EEG-Based Classification of Lower Limb Motor Imagery with STFT and CNN
In order to classify the brain signals of lower limb motor imagery, we used the method of short-time fourier transform (STFT) to transform the signals into time spectrum, and then processed the size and gray scale of the obtained time spectrum. Thus we constructed a neural network model called pragm...
Saved in:
Published in | Neural Information Processing Vol. 1517; pp. 397 - 404 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Communications in Computer and Information Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to classify the brain signals of lower limb motor imagery, we used the method of short-time fourier transform (STFT) to transform the signals into time spectrum, and then processed the size and gray scale of the obtained time spectrum. Thus we constructed a neural network model called pragmatic convolutional neural network (pCNN), and the processed 128 * 128 pixel grayscale time spectrums were used as the input for classification. The classification effect was good on all 10 subjects, with the highest accuracy reaching 76% $$\%$$ , while the comparison model was only 66.88% $$\%$$ (shallow CNN), 52% $$\%$$ (recurrent CNN) and 68.62 (common spatial pattern + support vector machines). The research results show that STFT is very effective in transforming the EEG input of CNN, and due to the difference of the activated regions between lower limbs and upper limbs, many models with good performance for upper limbs cannot be simply copied to lower limbs. |
---|---|
AbstractList | In order to classify the brain signals of lower limb motor imagery, we used the method of short-time fourier transform (STFT) to transform the signals into time spectrum, and then processed the size and gray scale of the obtained time spectrum. Thus we constructed a neural network model called pragmatic convolutional neural network (pCNN), and the processed 128 * 128 pixel grayscale time spectrums were used as the input for classification. The classification effect was good on all 10 subjects, with the highest accuracy reaching 76% $$\%$$ , while the comparison model was only 66.88% $$\%$$ (shallow CNN), 52% $$\%$$ (recurrent CNN) and 68.62 (common spatial pattern + support vector machines). The research results show that STFT is very effective in transforming the EEG input of CNN, and due to the difference of the activated regions between lower limbs and upper limbs, many models with good performance for upper limbs cannot be simply copied to lower limbs. |
Author | Wang, Haixian Lu, Boyang Ge, Sheng |
Author_xml | – sequence: 1 givenname: Boyang surname: Lu fullname: Lu, Boyang – sequence: 2 givenname: Sheng surname: Ge fullname: Ge, Sheng – sequence: 3 givenname: Haixian surname: Wang fullname: Wang, Haixian email: hxwang@seu.edu.cn |
BookMark | eNpNkN1OAjEQRquiEZA38KIvUJ3-bdtLJYAmiBfidbNburIK23W7hvj2FjDGq8l8X85kcgaoV4faI3RN4YYCqFujNOEEOBDDOAUirchO0CjFPIWHTJ6iPtWZJGC4OvvfgTG9v46ZCzSgzAAwwYBfolGM75A2xaQC2UfTyWRG7vPoV3i8yWOsysrlXRVqHEo8Dzvf4nm1LfBT6EKLH7f5m2-_8a7q1vhlOV3ivE7gYnGFzst8E_3odw7R63SyHD-Q-fPscXw3Jw0TvCO8cLI0mRJFobymhoNmqtRaeaFM6bWW2giunQRnYFWozHsqSukgc0oxY_gQsePd2LRVnX6xRQgf0VKwe3M2abDcJhH2YMnuzSVIHKGmDZ9fPnbW7ynn667NN26dN51vo810kicSI40VVPMffvVqqQ |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2021 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
DBID | FFUUA |
DEWEY | 060 |
DOI | 10.1007/978-3-030-92310-5_46 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISBN | 9783030923105 303092310X |
EISSN | 1865-0937 |
Editor | Wong, Kok Wai Mantoro, Teddy Hidayanto, Achmad Nizar Lee, Minho Ayu, Media Anugerah |
Editor_xml | – sequence: 1 fullname: Mantoro, Teddy – sequence: 2 fullname: Hidayanto, Achmad Nizar – sequence: 3 fullname: Lee, Minho – sequence: 4 fullname: Wong, Kok Wai – sequence: 5 fullname: Ayu, Media Anugerah |
EndPage | 404 |
ExternalDocumentID | EBC6823040_559_418 |
GroupedDBID | 38. 9-X AABBV AABLV ABNDO ACWLQ AEJLV AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY FFUUA I4C IEZ OCUHQ ORHYB SBO SNUHX TPJZQ Z7R Z7X Z81 Z83 Z84 Z85 Z88 |
ID | FETCH-LOGICAL-p243t-3bc5f9674bb7e81930827f887e479fe88589438c50c90db76ee14f5c06c772993 |
ISBN | 9783030923099 3030923096 |
ISSN | 1865-0929 |
