Fuzzy Similarity-Based Hierarchical Clustering for Atmospheric Pollutants Prediction

This work focuses on models selection in a multi-model air quality ensemble system. The models are operational long-range transport and dispersion models used for the real-time simulation of pollutant dispersion or the accidental release of radioactive nuclides in the atmosphere. In this context, a...

Full description

Saved in:
Bibliographic Details
Published inFuzzy Logic and Applications Vol. 11291; pp. 123 - 133
Main Authors Camastra, F., Ciaramella, A., Son, L. H., Riccio, A., Staiano, A.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030125431
3030125432
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-12544-8_10

Cover

Abstract This work focuses on models selection in a multi-model air quality ensemble system. The models are operational long-range transport and dispersion models used for the real-time simulation of pollutant dispersion or the accidental release of radioactive nuclides in the atmosphere. In this context, a methodology based on temporal hierarchical agglomeration is introduced. It uses fuzzy similarity relations combined by a transitive consensus matrix. The methodology is adopted for individuating a subset of models that best characterize the predicted atmospheric pollutants from the ETEX-1 experiment and discard redundant information.
AbstractList This work focuses on models selection in a multi-model air quality ensemble system. The models are operational long-range transport and dispersion models used for the real-time simulation of pollutant dispersion or the accidental release of radioactive nuclides in the atmosphere. In this context, a methodology based on temporal hierarchical agglomeration is introduced. It uses fuzzy similarity relations combined by a transitive consensus matrix. The methodology is adopted for individuating a subset of models that best characterize the predicted atmospheric pollutants from the ETEX-1 experiment and discard redundant information.
Author Son, L. H.
Camastra, F.
Staiano, A.
Riccio, A.
Ciaramella, A.
Author_xml – sequence: 1
  givenname: F.
  surname: Camastra
  fullname: Camastra, F.
  email: francesco.camastra@uniparthenope.it
  organization: Department of Science and Technology, University of Naples “Parthenope”, Naples (NA), Italy
– sequence: 2
  givenname: A.
  surname: Ciaramella
  fullname: Ciaramella, A.
  email: angelo.ciaramella@uniparthenope.it
  organization: Department of Science and Technology, University of Naples “Parthenope”, Naples (NA), Italy
– sequence: 3
  givenname: L. H.
  surname: Son
  fullname: Son, L. H.
  email: sonlh@vnu.edu.vn
  organization: Vietnam National University, Hanoi, Vietnam
– sequence: 4
  givenname: A.
  surname: Riccio
  fullname: Riccio, A.
  email: angelo.riccio@uniparthenope.it
  organization: Department of Science and Technology, University of Naples “Parthenope”, Naples (NA), Italy
– sequence: 5
  givenname: A.
  surname: Staiano
  fullname: Staiano, A.
  email: antonino.staiano@uniparthenope.it
  organization: Department of Science and Technology, University of Naples “Parthenope”, Naples (NA), Italy
BookMark eNo1kMtOAzEMRcNTtNA_YDE_ELCTzCPLUlGKhAQSsI7SjEsHhpkhSRfl60kprGxd-1q-Z8yOu74jxi4RrhCgvNZlxSUHCRxFrhSvDMIBG8uk_ApwyEZYIHIplT5ik7T_P5N4zEapF1yXSp6yMUJVKVki4hmbhPAOAAKxyCWM2Mt88_29zZ6bz6a1volbfmMD1dmiIW-9WzfOttms3YRIvuneslXvs2n87MOwToLLnvq23UTbxZA9eaobF5u-u2AnK9sGmvzVc_Y6v32ZLfjD4939bPrAB6FE5LXWNteKpFYKSRIUhagEOalLVxOh1bXVeQVQqNIqDU7gMsWkpQKnVmnvnIn93TDsniNvln3_ERIqs4NoEhQjTUJhfpmZHcRkknvT4PuvDYVoaOdy1EVvW7e2Q4oaTK4FatBGJ5MU8gfTB3JC
