Research on Attribute Reduction Method Based on Local Dependency

Attribute reduction is one of the research hotspots in the field of data mining. Although the result of attribute reduction algorithm based on single attribute identification matrix is better, it is still not efficient enough to deal with large-scale information system problems. In this paper, the c...

Full description

Saved in:
Bibliographic Details
Published inLearning Technologies and Systems Vol. 12511; pp. 138 - 147
Main Authors Yang, Xiaozheng, Ren, Yexing, Li, Fachao
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Attribute reduction is one of the research hotspots in the field of data mining. Although the result of attribute reduction algorithm based on single attribute identification matrix is better, it is still not efficient enough to deal with large-scale information system problems. In this paper, the concept of sub matrix of single attribute identification matrix is proposed. Based on the sub matrix, the calculation method of local dependency degree is given, and an attribute reduction algorithm based on local dependency degree is designed. If the equivalence class of information system is regarded as basic knowledge granules, this algorithm first finds an attribute set to separate the first particle from other particles, and then adds attributes to the attribute set in order to separate the second particle from other particles. Repeat the above operation until all particles are distinguished, and the resulting attribute set is called reduction set. This algorithm reduces the time and space complexity of reduction algorithm to a certain extent. The effectiveness of this method is verified by UCI data set, which provides a method for attribute reduction.
AbstractList Attribute reduction is one of the research hotspots in the field of data mining. Although the result of attribute reduction algorithm based on single attribute identification matrix is better, it is still not efficient enough to deal with large-scale information system problems. In this paper, the concept of sub matrix of single attribute identification matrix is proposed. Based on the sub matrix, the calculation method of local dependency degree is given, and an attribute reduction algorithm based on local dependency degree is designed. If the equivalence class of information system is regarded as basic knowledge granules, this algorithm first finds an attribute set to separate the first particle from other particles, and then adds attributes to the attribute set in order to separate the second particle from other particles. Repeat the above operation until all particles are distinguished, and the resulting attribute set is called reduction set. This algorithm reduces the time and space complexity of reduction algorithm to a certain extent. The effectiveness of this method is verified by UCI data set, which provides a method for attribute reduction.
Author Yang, Xiaozheng
Ren, Yexing
Li, Fachao
Author_xml – sequence: 1
  givenname: Xiaozheng
  surname: Yang
  fullname: Yang, Xiaozheng
– sequence: 2
  givenname: Yexing
  surname: Ren
  fullname: Ren, Yexing
  email: x960312@yeah.net
– sequence: 3
  givenname: Fachao
  surname: Li
  fullname: Li, Fachao
BookMark eNpFkM9OwzAMhwMMxDb2Bhz6AgEnTtLkBoy_0hDSBBK3qEtdNpja0mQH3p5uQ-Jk62d_lvyN2KBuamLsXMCFAMgvXW45ckDgxjgwXHuBB2yEfbIL7CEbCiMER1Tu6H-g3wds2PeSu1zhCRsJiVo7KwWcskmMnwAglbTC6iG7mlOkogvLrKmz65S61WKTKJtTuQlp1WfPlJZNmd0UkcrtzqwJxTq7pZbqkurwc8aOq2IdafJXx-zt_u51-shnLw9P0-sZb6XCxBU4HdCVRiOWplyoYDE40rmARYW2grwyUMjcVYU0VAUnJVhFDkhVujQGx0zu78a2W9Uf1PlF03xFL8Bvbfnelkffv-13cvzWVg-pPdR2zfeGYvK0pQLVqSvWYVm0ibrojTK9EPTCCi804C9mVmk0
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DEWEY 371.33
