Tipster: A Topic-Guided Language Model for Topic-Aware Text Segmentation
The accurate segmentation and structural topics of plain documents not only meet people’s reading habit, but also facilitate various downstream tasks. Recently, some works have consistently given positive hints that text segmentation and segment topic labeling could be regarded as a mutual task, and...
Saved in:
Published in | Database Systems for Advanced Applications Vol. 13247; pp. 213 - 221 |
---|---|
Main Authors | , , , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2022
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3031001281 9783031001284 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-031-00129-1_14 |
Cover
Loading…
Abstract | The accurate segmentation and structural topics of plain documents not only meet people’s reading habit, but also facilitate various downstream tasks. Recently, some works have consistently given positive hints that text segmentation and segment topic labeling could be regarded as a mutual task, and cooperating with word distributions has the potential to model latent topics in a certain document better. To this end, we present a novel model namely Tipster to solve text segmentation and segment topic labeling collaboratively. We first utilize a neural topic model to infer latent topic distributions of sentences considering word distributions. Then, our model divides the document into topically coherent segments based on the topic-guided contextual sentence representations of the pre-trained language model and assign relevant topic labels to each segment. Finally, we conduct extensive experiments which demonstrate that Tipster achieves the state-of-the-art performance in both text segmentation and segment topic labeling tasks. |
---|---|
AbstractList | The accurate segmentation and structural topics of plain documents not only meet people’s reading habit, but also facilitate various downstream tasks. Recently, some works have consistently given positive hints that text segmentation and segment topic labeling could be regarded as a mutual task, and cooperating with word distributions has the potential to model latent topics in a certain document better. To this end, we present a novel model namely Tipster to solve text segmentation and segment topic labeling collaboratively. We first utilize a neural topic model to infer latent topic distributions of sentences considering word distributions. Then, our model divides the document into topically coherent segments based on the topic-guided contextual sentence representations of the pre-trained language model and assign relevant topic labels to each segment. Finally, we conduct extensive experiments which demonstrate that Tipster achieves the state-of-the-art performance in both text segmentation and segment topic labeling tasks. |
Author | Gong, Zheng Wu, Han Yu, Runlong Huang, Wei Tong, Shiwei Tao, Hanqing Liu, Qi |
Author_xml | – sequence: 1 givenname: Zheng surname: Gong fullname: Gong, Zheng – sequence: 2 givenname: Shiwei surname: Tong fullname: Tong, Shiwei – sequence: 3 givenname: Han surname: Wu fullname: Wu, Han – sequence: 4 givenname: Qi surname: Liu fullname: Liu, Qi email: qiliuql@ustc.edu.cn – sequence: 5 givenname: Hanqing surname: Tao fullname: Tao, Hanqing – sequence: 6 givenname: Wei surname: Huang fullname: Huang, Wei – sequence: 7 givenname: Runlong surname: Yu fullname: Yu, Runlong |
BookMark | eNpFkMtOwzAQRQ0URFv6ByzyAwaPx_GDXVVBi1TEgiCxs5zECYGShCQVfD7uQ2IxGulendHoTMiobmpPyDWwG2BM3RqlKVKGQBkDbihYECdkgiHZB2-nZAwSgCIKc_ZfaBiRMUPGqVECL8gEELhkQqK4JLO-_2CMccUhsGOySqq2H3x3F82jpGmrjC63Ve7zaO3qcutKHz01ud9ERdMd-_mP63yU-N8hevHll68HN1RNfUXOC7fp_ey4p-T14T5ZrOj6efm4mK9pywUOVMQpj9OUG5NKnjET6zxFk-XGFegKXWiM84wpFQMqKU3mdKG80rlSqEEVCqeEH-72bVfVpe9s2jSfvQVmd9ZssGbRBhV2L8nurAVIHKC2a763vh-s31FZeL5zm-zdtUFBb6WRIEBajiKMwj-KamuJ |
