Modeling Multi-factor and Multi-faceted Preferences over Sequential Networks for Next Item Recommendation

Attributes of items carry useful information for accurate recommendations. Existing methods which tried to use items’ attributes relied on either 1) feature-level compression which may introduce much noise information of irrelevant attributes, or 2) item- and attribute- level transition modeling whi...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Discovery in Databases. Research Track Vol. 12976; pp. 516 - 531
Main Authors Du, Yingpeng, Liu, Hongzhi, Wu, Zhonghai
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030865193
9783030865191
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-86520-7_32

Cover

Loading…
Abstract Attributes of items carry useful information for accurate recommendations. Existing methods which tried to use items’ attributes relied on either 1) feature-level compression which may introduce much noise information of irrelevant attributes, or 2) item- and attribute- level transition modeling which ignored the mutual effects of multi-factor for users’ behaviors. In addition, these methods failed to capture multi-faceted preferences of users, therefore, the prediction for the next behavior may be affected or misled by the irrelevant facets of preferences. To address these problems, we propose a Sequential Network based Recommendation model, named SNR, to extract and utilize users’ multi-factor and multi-faceted preferences for next item recommendation. To model users’ multi-factor preferences, we organize the item- and attribute- level sequences of users’ behaviors as unified sequential networks, and propose an attentional gated Graph Convolutional Network model to explore the mutual effects of the preference factors contained in sequential networks. To capture users’ multi-faceted preferences, we propose a multi-faceted preference learning model to simulate the decision-making process of users with the Gumbel sotfmax trick. Finally, we fuse the multi-factor and multi-faceted preferences in a unified latent space for next item recommendation. Extensive experiments on four real-world data sets show that the proposed model SNR consistently outperforms several state-of-the-art methods.
AbstractList Attributes of items carry useful information for accurate recommendations. Existing methods which tried to use items’ attributes relied on either 1) feature-level compression which may introduce much noise information of irrelevant attributes, or 2) item- and attribute- level transition modeling which ignored the mutual effects of multi-factor for users’ behaviors. In addition, these methods failed to capture multi-faceted preferences of users, therefore, the prediction for the next behavior may be affected or misled by the irrelevant facets of preferences. To address these problems, we propose a Sequential Network based Recommendation model, named SNR, to extract and utilize users’ multi-factor and multi-faceted preferences for next item recommendation. To model users’ multi-factor preferences, we organize the item- and attribute- level sequences of users’ behaviors as unified sequential networks, and propose an attentional gated Graph Convolutional Network model to explore the mutual effects of the preference factors contained in sequential networks. To capture users’ multi-faceted preferences, we propose a multi-faceted preference learning model to simulate the decision-making process of users with the Gumbel sotfmax trick. Finally, we fuse the multi-factor and multi-faceted preferences in a unified latent space for next item recommendation. Extensive experiments on four real-world data sets show that the proposed model SNR consistently outperforms several state-of-the-art methods.
Author Wu, Zhonghai
Du, Yingpeng
Liu, Hongzhi
Author_xml – sequence: 1
  givenname: Yingpeng
  surname: Du
  fullname: Du, Yingpeng
– sequence: 2
  givenname: Hongzhi
