between the mappings of the source and target domains on the common feature space. A Wasserstein GAN gradient penalty loss is applied to adversarial-training to guarantee the stability and convergence of the framework. We evaluate the framework on two public EEG datasets for emotion recognition, SEED and DEAP. The experimental results demonstrate that our WGANDA framework successfully handles the domain shift problem in cross-subject EEG-based emotion recognition and significantly outperforms the state-of-the-art domain adaptation methods.
Author Luo, Yun
Zheng, Wei-Long
Zhang, Si-Yang
Lu, Bao-Liang
Author_xml – sequence: 1
  givenname: Yun
  surname: Luo
  fullname: Luo, Yun
– sequence: 2
  givenname: Si-Yang
  surname: Zhang
  fullname: Zhang, Si-Yang
– sequence: 3
  givenname: Wei-Long
  surname: Zheng
  fullname: Zheng, Wei-Long
– sequence: 4
  givenname: Bao-Liang
  surname: Lu
  fullname: Lu, Bao-Liang
  email: bllu@sjtu.edu.cn
BookMark eNo1kMFOwzAQRA0URFv6BxzyA4b1rpPYxwKhIFUgIRBHy42dEmjjEof_J2nhtKMZzUrzJmzUhMYzdingSgDk1zpXnDgQcJCIgmuD6RGb9Tb15t7Tx2wsMiE4kdQnbPIfAIzYuNfIdS7pjE0EKEh1LhSes1mMnwCAfaJTHDP1vpg_JXdha-smmTu762xXhyapQpsUxYLf2OhdUmzD3n3xZVg39aAv2GllN9HP_u6Uvd0Xr7cPfPm8eLydL_kOJXV8lWvvKLOeSEtNwpF0UJKtUgWl09K6TOEKpVLe2cxDVVUpZNLZqsRKENGU4eFv3LV1s_atWYXwFY0AM4AyPRFDpp9r9lDMAKovyUNp14bvHx8744dW6ZuutZvyo5_p22gy1CrF1BCiQS3pF92VZr8
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2018
Copyright_xml – notice: Springer Nature Switzerland AG 2018
DBID FFUUA
DEWEY 006.32
DOI 10.1007/978-3-030-04221-9_25
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9783030042219
3030042219
EISSN 1611-3349
Editor Cheng, Long
Leung, Andrew Chi Sing
Ozawa, Seiichi
Editor_xml – sequence: 1
  fullname: Cheng, Long
– sequence: 2
  fullname: Leung, Andrew Chi Sing
– sequence: 3
  fullname: Ozawa, Seiichi
EndPage 286
ExternalDocumentID EBC6298525_322_294
GroupedDBID 0D6
0DA
38.
AABBV
ACOUV
AEDXK
AEJLV
AEKFX
AEZAY
ALMA_UNASSIGNED_HOLDINGS
ANXHU
BBABE
BICGV
BJAWL
BUBNW
CVGDX
CZZ
EDOXC
FFUUA
FOYMO
I4C
IEZ
NQNQZ
OEBZI
SBO
TPJZQ
TSXQS
Z7R
Z7X
Z81
Z83
Z84
Z85
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-b79ed36ae3394931d34d0c3af580cd94ad682b2488eda6e0fff5064dafc2f1333
ISBN 3030042200
9783030042202
ISSN 0302-9743
IngestDate Tue Jul 29 20:14:36 EDT 2025
Thu May 29 18:47:04 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q337.5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-b79ed36ae3394931d34d0c3af580cd94ad682b2488eda6e0fff5064dafc2f1333
OCLC 1080597182
PQID EBC6298525_322_294
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_030_04221_9_25
proquest_ebookcentralchapters_6298525_322_294
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part V
PublicationTitle Neural Information Processing
PublicationYear 2018
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0002743952
ssj0002792
Score 2.256834
Snippet In this paper, we propose a novel Wasserstein generative adversarial network domain adaptation (WGANDA) framework for building cross-subject...
SourceID springer
proquest
SourceType Publisher
StartPage 275
SubjectTerms Domain adaptation
EEG
Emotion recognition
GAN
Title WGAN Domain Adaptation for EEG-Based Emotion Recognition
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6298525&ppg=294
http://link.springer.com/10.1007/978-3-030-04221-9_25
Volume 11305
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLa6cgEOwACx8SEfuFVGru2kyYHDQGHTVHraYONiObEteqCdaHphf57XsZ24ZZdxiSrLctL3sfx-P0boPeUzWyqhiTKKE7CIOVGWCaKLklINY7TL6H5d5GeX4vwquxqNbtPukrb-0Py5s6_kf1CFMcDVdcneA9l-URiA34AvPAFheO4Zv7th1kC41DFmhH6iDsZQ9R-1kauz2Xah0OttvweGCPGSXKth5o-fxo9_N0syX6dL-LzEmsyX_fzA-316sgAT_JdyQROtbpLKxao6JZ9AQ-pJ5S8KcgaqL1UKG8FJyGw-zkMSY7Fuu9qwSbxnIh47aVxiWuzFJWJcci-yOQTXdhxZUKQdGxlNY50cDmtwd_z5Z_z5nDvWRe5ZTuOZ669eCeqbeWbtfzRDWgwCKxP3tikpJcsO0MGsyMbowUl1Pv_WB-iYc9WygYvMMS36lJT_KtcoFL86kIcN_yJp0rzrlTvuzF4GvjNsLp6ix67ZBbsuFJDfMzQyq0P0JEKAAwSH6FHCW_kcFQ547IHHA_AYgMc98DgAjxPgX6DLL9XF5zMSruAgN0zwltSz0mieK8N5KUo-1Vxo2nBls4I2uhRK5wWrGWgBo1VuqLXWMSBqZRtmp5zzl2i8Wq_MK4TBVy6YNUzMWCYaWtdgFVmlwSM2Nre1OkIkykR2hQKhOrnxEtjInJVFxjIJKkiyUhyhSRScdNM3MjJwg8QllyBx2UlcOokf32v2a_Rw2NJv0Lj9vTVvwfhs63dhm_wFbOR4VQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Neural+Information+Processing&rft.au=Luo%2C+Yun&rft.au=Zhang%2C+Si-Yang&rft.au=Zheng%2C+Wei-Long&rft.au=Lu%2C+Bao-Liang&rft.atitle=WGAN+Domain+Adaptation+for+EEG-Based+Emotion+Recognition&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2018-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030042202&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=275&rft.epage=286&rft_id=info:doi/10.1007%2F978-3-030-04221-9_25
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6298525-l.jpg