ContentType | Book Chapter |
Copyright | The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 |
Copyright_xml | – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 |
DBID | FFUUA |
DEWEY | 005.7565 |
DOI | 10.1007/978-3-031-00129-1_14 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 303100129X 9783031001291 |
EISSN | 1611-3349 |
Editor | Lee Mong Li, Janice Bhattacharya, Arnab Agrawal, Divyakant Goyal, Vikram Reddy, P. Krishna Uday Kiran, Rage Mohania, Mukesh Mondal, Anirban |
Editor_xml | – sequence: 1 fullname: Lee Mong Li, Janice – sequence: 2 fullname: Bhattacharya, Arnab – sequence: 3 fullname: Agrawal, Divyakant – sequence: 4 fullname: Goyal, Vikram – sequence: 5 fullname: Reddy, P. Krishna – sequence: 6 fullname: Uday Kiran, Rage – sequence: 7 fullname: Mohania, Mukesh – sequence: 8 fullname: Mondal, Anirban |
EndPage | 221 |
ExternalDocumentID | EBC6961416_234_237 |
GroupedDBID | 38. AABBV AAZWU ABSVR ABTHU ABVND ACBPT ACHZO ACPMC ADNVS AEDXK AEJLV AEKFX AHVRR AIYYB ALMA_UNASSIGNED_HOLDINGS BBABE CZZ FFUUA I4C IEZ SBO TPJZQ TSXQS Z5O Z7R Z7U Z7W Z7X Z7Z Z81 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p243t-45b25bb299b62c0958db39cd9af3af8f835dc0775137669ca8f7e78d773817f73 |
ISBN | 3031001281 9783031001284 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:22:16 EDT 2025 Thu May 29 16:38:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | QA76.9.D343 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p243t-45b25bb299b62c0958db39cd9af3af8f835dc0775137669ca8f7e78d773817f73 |
OCLC | 1312604634 |
PQID | EBC6961416_234_237 |
PageCount | 9 |
ParticipantIDs | springer_books_10_1007_978_3_031_00129_1_14 proquest_ebookcentralchapters_6961416_234_237 |
PublicationCentury | 2000 |
PublicationDate | 2022 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 27th International Conference, DASFAA 2022, Virtual Event, April 11-14, 2022, Proceedings, Part III |
PublicationTitle | Database Systems for Advanced Applications |
PublicationYear | 2022 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
SSID | ssj0002721161 ssj0002792 |
Score | 2.115819 |
Snippet | The accurate segmentation and structural topics of plain documents not only meet people’s reading habit, but also facilitate various downstream tasks.... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 213 |
SubjectTerms | Language model Neural topic model Text segmentation |
Title | Tipster: A Topic-Guided Language Model for Topic-Aware Text Segmentation |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6961416&ppg=237 http://link.springer.com/10.1007/978-3-031-00129-1_14 |
Volume | 13247 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZoWRADb_GWBzYU1DixnbAFVFohYCqIzfKjQR1oKxqExK_n7MQ0ibrA0KhK4si6zz6fz_fdIXSRxiakJooDzSlsUKiOYc6FaQDvU9VTUuXSEoUfn9jwOb5_pa_Lkn6OXVKoK_29klfyH1ThHuBqWbJ_QPb3o3AD_gO-cAWE4doyfptu1jKWRRbSrkE-6bgLGMz8kX5WO5huDIvJ3NXicIT00Ww-0cHgc2KgxUPluXTl0RyrsXqefdnosBFocdAsb-8VWWla9xcQ0vIXeH9hy-NYc3plg8YeM7LJQ90y1lCaYIjxlSq4HnUBTQPn6gpCUXJFmxmvSZnwpZXxun9zy1IwG0ImSBTDj3dQhye0i9az_v3Dy68PjdjtKwstZcd3MiyTKi07XaNLrupTY2PROgt3JsZoG21a2gm2fBDo5Q5aG0930ZYvuoErHbyHhhWC1zjDdfywxw87_DDgh2v4YYsfruO3j57v-qPbYVCVwwjmJI4KmEiKUKXAflCMaDCNE6OiVJtU5pHMkxxsaaNtRsMQFg2WapnkfMwTw7nNwpjz6AB1p7Pp-BBhBc0V7zFpKI9jScFKNCyBWSuNZiTtHaHAS0W4Q_sqUliXMliIFj5H6NKLTtjXF8JnwwaZi0iAzIWTubAyP_7j10_QxnIgn6Ju8fE5PgNTsFDn1Yj4AbBCV-w |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Database+Systems+for+Advanced+Applications&rft.atitle=Tipster%3A+A+Topic-Guided+Language+Model+for+Topic-Aware+Text+Segmentation&rft.date=2022-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783031001284&rft.volume=13247&rft_id=info:doi/10.1007%2F978-3-031-00129-1_14&rft.externalDBID=237&rft.externalDocID=EBC6961416_234_237 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6961416-l.jpg |