IngestDate | Tue Jul 29 20:24:02 EDT 2025 Thu May 29 16:46:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q337.5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p243t-3bc5f9674bb7e81930827f887e479fe88589438c50c90db76ee14f5c06c772993 |
Notes | Original Abstract: In order to classify the brain signals of lower limb motor imagery, we used the method of short-time fourier transform (STFT) to transform the signals into time spectrum, and then processed the size and gray scale of the obtained time spectrum. Thus we constructed a neural network model called pragmatic convolutional neural network (pCNN), and the processed 128 * 128 pixel grayscale time spectrums were used as the input for classification. The classification effect was good on all 10 subjects, with the highest accuracy reaching 76%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, while the comparison model was only 66.88%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} (shallow CNN), 52%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} (recurrent CNN) and 68.62 (common spatial pattern + support vector machines). The research results show that STFT is very effective in transforming the EEG input of CNN, and due to the difference of the activated regions between lower limbs and upper limbs, many models with good performance for upper limbs cannot be simply copied to lower limbs. |
OCLC | 1290024203 |
PQID | EBC6823040_559_418 |
PageCount | 8 |
ParticipantIDs | springer_books_10_1007_978_3_030_92310_5_46 proquest_ebookcentralchapters_6823040_559_418 |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesTitle | Communications in Computer and Information Science |
PublicationSeriesTitleAlternate | Communic.Comp.Inf.Science |
PublicationSubtitle | 28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8-12, 2021, Proceedings, Part VI |
PublicationTitle | Neural Information Processing |
PublicationYear | 2021 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Zhou, Lizhu Filipe, Joaquim Ghosh, Ashish Prates, Raquel Oliveira |
RelatedPersons_xml | – sequence: 1 givenname: Joaquim orcidid: 0000-0002-5961-6606 surname: Filipe fullname: Filipe, Joaquim – sequence: 2 givenname: Ashish surname: Ghosh fullname: Ghosh, Ashish – sequence: 3 givenname: Raquel Oliveira orcidid: 0000-0002-7128-4974 surname: Prates fullname: Prates, Raquel Oliveira – sequence: 4 givenname: Lizhu surname: Zhou fullname: Zhou, Lizhu |
SSID | ssj0002725705 ssj0000580895 ssib054953581 |
Score | 2.0141635 |
Snippet | In order to classify the brain signals of lower limb motor imagery, we used the method of short-time fourier transform (STFT) to transform the signals into... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 397 |
SubjectTerms | Convolutional neural network Lower limb Short-time Fourier transform |
Title | EEG-Based Classification of Lower Limb Motor Imagery with STFT and CNN |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6823040&ppg=418 http://link.springer.com/10.1007/978-3-030-92310-5_46 |
Volume | 1517 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELbScAEOQAFR_uQDPVVGu1nb6z2WKG1alV5IoTdrf7wqSCRVk0iUd-Ad8ix5Mmb8k90NvZTLKhlZydrfyJ4Zz3xDyIe4juoqqQQzsuIMLPCaqTwdMF6mUZ2hES2x3vnzuRxf8NNLcdnr_WllLS0Xxcfy9511Jf-DKsgAV6ySvQeymx8FAXwGfOEJCMNzy_jthlk94ZJlzPD1RBZGn_UfTiPMs1laAGe3eSM7dlHnK9OIvvmo8Tj__mujLz5cPzpmn-Coq1z_TMwsClbm_nCwfxidYZ81LJQqYIMAD_7g5CfyYtzaEK8b8mVyNMFbCvdteO5iYrhEZt4tUZm7KkTXacLnKjfz8xtRO1IxiLciFSFSuRXrbMJtHdc2wbsf8I9c-yS_OyspGEidyLRljjnG78KJS_n1Bzp3_Y3_OSva6SHwZ8yaukxoLnfITqpEnzw4HJ2efQ3bk8BU3MAW56jjVaR8WfMPe4eLLQExaXbzolhNFCYiHd9TM7FWJeddb9Hxebau6a31M3lKHmNFDMVSFVjSZ6RnprvkSUCJelR2yaMWueVzcrLRHNrVHDqr1yurNRS1hlqtoV5rKGrNeoUaQwH-9Qq05QW5OBpNhmPmG3ew6wFPFiwpSlFnMuVFkRowOZESKa3hODM8zWqjlEDWf1WKqMyiqkilMTGvRRnJEp29LHlJ-tPZ1LwiFOkAkyKOwcuIuMwLpWRexXJQ51yUMed7hIVF0ja9wOc0l25J5lram-RIg-eseaz2yEFYSY3D5zrwdgMEOtEAgbYQaITg9b1GvyEPG7V_S_qLm6V5BybronjvVekvhz-IHQ |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Neural+Information+Processing&rft.au=Lu%2C+Boyang&rft.au=Ge%2C+Sheng&rft.au=Wang%2C+Haixian&rft.atitle=EEG-Based+Classification+of%C2%A0Lower+Limb+Motor+Imagery+with%C2%A0STFT+and%C2%A0CNN&rft.series=Communications+in+Computer+and+Information+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030923099&rft.issn=1865-0929&rft.eissn=1865-0937&rft.spage=397&rft.epage=404&rft_id=info:doi/10.1007%2F978-3-030-92310-5_46 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6823040-l.jpg |