Causal Inference on Multivariate and Mixed-Type Data
How can we discover whether X causes Y, or vice versa, that Y causes X, when we are only given a sample over their joint distribution? How can we do this such that X and Y can be univariate, multivariate, or of different cardinalities? And, how can we do so regardless of whether X and Y are of the s...
Saved in:
Published in | Machine Learning and Knowledge Discovery in Databases Vol. 11052; pp. 655 - 671 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
ISBN | 3030109275 9783030109271 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-10928-8_39 |
Cover
Loading…
Abstract | How can we discover whether X causes Y, or vice versa, that Y causes X, when we are only given a sample over their joint distribution? How can we do this such that X and Y can be univariate, multivariate, or of different cardinalities? And, how can we do so regardless of whether X and Y are of the same, or of different data type, be it discrete, numeric, or mixed? These are exactly the questions we answer. We take an information theoretic approach, based on the Minimum Description Length principle, from which it follows that first describing the data over cause and then that of effect given cause is shorter than the reverse direction. Simply put, if Y can be explained more succinctly by a set of classification or regression trees conditioned on X, than in the opposite direction, we conclude that X causes Y. Empirical evaluation on a wide range of data shows that our method, Crack, infers the correct causal direction reliably and with high accuracy on a wide range of settings, outperforming the state of the art by a wide margin. Code related to this paper is available at: http://eda.mmci.uni-saarland.de/crack. |
---|---|
AbstractList | How can we discover whether X causes Y, or vice versa, that Y causes X, when we are only given a sample over their joint distribution? How can we do this such that X and Y can be univariate, multivariate, or of different cardinalities? And, how can we do so regardless of whether X and Y are of the same, or of different data type, be it discrete, numeric, or mixed? These are exactly the questions we answer. We take an information theoretic approach, based on the Minimum Description Length principle, from which it follows that first describing the data over cause and then that of effect given cause is shorter than the reverse direction. Simply put, if Y can be explained more succinctly by a set of classification or regression trees conditioned on X, than in the opposite direction, we conclude that X causes Y. Empirical evaluation on a wide range of data shows that our method, Crack, infers the correct causal direction reliably and with high accuracy on a wide range of settings, outperforming the state of the art by a wide margin. Code related to this paper is available at: http://eda.mmci.uni-saarland.de/crack. |
Author | Marx, Alexander Vreeken, Jilles |
Author_xml | – sequence: 1 givenname: Alexander surname: Marx fullname: Marx, Alexander email: amarx@mpi-inf.mpg.de – sequence: 2 givenname: Jilles surname: Vreeken fullname: Vreeken, Jilles |
BookMark | eNo1kM1OwzAQhA0URFv6BhzyAoa113acIyq_Uisu5Wy5yQYClRPiFMHb47ZwmtWsZlfzTdgotIEYuxRwJQDy6yK3HDkgcAGFtNw6LI7YLNmYzL1nj9lYGCE4oipO2OR_kesRG6dZ8iJXeMYmAqxSJtcGztksxncAkEIYre2YqbnfRr_JnkJNPYWSsjZky-1maL583_iBMh-qbNl8U8VXPx1lt37wF-y09ptIsz-dspf7u9X8kS-eH57mNwveSYUDt2VupVWlhopKoppAGdI6PZeVgrpEkdcV6oqkr0UlwZpCozXr3IBFLwVOmTzcjV3fhFfq3bptP6IT4HaQXKLh0KWqbg_E7SClkDqEur793FIcHO1SJYWh95vyzXcD9dHpQmqUJqlwiQ3-Am90ZSQ |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 |