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DBID FFUUA
DEWEY 511.31299999999999
DOI 10.1007/978-3-030-12544-8_10
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 3030125440
9783030125448
EISSN 1611-3349
Editor Giove, Silvio
Fullér, Robert
Masulli, Francesco
Editor_xml – sequence: 1
  fullname: Masulli, Francesco
– sequence: 2
  fullname: Fullér, Robert
– sequence: 3
  fullname: Giove, Silvio
EndPage 133
ExternalDocumentID EBC5921909_98_132
GroupedDBID 0D6
0DA
38.
AABBV
AEDXK
AEJLV
AEKFX
AEZAY
AIFIR
ALEXF
ALMA_UNASSIGNED_HOLDINGS
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
FFUUA
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p242t-d99a594e39441e3e066282ec397cdee1a9da95800647a490c21b783eb40c4fec3
ISBN 9783030125431
3030125432
ISSN 0302-9743
IngestDate Tue Jul 29 20:03:32 EDT 2025
Mon Apr 07 21:44:10 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p242t-d99a594e39441e3e066282ec397cdee1a9da95800647a490c21b783eb40c4fec3
OCLC 1088437111
PQID EBC5921909_98_132
PageCount 11
ParticipantIDs springer_books_10_1007_978_3_030_12544_8_10
proquest_ebookcentralchapters_5921909_98_132
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 12th International Workshop, WILF 2018, Genoa, Italy, September 6-7, 2018, Revised Selected Papers
PublicationTitle Fuzzy Logic and Applications
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Dept Applied Math & Computer Science, Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology Madras, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: TU Dortmund University, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
SSID ssj0002116530
ssj0002792
Score 1.9191713
Snippet This work focuses on models selection in a multi-model air quality ensemble system. The models are operational long-range transport and dispersion models used...
SourceID springer
proquest
SourceType Publisher
StartPage 123
SubjectTerms Air pollutant dispersion
Ensemble models
Fuzzy similarity
Hierarchical agglomeration
Title Fuzzy Similarity-Based Hierarchical Clustering for Atmospheric Pollutants Prediction
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5921909&ppg=132
http://link.springer.com/10.1007/978-3-030-12544-8_10
Volume 11291
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4UL-pBRY34Sg_ecM0-YXsEghIixkQw3Bq2201IeBh2Ocivd6b7JlzwsiGbdtP0K-3MdL5vCHkyAzhTPWZqVsAYOCg6g_9cYGgNT-g-2LNMKkdx8NHojez-2BnndfQUuyTyXsRmJ6_kP6jCO8AVWbJ7IJt9FF7Ab8AXnoAwPLeM33KYNa47tN5sfrHkbqK42ipcRRcXQtzuazqfghMLNrfWhoPLr_emSD1WlVBm9c5sjYIJaVZlK5ovQ9QbwLx5rIUcqWyZzxXe6mRIJrECpCeVYgVprHAr2lgIeLXeSv6lhQ6TosuXNkywEYyd228x4wK6atjX1lyeZK6W1K6NJK5ZVrvutjsOg11UZ5xBPwtO18Oma1fIUavbf__OwmcmygZZOrJ10jGasZ5SPuYCU3LXkEo-xdY1uLIuhufkFBknFKkgMMgLciAXVXKW1tugyfZbJSeDTGM3vCRDBSzdBpYWgaU5sBSApQVgaQ4szYG9IqPX7rDT05IaGdoPGFeR5jM2cZgtkd9sSEuioL9rSgFmpvClNCbMnzDHVZziic10YRoezJH0bF3YAbS7JpXFciFvCG0awhIoaBc4Tdts-p4w4XtuI2ggedkSNfKczhdXN_lJ-rCIZyfkZeBqpJ7OKcfWIU8VsgEMbnEAgyswOIJxu9_H78hxvr7vSSVareUDWIeR95islD9riGFr
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Fuzzy+Logic+and+Applications&rft.atitle=Fuzzy+Similarity-Based+Hierarchical+Clustering+for+Atmospheric+Pollutants+Prediction&rft.date=2019-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030125431&rft.volume=11291&rft_id=info:doi/10.1007%2F978-3-030-12544-8_10&rft.externalDBID=132&rft.externalDocID=EBC5921909_98_132
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5921909-l.jpg