Quantifying the Confidence of Anomaly Detectors in Their Example-Wise Predictions

Anomaly detection focuses on identifying examples in the data that somehow deviate from what is expected or typical. Algorithms for this task usually assign a score to each example that represents how anomalous the example is. Then, a threshold on the scores turns them into concrete predictions. How...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Discovery in Databases Vol. 12459; pp. 227 - 243
Main Authors Perini, Lorenzo, Vercruyssen, Vincent, Davis, Jesse
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Anomaly detection focuses on identifying examples in the data that somehow deviate from what is expected or typical. Algorithms for this task usually assign a score to each example that represents how anomalous the example is. Then, a threshold on the scores turns them into concrete predictions. However, each algorithm uses a different approach to assign the scores, which makes them difficult to interpret and can quickly erode a user’s trust in the predictions. This paper introduces an approach for assessing the reliability of any anomaly detector’s example-wise predictions. To do so, we propose a Bayesian approach for converting anomaly scores to probability estimates. This enables the anomaly detector to assign a confidence score to each prediction which captures its uncertainty in that prediction. We theoretically analyze the convergence behaviour of our confidence estimate. Empirically, we demonstrate the effectiveness of the framework in quantifying a detector’s confidence in its predictions on a large benchmark of datasets.
ISBN:3030676633
9783030676636
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-67664-3_14