Modeling Multi-factor and Multi-faceted Preferences over Sequential Networks for Next Item Recommendation
Attributes of items carry useful information for accurate recommendations. Existing methods which tried to use items’ attributes relied on either 1) feature-level compression which may introduce much noise information of irrelevant attributes, or 2) item- and attribute- level transition modeling whi...
Saved in:
Published in | Machine Learning and Knowledge Discovery in Databases. Research Track Vol. 12976; pp. 516 - 531 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3030865193 9783030865191 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-86520-7_32 |
Cover
Loading…
Abstract | Attributes of items carry useful information for accurate recommendations. Existing methods which tried to use items’ attributes relied on either 1) feature-level compression which may introduce much noise information of irrelevant attributes, or 2) item- and attribute- level transition modeling which ignored the mutual effects of multi-factor for users’ behaviors. In addition, these methods failed to capture multi-faceted preferences of users, therefore, the prediction for the next behavior may be affected or misled by the irrelevant facets of preferences. To address these problems, we propose a Sequential Network based Recommendation model, named SNR, to extract and utilize users’ multi-factor and multi-faceted preferences for next item recommendation. To model users’ multi-factor preferences, we organize the item- and attribute- level sequences of users’ behaviors as unified sequential networks, and propose an attentional gated Graph Convolutional Network model to explore the mutual effects of the preference factors contained in sequential networks. To capture users’ multi-faceted preferences, we propose a multi-faceted preference learning model to simulate the decision-making process of users with the Gumbel sotfmax trick. Finally, we fuse the multi-factor and multi-faceted preferences in a unified latent space for next item recommendation. Extensive experiments on four real-world data sets show that the proposed model SNR consistently outperforms several state-of-the-art methods. |
---|---|
AbstractList | Attributes of items carry useful information for accurate recommendations. Existing methods which tried to use items’ attributes relied on either 1) feature-level compression which may introduce much noise information of irrelevant attributes, or 2) item- and attribute- level transition modeling which ignored the mutual effects of multi-factor for users’ behaviors. In addition, these methods failed to capture multi-faceted preferences of users, therefore, the prediction for the next behavior may be affected or misled by the irrelevant facets of preferences. To address these problems, we propose a Sequential Network based Recommendation model, named SNR, to extract and utilize users’ multi-factor and multi-faceted preferences for next item recommendation. To model users’ multi-factor preferences, we organize the item- and attribute- level sequences of users’ behaviors as unified sequential networks, and propose an attentional gated Graph Convolutional Network model to explore the mutual effects of the preference factors contained in sequential networks. To capture users’ multi-faceted preferences, we propose a multi-faceted preference learning model to simulate the decision-making process of users with the Gumbel sotfmax trick. Finally, we fuse the multi-factor and multi-faceted preferences in a unified latent space for next item recommendation. Extensive experiments on four real-world data sets show that the proposed model SNR consistently outperforms several state-of-the-art methods. |
Author | Wu, Zhonghai Du, Yingpeng Liu, Hongzhi |
Author_xml | – sequence: 1 givenname: Yingpeng surname: Du fullname: Du, Yingpeng – sequence: 2 givenname: Hongzhi surname: Liu fullname: Liu, Hongzhi email: liuhz@pku.edu.cn – sequence: 3 givenname: Zhonghai surname: Wu fullname: Wu, Zhonghai email: wuzh@pku.edu.cn |
