Real-Time Lane Configuration with Coordinated Reinforcement Learning

Changing lane configuration of roads, based on traffic patterns, is a proven solution for improving traffic throughput. Traditional lane-direction configuration solutions assume pre-known traffic patterns, hence are not suitable for real-world applications as they are not able to adapt to changing t...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Discovery in Databases: Applied Data Science Track Vol. 12460; pp. 291 - 307
Main Authors Gunarathna, Udesh, Xie, Hairuo, Tanin, Egemen, Karunasekara, Shanika, Borovica-Gajic, Renata
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030676668
9783030676667
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-67667-4_18

Cover

Loading…
Abstract Changing lane configuration of roads, based on traffic patterns, is a proven solution for improving traffic throughput. Traditional lane-direction configuration solutions assume pre-known traffic patterns, hence are not suitable for real-world applications as they are not able to adapt to changing traffic conditions. We propose a dynamic lane configuration solution for improving traffic flow using a two-layer, multi-agent architecture, named Coordinated Learning-based Lane Allocation (CLLA). At the bottom-layer, a set of reinforcement learning agents find a suitable configuration of lane-directions around individual road intersections. The lane-direction changes proposed by the reinforcement learning agents are then coordinated by the upper level agents to reduce the negative impact of the changes on other parts of the road network. CLLA is the first work that allows city-wide lane configuration while adapting to changing traffic conditions. Our experimental results show that CLLA can reduce the average travel time in congested road networks by 20% compared to an uncoordinated reinforcement learning approach.
AbstractList Changing lane configuration of roads, based on traffic patterns, is a proven solution for improving traffic throughput. Traditional lane-direction configuration solutions assume pre-known traffic patterns, hence are not suitable for real-world applications as they are not able to adapt to changing traffic conditions. We propose a dynamic lane configuration solution for improving traffic flow using a two-layer, multi-agent architecture, named Coordinated Learning-based Lane Allocation (CLLA). At the bottom-layer, a set of reinforcement learning agents find a suitable configuration of lane-directions around individual road intersections. The lane-direction changes proposed by the reinforcement learning agents are then coordinated by the upper level agents to reduce the negative impact of the changes on other parts of the road network. CLLA is the first work that allows city-wide lane configuration while adapting to changing traffic conditions. Our experimental results show that CLLA can reduce the average travel time in congested road networks by 20% compared to an uncoordinated reinforcement learning approach.
Author Xie, Hairuo
Tanin, Egemen
Gunarathna, Udesh
Borovica-Gajic, Renata
Karunasekara, Shanika
Author_xml – sequence: 1
  givenname: Udesh
  surname: Gunarathna
  fullname: Gunarathna, Udesh
  email: pgunarathna@student.unimelb.edu.au
– sequence: 2
  givenname: Hairuo
  surname: Xie
  fullname: Xie, Hairuo
– sequence: 3
  givenname: Egemen
  surname: Tanin
  fullname: Tanin, Egemen
– sequence: 4
  givenname: Shanika
  surname: Karunasekara