  surname: Liu
  fullname: Liu, Hongzhi
  email: liuhz@pku.edu.cn
– sequence: 3
  givenname: Zhonghai
  surname: Wu
  fullname: Wu, Zhonghai
  email: wuzh@pku.edu.cn
BookMark eNpFkMtOHDEQRZ0AUWYIf8DCP-Bgu_zqJUJ5IPGIIFlbbnd10tDTntgm5PPjgQhWZd3yKemeNdlf0oKEHAv-UXBuTzrrGDAOnDmjJWfWg3xD1tCSp8C-JSthhGAAqtt7WYgO9smqvSXrrIJ3ZC2kcdJYYdR7clTKHedcWqks6BWZLtOA87T8pJcPc53YGGJNmYZleA2w4kC_ZRwx4xKx0PQHM73F3w-41CnM9ArrY8r3hY4NvcK_lZ5X3NAbjGmzwWUIdUrLB3Iwhrng0f95SH58_vT97Cu7uP5yfnZ6wbZSQWXKGR5xAMt7p6G3oR_5OPa8F1qFoQ9RhTgKiKjBBa6ElgHb50676CB2Bg6JfL5btrn1wuz7lO6LF9zvtPqm1YNvfvyTRb_T2iD1DG1zarVK9bijYiuYwxx_hW3FXLxp2oxwXnPptTLwD4B_ed4
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DOI 10.1007/978-3-030-86520-7_32
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 3030865207
9783030865207
EISSN 1611-3349
Editor Pérez-Cruz, Fernando
Lozano, Jose A
Oliver, Nuria
Kramer, Stefan
Read, Jesse
Editor_xml – sequence: 1
  fullname: Oliver, Nuria
– sequence: 2
  fullname: Kramer, Stefan
– sequence: 3
  fullname: Pérez-Cruz, Fernando
– sequence: 4
  fullname: Lozano, Jose A
– sequence: 5
  fullname: Read, Jesse
EndPage 531
ExternalDocumentID EBC6724618_502_546
GroupedDBID 38.
AABBV
AABLV
ABLLD
ABNDO
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-4860ced370b853b7abf0ffb0b154adbac4acf13ce538a04152ae370958c83c963
ISBN 3030865193
9783030865191
ISSN 0302-9743
IngestDate Tue Jul 29 20:40:16 EDT 2025
Mon Jan 13 02:23:06 EST 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-4860ced370b853b7abf0ffb0b154adbac4acf13ce538a04152ae370958c83c963
OCLC 1268267164
PQID EBC6724618_502_546
PageCount 16
ParticipantIDs springer_books_10_1007_978_3_030_86520_7_32
proquest_ebookcentralchapters_6724618_502_546
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings, Part II
PublicationTitle Machine Learning and Knowledge Discovery in Databases. Research Track
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002724735
ssj0002792
Score 2.0399823
Snippet Attributes of items carry useful information for accurate recommendations. Existing methods which tried to use items’ attributes relied on either 1)...
SourceID springer
proquest
SourceType Publisher
StartPage 516
SubjectTerms Multi-faceted preference
Multi-factor preference
Preference learning
Sequential networks
Sequential recommendation
Title Modeling Multi-factor and Multi-faceted Preferences over Sequential Networks for Next Item Recommendation
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6724618&ppg=546
http://link.springer.com/10.1007/978-3-030-86520-7_32
Volume 12976
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZcdwk6NH2haZuAQzdDgSRSr6FD0SQw0tTokBRBF4Kk6NpD7CCSgSK_rT-ud3zIkpslXQSLkPXgfbg7Hu-7I-QjrPxzI4s6UkpqpOSUkQIzHoGxqk2qYpZxJAp_m-XTK35-nV2PRn96WUubVh3r-wd5Jf8jVRgDuSJL9hGS7W4KA_Ab5AtHkDAcd5zfYZjVdxjCNEgTKqQ6quHXECLDspoa0zMtr-9EthLtVXPcpdphWXPd0XRONlYXw21ujbdlmKWztMPT9erX_WLZ6W87-HMBowu57GMOG6tZerul9Uaul49L5QgDBj3c711zk2aC7wgaCxO6W4zez1xeui0TASe_W7ubgO7t-ubG-BZQThdijebm04XfBZmtW5tcNgmNKoLe6gc20mQnsBECmzuh0W10brASZlh3Jwd3NOkpUAbaHtZLToEap-BzLNvIXJlUr7SzJO_Z_8xZpX9MSz-bBO4cwdNg5V0IBg7Ak6LMxuTp59Pzix9dhC8tUtfXeS-cV35Py70VMo3CWzNXC2r7FT2W50OPHKyHdrbwrWd0uU-eIVuGIo0F5u8FGZnVS_I8iIB6Ebwiy4AN2scGBWzQATZoDxsUsUG32KABGxSwQREbFLFBh9h4Ta7OTi-_TCPf5iO6TTlrI2yDpk3NiliB76gKqebxfK5iBd69rEGFcKnnCdMGbLPEihKpNHBxlZW6ZBoMyBsyXq1X5i2hZZEy-Dfol6TiipcVL-K6kqnmcV0nXB-QKEybsMkIPgNau0lqRF5gfcVSZHEqMp4fkEmYW4GXNyJU-QahCCZAKMIKRaBQ3j3q6vdkb4v6D2Tc3m3MITi4rTrySPoLcjaiBg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases.+Research+Track&rft.au=Du%2C+Yingpeng&rft.au=Liu%2C+Hongzhi&rft.au=Wu%2C+Zhonghai&rft.atitle=Modeling+Multi-factor+and+Multi-faceted+Preferences+over+Sequential+Networks+for+Next+Item+Recommendation&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030865191&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=516&rft.epage=531&rft_id=info:doi/10.1007%2F978-3-030-86520-7_32
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6724618-l.jpg