Real-Time Lane Configuration with Coordinated Reinforcement Learning
Changing lane configuration of roads, based on traffic patterns, is a proven solution for improving traffic throughput. Traditional lane-direction configuration solutions assume pre-known traffic patterns, hence are not suitable for real-world applications as they are not able to adapt to changing t...
Saved in:
Published in | Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track Vol. 12460; pp. 291 - 307 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3030676668 9783030676667 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-67667-4_18 |
Cover
Loading…
Abstract | Changing lane configuration of roads, based on traffic patterns, is a proven solution for improving traffic throughput. Traditional lane-direction configuration solutions assume pre-known traffic patterns, hence are not suitable for real-world applications as they are not able to adapt to changing traffic conditions. We propose a dynamic lane configuration solution for improving traffic flow using a two-layer, multi-agent architecture, named Coordinated Learning-based Lane Allocation (CLLA). At the bottom-layer, a set of reinforcement learning agents find a suitable configuration of lane-directions around individual road intersections. The lane-direction changes proposed by the reinforcement learning agents are then coordinated by the upper level agents to reduce the negative impact of the changes on other parts of the road network. CLLA is the first work that allows city-wide lane configuration while adapting to changing traffic conditions. Our experimental results show that CLLA can reduce the average travel time in congested road networks by 20% compared to an uncoordinated reinforcement learning approach. |
---|---|
AbstractList | Changing lane configuration of roads, based on traffic patterns, is a proven solution for improving traffic throughput. Traditional lane-direction configuration solutions assume pre-known traffic patterns, hence are not suitable for real-world applications as they are not able to adapt to changing traffic conditions. We propose a dynamic lane configuration solution for improving traffic flow using a two-layer, multi-agent architecture, named Coordinated Learning-based Lane Allocation (CLLA). At the bottom-layer, a set of reinforcement learning agents find a suitable configuration of lane-directions around individual road intersections. The lane-direction changes proposed by the reinforcement learning agents are then coordinated by the upper level agents to reduce the negative impact of the changes on other parts of the road network. CLLA is the first work that allows city-wide lane configuration while adapting to changing traffic conditions. Our experimental results show that CLLA can reduce the average travel time in congested road networks by 20% compared to an uncoordinated reinforcement learning approach. |
Author | Xie, Hairuo Tanin, Egemen Gunarathna, Udesh Borovica-Gajic, Renata Karunasekara, Shanika |
Author_xml | – sequence: 1 givenname: Udesh surname: Gunarathna fullname: Gunarathna, Udesh email: pgunarathna@student.unimelb.edu.au – sequence: 2 givenname: Hairuo surname: Xie fullname: Xie, Hairuo – sequence: 3 givenname: Egemen surname: Tanin fullname: Tanin, Egemen – sequence: 4 givenname: Shanika surname: Karunasekara fullname: Karunasekara, Shanika – sequence: 5 givenname: Renata surname: Borovica-Gajic fullname: Borovica-Gajic, Renata |
