EEG-Based Classification of Lower Limb Motor Imagery with STFT and CNN

In order to classify the brain signals of lower limb motor imagery, we used the method of short-time fourier transform (STFT) to transform the signals into time spectrum, and then processed the size and gray scale of the obtained time spectrum. Thus we constructed a neural network model called pragm...

Full description

Saved in:
Bibliographic Details
Published inNeural Information Processing Vol. 1517; pp. 397 - 404
Main Authors Lu, Boyang, Ge, Sheng, Wang, Haixian
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesCommunications in Computer and Information Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to classify the brain signals of lower limb motor imagery, we used the method of short-time fourier transform (STFT) to transform the signals into time spectrum, and then processed the size and gray scale of the obtained time spectrum. Thus we constructed a neural network model called pragmatic convolutional neural network (pCNN), and the processed 128 * 128 pixel grayscale time spectrums were used as the input for classification. The classification effect was good on all 10 subjects, with the highest accuracy reaching 76% $$\%$$ , while the comparison model was only 66.88% $$\%$$ (shallow CNN), 52% $$\%$$ (recurrent CNN) and 68.62 (common spatial pattern + support vector machines). The research results show that STFT is very effective in transforming the EEG input of CNN, and due to the difference of the activated regions between lower limbs and upper limbs, many models with good performance for upper limbs cannot be simply copied to lower limbs.
AbstractList In order to classify the brain signals of lower limb motor imagery, we used the method of short-time fourier transform (STFT) to transform the signals into time spectrum, and then processed the size and gray scale of the obtained time spectrum. Thus we constructed a neural network model called pragmatic convolutional neural network (pCNN), and the processed 128 * 128 pixel grayscale time spectrums were used as the input for classification. The classification effect was good on all 10 subjects, with the highest accuracy reaching 76% $$\%$$ , while the comparison model was only 66.88% $$\%$$ (shallow CNN), 52% $$\%$$ (recurrent CNN) and 68.62 (common spatial pattern + support vector machines). The research results show that STFT is very effective in transforming the EEG input of CNN, and due to the difference of the activated regions between lower limbs and upper limbs, many models with good performance for upper limbs cannot be simply copied to lower limbs.
Author Wang, Haixian
Lu, Boyang
Ge, Sheng
Author_xml – sequence: 1
  givenname: Boyang
  surname: Lu
  fullname: Lu, Boyang
– sequence: 2
  givenname: Sheng
  surname: Ge
  fullname: Ge, Sheng
– sequence: 3
  givenname: Haixian
  surname: Wang
  fullname: Wang, Haixian
  email: hxwang@seu.edu.cn
BookMark eNpNkN1OAjEQRquiEZA38KIvUJ3-bdtLJYAmiBfidbNburIK23W7hvj2FjDGq8l8X85kcgaoV4faI3RN4YYCqFujNOEEOBDDOAUirchO0CjFPIWHTJ6iPtWZJGC4OvvfgTG9v46ZCzSgzAAwwYBfolGM75A2xaQC2UfTyWRG7vPoV3i8yWOsysrlXRVqHEo8Dzvf4nm1LfBT6EKLH7f5m2-_8a7q1vhlOV3ivE7gYnGFzst8E_3odw7R63SyHD-Q-fPscXw3Jw0TvCO8cLI0mRJFobymhoNmqtRaeaFM6bWW2giunQRnYFWozHsqSukgc0oxY_gQsePd2LRVnX6xRQgf0VKwe3M2abDcJhH2YMnuzSVIHKGmDZ9fPnbW7ynn667NN26dN51vo810kicSI40VVPMffvVqqQ
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DEWEY 060
DOI 10.1007/978-3-030-92310-5_46
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9783030923105
303092310X
EISSN 1865-0937
Editor Wong, Kok Wai
Mantoro, Teddy
Hidayanto, Achmad Nizar
Lee, Minho
Ayu, Media Anugerah
Editor_xml – sequence: 1
  fullname: Mantoro, Teddy
– sequence: 2
  fullname: Hidayanto, Achmad Nizar
– sequence: 3
  fullname: Lee, Minho
– sequence: 4
  fullname: Wong, Kok Wai
– sequence: 5
  fullname: Ayu, Media Anugerah
EndPage 404
ExternalDocumentID EBC6823040_559_418
GroupedDBID 38.
9-X
AABBV
AABLV
ABNDO
ACWLQ
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
SNUHX
TPJZQ
Z7R
Z7X
Z81
Z83
Z84
Z85
Z88
ID FETCH-LOGICAL-p243t-3bc5f9674bb7e81930827f887e479fe88589438c50c90db76ee14f5c06c772993
ISBN 9783030923099
3030923096
ISSN 1865-0929
IngestDate Tue Jul 29 20:24:02 EDT 2025