DOI 10.1007/978-3-030-66906-5_13
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Education
Computer Science
EISBN 3030669068
9783030669065
EISSN 1611-3349
Editor Chen, Guanliang
Li, Qing
Hao, Tianyong
Gao, Yunjun
Pang, Chaoyi
Zhang, Bailing
Chen, Lu
Navarro, Silvia Margarita Baldiris
Popescu, Elvira
Editor_xml – sequence: 1
  fullname: Chen, Guanliang
– sequence: 2
  fullname: Li, Qing
– sequence: 3
  fullname: Hao, Tianyong
– sequence: 4
  fullname: Gao, Yunjun
– sequence: 5
  fullname: Pang, Chaoyi
– sequence: 6
  fullname: Zhang, Bailing
– sequence: 7
  fullname: Chen, Lu
– sequence: 8
  fullname: Navarro, Silvia Margarita Baldiris
– sequence: 9
  fullname: Popescu, Elvira
EndPage 147
ExternalDocumentID EBC6462423_181_150
GroupedDBID AABBV
AABLV
ABNDO
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z81
Z83
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-4095c39d6533d6db4c83c9e5710bf38f07f60a279fa26efc922084e90e4f5d663
ISBN 303066905X
9783030669058
ISSN 0302-9743
IngestDate Tue Jul 29 20:36:38 EDT 2025
Thu May 29 16:43:42 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum LB1028.43-1028.75
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-4095c39d6533d6db4c83c9e5710bf38f07f60a279fa26efc922084e90e4f5d663
OCLC 1235598210
PQID EBC6462423_181_150
PageCount 10
ParticipantIDs springer_books_10_1007_978_3_030_66906_5_13
proquest_ebookcentralchapters_6462423_181_150
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Information Systems and Applications, incl. Internet/Web, and HCI
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 19th International Conference on Web-Based Learning, ICWL 2020, and 5th International Symposium on Emerging Technologies for Education, SETE 2020, Ningbo, China, October 22-24, 2020, Proceedings
PublicationTitle Learning Technologies and Systems
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002428185
ssj0002792
Score 1.9751283
Snippet Attribute reduction is one of the research hotspots in the field of data mining. Although the result of attribute reduction algorithm based on single attribute...
SourceID springer
proquest
SourceType Publisher
StartPage 138
SubjectTerms Attribute reduction
Core attributes
Distinguishing ability
Local dependency
Submatrix
Title Research on Attribute Reduction Method Based on Local Dependency
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6462423&ppg=150
http://link.springer.com/10.1007/978-3-030-66906-5_13
Volume 12511
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLdYd0E7jG0gYDD5sFsVlMROat_GEAihjhOg7mQlji24NNOaSRN_Pe_5I0kLF7hEleUmzvs5z-_7EfJd80am1axKZCPrhGdWJnKWclBVbGbhL7zSLkD2ury85VeLYjGEDrnskq4-0Y8v5pW8BVUYA1wxS_YVyPY3hQH4DfjCFRCG64bwu25m9dnL0ajRW8dB6fWRmKMq5PhBB5Pw4qFqH-9NOKrQyeJZzm_z_2EYnDv3_kWl76t2vJ9iiB56F0473ycLez40vvzs9JdrRT39Cadig3PmreOoocduKD2MVDErWLp3XFy3nYsHm8beEpHVjG0RebZhi4i2yA1r5mBQW1NeGaoroJwXI_4LQzlsFl-56cR4nlxipUXmK5sGPpv5kjDhyM580c5np8E4AATunODTyqRQ2OX43UwUE_L-9Pxqftcb5UBeEdlIf8Lqit4N5VeFyUFx1aF80_AWo8TMlx65psJseN2dMHOzQz5gggvFzBOg3yeyZZafyccIAQ0QfCE_IuS0XdIectpDTj3k1EGOcxzkdIB8l9xenN-cXSah4UbyJ-esgw9UFprJpgQdABuNcS2YlqYAKbS2TNh0Zsu0AqLYKi-N1TLPU8GNTA23RQOy6x6ZLNul2SdUiMzUZW0yyzXPtRQgxxsmTKO5wScckCRSQ7mwgBCLrP27r1TJMXOJKZBAFSgtB2QaSaZw-krFettAa8UU0Fo5Wiuk9eGrZn8l28NmPiKT7u8_cwyiZld_CxvkCbPUdVA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Learning+Technologies+and+Systems&rft.au=Yang%2C+Xiaozheng&rft.au=Ren%2C+Yexing&rft.au=Li%2C+Fachao&rft.atitle=Research+on+Attribute+Reduction+Method+Based+on+Local+Dependency&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030669058&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=138&rft.epage=147&rft_id=info:doi/10.1007%2F978-3-030-66906-5_13
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6462423-l.jpg