BookMark | eNpFkMtOAzEMRcNTtIU_YDE_EHDiTCZZovKUKiFVsI7S1CkDbaZkBvH7pAWJla1rXfv6jNlx6hIxdingSgA017YxHDkgcN1o3XDlhDlgYyzKXtCHbCS0EBxR2aP_gTbHbFR6yW2j8JSNhVRYozJSn7GLvn8HAFmDFIgjdjsnv-Yv7YaqmU9UTbsU29VX9kPbpeq7Hd6K1OVlm_xAy2pObYpdDrShNFQz8jm1aXXOTqJf93TxVyfs9f7uZfrIZ88PT9ObGd-WBANvAKLEQCEIK8lqVCWJrZcLBBWAlIzakyaMFGQ04IO0tDCWoo8mevA4YfJ3b7_N5Sxlt-i6j94JcDtirhBz6Mrrbg_I7YgVk_o1bXP3-UX94GjnCuWB7NfhzW8Hyr3TNRhVGyetdCgN_gBExGxy |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2021 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
DBID | FFUUA |
DOI | 10.1007/978-3-030-67667-4_18 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 3030676676 9783030676674 |
EISSN | 1611-3349 |
Editor | Saunders, Craig Dong, Yuxiao Mladenić, Dunja |
Editor_xml | – sequence: 1 fullname: Saunders, Craig – sequence: 2 fullname: Dong, Yuxiao – sequence: 3 fullname: Mladenić, Dunja |
EndPage | 307 |
ExternalDocumentID | EBC6508458_292_328 |
GroupedDBID | 38. AABBV AABLV ABNDO ACWLQ AEDXK AEJLV AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY FFUUA I4C IEZ OCUHQ ORHYB SBO TPJZQ TSXQS Z5O Z7R Z7U Z7W Z7X Z7Z Z81 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p243t-700f23cecc192e963400095db304c0e42f6ae6e3fec2f80ac29eb89efaf8fa0a3 |
ISBN | 3030676668 9783030676667 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:15:53 EDT 2025 Thu May 29 01:18:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | QA76.9.D343 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p243t-700f23cecc192e963400095db304c0e42f6ae6e3fec2f80ac29eb89efaf8fa0a3 |
OCLC | 1243534826 |
PQID | EBC6508458_292_328 |
PageCount | 17 |
ParticipantIDs | springer_books_10_1007_978_3_030_67667_4_18 proquest_ebookcentralchapters_6508458_292_328 |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | European Conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part IV |
PublicationTitle | Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track |
PublicationYear | 2021 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti surname: Yung fullname: Yung, Moti |
SSID | ssj0002502133 ssj0002792 |
Score | 2.0398448 |
Snippet | Changing lane configuration of roads, based on traffic patterns, is a proven solution for improving traffic throughput. Traditional lane-direction... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 291 |
SubjectTerms | Graphs Reinforcement learning Spatial database |
Title | Real-Time Lane Configuration with Coordinated Reinforcement Learning |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6508458&ppg=328 http://link.springer.com/10.1007/978-3-030-67667-4_18 |
Volume | 12460 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXo9oI4QAuI8lH5wK0ycm1vPo5lu1CVikPVot4s25mgXlJE0wu_nhmvnSahl3KJVlaSdebZzpvJvDFjH2sZVOsPG1FALYXxQQrfQiUaLT145A86xGyL78XJpTm9Wl7l_e6TuqT3n8KfB3Ul_4MqtiGupJJ9BLLDTbEBfyO-eESE8Tgjv9Mwa9phiNIgIVdI3UgNv-UQGZXVDJSeGXV9x6539L6K-W-ZeFLjMLfxnZXK46fxc44MUpBA5ODMdRCVgdc_79J4idHb1Q06rtedI856DrECa4jBxqFL45CCOpyFFHJIcRaUHMXFjr5O3FAdHQ90hMrJuqrMZquAf1bpcWIGXiro2lIYm1biSVFsrWaN8d27_rwiammWlVW1snjSFtsqq-WCbR-tT89-DGE2ZHgK3XBS9eROVpu6S_edHikqH-rTxPeYfS6PLOTiBXtGyhROkhHs5Q57At0ue5735eAJypfseMCOE3Z8gh0n7PgIOz7BjmfsXrHLL-uL1YlIu2WIX8roXpRStkoHnJJI2gHXVRP5c-O1NEGCUW3hoADdAs7OSrqgavBVDa1rq9ZJp1-zRXfTwRvGIRhyI9AYjTRNWTlkpb6uvUbvAUxR7zGRLWLjN_2USBw2z39rZ9jssYNsNkun39pcLBv_wmqL9rbR3pbs_faRd3_Hnt4P4vds0f--gw_IFHu_n0bDX0ObZg0 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases%3A+Applied+Data+Science+Track&rft.atitle=Real-Time+Lane+Configuration+with+Coordinated+Reinforcement+Learning&rft.date=2021-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030676667&rft.volume=12460&rft_id=info:doi/10.1007%2F978-3-030-67667-4_18&rft.externalDBID=328&rft.externalDocID=EBC6508458_292_328 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6508458-l.jpg |