BookMark | eNpFkMtOHDEQRZ0AUWYIf8DCP-Bgu_zqJUJ5IPGIIFlbbnd10tDTntgm5PPjgQhWZd3yKemeNdlf0oKEHAv-UXBuTzrrGDAOnDmjJWfWg3xD1tCSp8C-JSthhGAAqtt7WYgO9smqvSXrrIJ3ZC2kcdJYYdR7clTKHedcWqks6BWZLtOA87T8pJcPc53YGGJNmYZleA2w4kC_ZRwx4xKx0PQHM73F3w-41CnM9ArrY8r3hY4NvcK_lZ5X3NAbjGmzwWUIdUrLB3Iwhrng0f95SH58_vT97Cu7uP5yfnZ6wbZSQWXKGR5xAMt7p6G3oR_5OPa8F1qFoQ9RhTgKiKjBBa6ElgHb50676CB2Bg6JfL5btrn1wuz7lO6LF9zvtPqm1YNvfvyTRb_T2iD1DG1zarVK9bijYiuYwxx_hW3FXLxp2oxwXnPptTLwD4B_ed4 |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2021 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
DBID | FFUUA |
DOI | 10.1007/978-3-030-86520-7_32 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 3030865207 9783030865207 |
EISSN | 1611-3349 |
Editor | Pérez-Cruz, Fernando Lozano, Jose A Oliver, Nuria Kramer, Stefan Read, Jesse |
Editor_xml | – sequence: 1 fullname: Oliver, Nuria – sequence: 2 fullname: Kramer, Stefan – sequence: 3 fullname: Pérez-Cruz, Fernando – sequence: 4 fullname: Lozano, Jose A – sequence: 5 fullname: Read, Jesse |
EndPage | 531 |
ExternalDocumentID | EBC6724618_502_546 |
GroupedDBID | 38. AABBV AABLV ABLLD ABNDO ACWLQ AEDXK AEJLV AEKFX AELOD ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY FFUUA I4C IEZ OCUHQ ORHYB SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p243t-4860ced370b853b7abf0ffb0b154adbac4acf13ce538a04152ae370958c83c963 |
ISBN | 3030865193 9783030865191 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:40:16 EDT 2025 Mon Jan 13 02:23:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q334-342 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p243t-4860ced370b853b7abf0ffb0b154adbac4acf13ce538a04152ae370958c83c963 |
OCLC | 1268267164 |
PQID | EBC6724618_502_546 |
PageCount | 16 |
ParticipantIDs | springer_books_10_1007_978_3_030_86520_7_32 proquest_ebookcentralchapters_6724618_502_546 |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings, Part II |
PublicationTitle | Machine Learning and Knowledge Discovery in Databases. Research Track |
PublicationYear | 2021 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
SSID | ssj0002724735 ssj0002792 |
Score | 2.0399823 |
Snippet | Attributes of items carry useful information for accurate recommendations. Existing methods which tried to use items’ attributes relied on either 1)... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 516 |
SubjectTerms | Multi-faceted preference Multi-factor preference Preference learning Sequential networks Sequential recommendation |
Title | Modeling Multi-factor and Multi-faceted Preferences over Sequential Networks for Next Item Recommendation |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6724618&ppg=546 http://link.springer.com/10.1007/978-3-030-86520-7_32 |
Volume | 12976 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZcdwk6NH2haZuAQzdDgSRSr6FD0SQw0tTokBRBF4Kk6NpD7CCSgSK_rT-ud3zIkpslXQSLkPXgfbg7Hu-7I-QjrPxzI4s6UkpqpOSUkQIzHoGxqk2qYpZxJAp_m-XTK35-nV2PRn96WUubVh3r-wd5Jf8jVRgDuSJL9hGS7W4KA_Ab5AtHkDAcd5zfYZjVdxjCNEgTKqQ6quHXECLDspoa0zMtr-9EthLtVXPcpdphWXPd0XRONlYXw21ujbdlmKWztMPT9erX_WLZ6W87-HMBowu57GMOG6tZerul9Uaul49L5QgDBj3c711zk2aC7wgaCxO6W4zez1xeui0TASe_W7ubgO7t-ubG-BZQThdijebm04XfBZmtW5tcNgmNKoLe6gc20mQnsBECmzuh0W10brASZlh3Jwd3NOkpUAbaHtZLToEap-BzLNvIXJlUr7SzJO_Z_8xZpX9MSz-bBO4cwdNg5V0IBg7Ak6LMxuTp59Pzix9dhC8tUtfXeS-cV35Py70VMo3CWzNXC2r7FT2W50OPHKyHdrbwrWd0uU-eIVuGIo0F5u8FGZnVS_I8iIB6Ebwiy4AN2scGBWzQATZoDxsUsUG32KABGxSwQREbFLFBh9h4Ta7OTi-_TCPf5iO6TTlrI2yDpk3NiliB76gKqebxfK5iBd69rEGFcKnnCdMGbLPEihKpNHBxlZW6ZBoMyBsyXq1X5i2hZZEy-Dfol6TiipcVL-K6kqnmcV0nXB-QKEybsMkIPgNau0lqRF5gfcVSZHEqMp4fkEmYW4GXNyJU-QahCCZAKMIKRaBQ3j3q6vdkb4v6D2Tc3m3MITi4rTrySPoLcjaiBg |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases.+Research+Track&rft.au=Du%2C+Yingpeng&rft.au=Liu%2C+Hongzhi&rft.au=Wu%2C+Zhonghai&rft.atitle=Modeling+Multi-factor+and+Multi-faceted+Preferences+over+Sequential+Networks+for+Next+Item+Recommendation&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030865191&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=516&rft.epage=531&rft_id=info:doi/10.1007%2F978-3-030-86520-7_32 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6724618-l.jpg |