DBID | FFUUA |
DEWEY | 6.3 |
DOI | 10.1007/978-3-030-10928-8_39 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9783030109288 3030109283 |
EISSN | 1611-3349 |
Editor | Berlingerio, Michele Ifrim, Georgiana Hurley, Neil Gärtner, Thomas Bonchi, Francesco |
Editor_xml | – sequence: 1 fullname: Berlingerio, Michele – sequence: 2 fullname: Ifrim, Georgiana – sequence: 3 fullname: Gärtner, Thomas – sequence: 4 fullname: Bonchi, Francesco – sequence: 5 fullname: Hurley, Neil |
EndPage | 671 |
ExternalDocumentID | EBC5925326_591_675 |
GroupedDBID | 0D6 0DA 38. AABBV AEDXK AEJLV AEKFX AEZAY AIFIR ALEXF ALMA_UNASSIGNED_HOLDINGS AYMPB BBABE CXBFT CZZ EXGDT FCSXQ FFUUA I4C IEZ MGZZY NSQWD OORQV SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p243t-8c78284c50deceefe046e550212d40fc317fd35de2af1d208695386b76083a213 |
ISBN | 3030109275 9783030109271 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:13:44 EDT 2025 Fri Apr 11 21:41:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q334-342 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p243t-8c78284c50deceefe046e550212d40fc317fd35de2af1d208695386b76083a213 |
Notes | Electronic supplementary materialThe online version of this chapter (https://doi.org/10.1007/978-3-030-10928-8_39) contains supplementary material, which is available to authorized users. |
OCLC | 1084467560 |
PQID | EBC5925326_591_675 |
PageCount | 17 |
ParticipantIDs | springer_books_10_1007_978_3_030_10928_8_39 proquest_ebookcentralchapters_5925326_591_675 |
PublicationCentury | 2000 |
PublicationDate | 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | European Conference, ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018, Proceedings, Part II |
PublicationTitle | Machine Learning and Knowledge Discovery in Databases |
PublicationYear | 2019 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug |
SSID | ssj0002116558 ssj0002792 |
Score | 2.004815 |
Snippet | How can we discover whether X causes Y, or vice versa, that Y causes X, when we are only given a sample over their joint distribution? How can we do this such... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 655 |
Title | Causal Inference on Multivariate and Mixed-Type Data |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5925326&ppg=675 http://link.springer.com/10.1007/978-3-030-10928-8_39 |
Volume | 11052 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVouSAOy6foLiAfuCGjxLFT51hKoSofpxb1ZjmJLXFpVyRFiF-_M06cJlEvyyWq0sRy59num7HfDCHvYA4pqRxnJo0dEy5VzJhszkSewNyD74TfMf3-I13vxGYv9-d6jl5dUucfin8XdSX_gyrcA1xRJXsPZLtG4QZ8BnzhCgjDdUR-h2HWtsIQHoO0IUNqIzX8GkJkmFazwOOZXtf3ydQG_6-q_ghZmlPlM22EVLMwELwe9w_4z0BBmzMYv_7akqG36hvpBwlQlzQIEoQg4SjM2It0Lb4MHMsEPaUo4015lG6lBDLGL667_aMW8CrDdxVTuklUNExznTalUkZprlcflzLjEtikllms4aEJmcyVnJKHi9Xm288ucMYxYZBUqNMJnZRNJqVzp3sayUt9GngTow1wzyu2T8hj1JpQFIFAL5-SB_bwjFyFShu0XXifE9FgRTus6PFA-1hRwIqesaKI1Quy-7zaLtesrXfBbrlIaqYKoGtKFDIqLXAXZyORWvAggV2UInIFUD1XJrK03Li45OCMZjDV0nyeAo82PE5ekunheLCvCE1hJXeRcbaMEmGzROH2d5G7KFaldXExIyxYQPtd-fYocNH83kqPsJiR98FMGh-vdEh3DfbViQb7am9fjfa9vmfrN-TRedC-JtP698m-Aa5X529b9O8AeZZMsw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases&rft.atitle=Causal+Inference+on+Multivariate+and+Mixed-Type+Data&rft.date=2019-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030109271&rft.volume=11052&rft_id=info:doi/10.1007%2F978-3-030-10928-8_39&rft.externalDBID=675&rft.externalDocID=EBC5925326_591_675 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5925326-l.jpg |