Answering Why-Questions Using Probabilistic Logic Programming

We present a novel architecture of a closed domain question answering system that learns to answer why-questions from a small number of example interpretations. We use a probabilistic logic programming framework that can learn probabilities for rules from positive and negative example interpretation...

Full description

Saved in:
Bibliographic Details
Published inAI 2019: Advances in Artificial Intelligence Vol. 11919; pp. 153 - 164
Main Authors Salam, Abdus, Schwitter, Rolf, Orgun, Mehmet A.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a novel architecture of a closed domain question answering system that learns to answer why-questions from a small number of example interpretations. We use a probabilistic logic programming framework that can learn probabilities for rules from positive and negative example interpretations. These rules are then used by a meta-interpreter to generate an explanation in the form of a proof for a why-question. The explanation is displayed as an answer to the question together with a probability. In certain contexts, follow-up questions can be asked that conditionally depend on these why-questions and have an effect on the probability of the subsequent answer. The presented approach is a contribution to explainable artificial intelligence that aims to take machine learning out of the black-box.
AbstractList We present a novel architecture of a closed domain question answering system that learns to answer why-questions from a small number of example interpretations. We use a probabilistic logic programming framework that can learn probabilities for rules from positive and negative example interpretations. These rules are then used by a meta-interpreter to generate an explanation in the form of a proof for a why-question. The explanation is displayed as an answer to the question together with a probability. In certain contexts, follow-up questions can be asked that conditionally depend on these why-questions and have an effect on the probability of the subsequent answer. The presented approach is a contribution to explainable artificial intelligence that aims to take machine learning out of the black-box.
Author Schwitter, Rolf
Orgun, Mehmet A.
Salam, Abdus
Author_xml – sequence: 1
  givenname: Abdus
  surname: Salam
  fullname: Salam, Abdus
  email: abdus.salam@mq.edu.au
– sequence: 2
  givenname: Rolf
  surname: Schwitter
  fullname: Schwitter, Rolf
– sequence: 3
  givenname: Mehmet A.
  surname: Orgun
  fullname: Orgun, Mehmet A.
BookMark eNpFkN1OwzAMhQMMxDb2BlzsBQKOnTbJBRcT4k-aBEhMXEZpSLfB1pamCPH2pBsSN7b1HR3LPiM2qOoqMHYu4EIAqEujNCcOBJwy1JqjFXTARpTIDphDNhS5EJxImqN_QcGADdOM3ChJJ2wkBBqhkiRO2STGdwBAzKVBM2RXsyp-h3ZdLaevqx_-_BVit66rOF3Enj21deGK9WadqJ_O62WqiS1bt90m_Ywdl24Tw-Svj9ni9ubl-p7PH-8ermdz3qCkjlOpMlCAJXhXZHle-syLN0fSp_s9CCzQow6Z1uScokKVUGAQAjCUUmtFY4b7vbHpTw2tLer6I1oBto_Kpqgs2fSz3SVj-6iSSe5NTVt_9n_Z0Lt8qLrWbfzKNV1oo82MlhklR56W5YZ-AZN-aNM
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DBID FFUUA
DEWEY 6.3
DOI 10.1007/978-3-030-35288-2_13
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 3030352889
9783030352882
EISSN 1611-3349
Editor Bailey, James
Liu, Jixue
Editor_xml – sequence: 1
  fullname: Bailey, James
– sequence: 2
  fullname: Liu, Jixue
EndPage 164
ExternalDocumentID EBC5984532_160_169
GroupedDBID 38.
AABBV
AEDXK
AEJLV
AEKFX
AIFIR
ALMA_UNASSIGNED_HOLDINGS
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
FFUUA
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-3f750702f0cab566fc5c1da34c161c012b2c28e5883aa73b7f0b2e1102ef48873
ISBN 3030352870
9783030352875
ISSN 0302-9743
IngestDate Tue Jul 29 20:09:03 EDT 2025
Thu Apr 10 07:37:15 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-3f750702f0cab566fc5c1da34c161c012b2c28e5883aa73b7f0b2e1102ef48873
OCLC 1129173521
PQID EBC5984532_160_169
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_030_35288_2_13
proquest_ebookcentralchapters_5984532_160_169
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 32nd Australasian Joint Conference, Adelaide, SA, Australia, December 2-5, 2019, Proceedings
PublicationTitle AI 2019: Advances in Artificial Intelligence
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002264929
ssj0002792
Score 1.8971225
Snippet We present a novel architecture of a closed domain question answering system that learns to answer why-questions from a small number of example...
SourceID springer
proquest
SourceType Publisher
StartPage 153
SubjectTerms Meta-interpreter
Natural language processing
Probabilistic logic programming
questions
Title Answering Why-Questions Using Probabilistic Logic Programming
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5984532&ppg=169
http://link.springer.com/10.1007/978-3-030-35288-2_13
Volume 11919
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZoWRADb1FeysBWGTWxE6djqQqlAsRQHpsVu45YKKgtQvDrubOT5qEusESRFUfOfY59d77vjpBz2AJMINDIiRNOeaQETbgydOJDA4u0SDmSk-_uo-EjH72EL0VtPssuWagL_bOSV_IfVKENcEWW7B-QXb4UGuAe8IUrIAzXmvJbdbO68OKbNmyrXevZcwf5NrS1N7PRPy6HRpFuszw1etP5l81A2H5-_abW5WnD4Vz4wMMMfnEMmcUMzljSF4PnXRTXW77PZW4CZCZV3AS5m7DmaCz5unrXFdMStjZMlRq7uibLtRLMu-7KlbccbAFdKfYFtKRjmlYTXfuuOkst0fXgsh92Yx4y6BSBaRJ1G6Qh4rBJ1nuD0e3T0nWG3F_Q6pCpkw8yy95VDLrEklw1poo9UTsCt5rFeJtsItvEQxoIjHKHrJnpLtnKa2142dK7RwrQvApongXNq4DmWdC8Emj75PFqMO4PaVb6gn4EnC0oS0GTE50g7ehEgcad6lD7k4RxDRq6BqVCBTqITRjHLEkEUyLtqMCAKheYFJZkwQ5Ic_o-NYfEi5Bo58MfGUeCh6BSJwlnYCQoHqpIGL9FaC4KaQ_os6hg7T58LmugtEg7l5fEx-cyz3wNgpZMgqClFbREQR_98e3HZKOYvSekuZh9mlNQ-xbqLJsGv8sjUMQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=AI+2019%3A+Advances+in+Artificial+Intelligence&rft.atitle=Answering+Why-Questions+Using+Probabilistic+Logic+Programming&rft.date=2019-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030352875&rft.volume=11919&rft_id=info:doi/10.1007%2F978-3-030-35288-2_13&rft.externalDBID=169&rft.externalDocID=EBC5984532_160_169
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5984532-l.jpg