Thu May 29 16:46:05 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q337.5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-3bc5f9674bb7e81930827f887e479fe88589438c50c90db76ee14f5c06c772993
Notes Original Abstract: In order to classify the brain signals of lower limb motor imagery, we used the method of short-time fourier transform (STFT) to transform the signals into time spectrum, and then processed the size and gray scale of the obtained time spectrum. Thus we constructed a neural network model called pragmatic convolutional neural network (pCNN), and the processed 128 * 128 pixel grayscale time spectrums were used as the input for classification. The classification effect was good on all 10 subjects, with the highest accuracy reaching 76%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, while the comparison model was only 66.88%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} (shallow CNN), 52%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} (recurrent CNN) and 68.62 (common spatial pattern + support vector machines). The research results show that STFT is very effective in transforming the EEG input of CNN, and due to the difference of the activated regions between lower limbs and upper limbs, many models with good performance for upper limbs cannot be simply copied to lower limbs.
OCLC 1290024203
PQID EBC6823040_559_418
PageCount 8
ParticipantIDs springer_books_10_1007_978_3_030_92310_5_46
proquest_ebookcentralchapters_6823040_559_418
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Communications in Computer and Information Science
PublicationSeriesTitleAlternate Communic.Comp.Inf.Science
PublicationSubtitle 28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8-12, 2021, Proceedings, Part VI
PublicationTitle Neural Information Processing
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Zhou, Lizhu
Filipe, Joaquim
Ghosh, Ashish
Prates, Raquel Oliveira
RelatedPersons_xml – sequence: 1
  givenname: Joaquim
  orcidid: 0000-0002-5961-6606
  surname: Filipe
  fullname: Filipe, Joaquim
– sequence: 2
  givenname: Ashish
  surname: Ghosh
  fullname: Ghosh, Ashish
– sequence: 3
  givenname: Raquel Oliveira
  orcidid: 0000-0002-7128-4974
  surname: Prates
  fullname: Prates, Raquel Oliveira
– sequence: 4
  givenname: Lizhu
  surname: Zhou
  fullname: Zhou, Lizhu
SSID ssj0002725705
ssj0000580895
ssib054953581
Score 2.0141635
Snippet In order to classify the brain signals of lower limb motor imagery, we used the method of short-time fourier transform (STFT) to transform the signals into...
SourceID springer
proquest
SourceType Publisher
StartPage 397
SubjectTerms Convolutional neural network
Lower limb
Short-time Fourier transform
Title EEG-Based Classification of Lower Limb Motor Imagery with STFT and CNN
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6823040&ppg=418
http://link.springer.com/10.1007/978-3-030-92310-5_46
Volume 1517
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELbScAEOQAFR_uQDPVVGu1nb6z2WKG1alV5IoTdrf7wqSCRVk0iUd-Ad8ix5Mmb8k90NvZTLKhlZydrfyJ4Zz3xDyIe4juoqqQQzsuIMLPCaqTwdMF6mUZ2hES2x3vnzuRxf8NNLcdnr_WllLS0Xxcfy9511Jf-DKsgAV6ySvQeymx8FAXwGfOEJCMNzy_jthlk94ZJlzPD1RBZGn_UfTiPMs1laAGe3eSM7dlHnK9OIvvmo8Tj__mujLz5cPzpmn-Coq1z_TMwsClbm_nCwfxidYZ81LJQqYIMAD_7g5CfyYtzaEK8b8mVyNMFbCvdteO5iYrhEZt4tUZm7KkTXacLnKjfz8xtRO1IxiLciFSFSuRXrbMJtHdc2wbsf8I9c-yS_OyspGEidyLRljjnG78KJS_n1Bzp3_Y3_OSva6SHwZ8yaukxoLnfITqpEnzw4HJ2efQ3bk8BU3MAW56jjVaR8WfMPe4eLLQExaXbzolhNFCYiHd9TM7FWJeddb9Hxebau6a31M3lKHmNFDMVSFVjSZ6RnprvkSUCJelR2yaMWueVzcrLRHNrVHDqr1yurNRS1hlqtoV5rKGrNeoUaQwH-9Qq05QW5OBpNhmPmG3ew6wFPFiwpSlFnMuVFkRowOZESKa3hODM8zWqjlEDWf1WKqMyiqkilMTGvRRnJEp29LHlJ-tPZ1LwiFOkAkyKOwcuIuMwLpWRexXJQ51yUMed7hIVF0ja9wOc0l25J5lram-RIg-eseaz2yEFYSY3D5zrwdgMEOtEAgbYQaITg9b1GvyEPG7V_S_qLm6V5BybronjvVekvhz-IHQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Neural+Information+Processing&rft.au=Lu%2C+Boyang&rft.au=Ge%2C+Sheng&rft.au=Wang%2C+Haixian&rft.atitle=EEG-Based+Classification+of%C2%A0Lower+Limb+Motor+Imagery+with%C2%A0STFT+and%C2%A0CNN&rft.series=Communications+in+Computer+and+Information+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030923099&rft.issn=1865-0929&rft.eissn=1865-0937&rft.spage=397&rft.epage=404&rft_id=info:doi/10.1007%2F978-3-030-92310-5_46
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6823040-l.jpg