  fullname: Karunasekara, Shanika
– sequence: 5
  givenname: Renata
  surname: Borovica-Gajic
  fullname: Borovica-Gajic, Renata
BookMark eNpFkMtOAzEMRcNTtIU_YDE_EHDiTCZZovKUKiFVsI7S1CkDbaZkBvH7pAWJla1rXfv6jNlx6hIxdingSgA017YxHDkgcN1o3XDlhDlgYyzKXtCHbCS0EBxR2aP_gTbHbFR6yW2j8JSNhVRYozJSn7GLvn8HAFmDFIgjdjsnv-Yv7YaqmU9UTbsU29VX9kPbpeq7Hd6K1OVlm_xAy2pObYpdDrShNFQz8jm1aXXOTqJf93TxVyfs9f7uZfrIZ88PT9ObGd-WBANvAKLEQCEIK8lqVCWJrZcLBBWAlIzakyaMFGQ04IO0tDCWoo8mevA4YfJ3b7_N5Sxlt-i6j94JcDtirhBz6Mrrbg_I7YgVk_o1bXP3-UX94GjnCuWB7NfhzW8Hyr3TNRhVGyetdCgN_gBExGxy
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DOI 10.1007/978-3-030-67667-4_18
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 3030676676
9783030676674
EISSN 1611-3349
Editor Saunders, Craig
Dong, Yuxiao
Mladenić, Dunja
Editor_xml – sequence: 1
  fullname: Saunders, Craig
– sequence: 2
  fullname: Dong, Yuxiao
– sequence: 3
  fullname: Mladenić, Dunja
EndPage 307
ExternalDocumentID EBC6508458_292_328
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7U
Z7W
Z7X
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-700f23cecc192e963400095db304c0e42f6ae6e3fec2f80ac29eb89efaf8fa0a3
ISBN 3030676668
9783030676667
ISSN 0302-9743
IngestDate Tue Jul 29 20:15:53 EDT 2025
Thu May 29 01:18:08 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.D343
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-700f23cecc192e963400095db304c0e42f6ae6e3fec2f80ac29eb89efaf8fa0a3
OCLC 1243534826
PQID EBC6508458_292_328
PageCount 17
ParticipantIDs springer_books_10_1007_978_3_030_67667_4_18
proquest_ebookcentralchapters_6508458_292_328
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle European Conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part IV
PublicationTitle Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002502133
ssj0002792
Score 2.0398448
Snippet Changing lane configuration of roads, based on traffic patterns, is a proven solution for improving traffic throughput. Traditional lane-direction...
SourceID springer
proquest
SourceType Publisher
StartPage 291
SubjectTerms Graphs
Reinforcement learning
Spatial database
Title Real-Time Lane Configuration with Coordinated Reinforcement Learning
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6508458&ppg=328
http://link.springer.com/10.1007/978-3-030-67667-4_18
Volume 12460
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXo9oI4QAuI8lH5wK0ycm1vPo5lu1CVikPVot4s25mgXlJE0wu_nhmvnSahl3KJVlaSdebZzpvJvDFjH2sZVOsPG1FALYXxQQrfQiUaLT145A86xGyL78XJpTm9Wl7l_e6TuqT3n8KfB3Ul_4MqtiGupJJ9BLLDTbEBfyO-eESE8Tgjv9Mwa9phiNIgIVdI3UgNv-UQGZXVDJSeGXV9x6539L6K-W-ZeFLjMLfxnZXK46fxc44MUpBA5ODMdRCVgdc_79J4idHb1Q06rtedI856DrECa4jBxqFL45CCOpyFFHJIcRaUHMXFjr5O3FAdHQ90hMrJuqrMZquAf1bpcWIGXiro2lIYm1biSVFsrWaN8d27_rwiammWlVW1snjSFtsqq-WCbR-tT89-DGE2ZHgK3XBS9eROVpu6S_edHikqH-rTxPeYfS6PLOTiBXtGyhROkhHs5Q57At0ue5735eAJypfseMCOE3Z8gh0n7PgIOz7BjmfsXrHLL-uL1YlIu2WIX8roXpRStkoHnJJI2gHXVRP5c-O1NEGCUW3hoADdAs7OSrqgavBVDa1rq9ZJp1-zRXfTwRvGIRhyI9AYjTRNWTlkpb6uvUbvAUxR7zGRLWLjN_2USBw2z39rZ9jssYNsNkun39pcLBv_wmqL9rbR3pbs_faRd3_Hnt4P4vds0f--gw_IFHu_n0bDX0ObZg0
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases%3A+Applied+Data+Science+Track&rft.atitle=Real-Time+Lane+Configuration+with+Coordinated+Reinforcement+Learning&rft.date=2021-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030676667&rft.volume=12460&rft_id=info:doi/10.1007%2F978-3-030-67667-4_18&rft.externalDBID=328&rft.externalDocID=EBC6508458_292_328
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6508458-l.jpg