Time Series Forecasting with Gaussian Processes Needs Priors
Automatic forecasting is the task of receiving a time series and returning a forecast for the next time steps without any human intervention. Gaussian Processes (GPs) are a powerful tool for modeling time series, but so far there are no competitive approaches for automatic forecasting based on GPs....
Saved in:
Published in | Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track Vol. 12978; pp. 103 - 117 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
ISBN | 9783030865139 3030865134 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-86514-6_7 |
Cover
Loading…
Abstract | Automatic forecasting is the task of receiving a time series and returning a forecast for the next time steps without any human intervention. Gaussian Processes (GPs) are a powerful tool for modeling time series, but so far there are no competitive approaches for automatic forecasting based on GPs. We propose practical solutions to two problems: automatic selection of the optimal kernel and reliable estimation of the hyperparameters. We propose a fixed composition of kernels, which contains the components needed to model most time series: linear trend, periodic patterns, and other flexible kernel for modeling the non-linear trend. Not all components are necessary to model each time series; during training the unnecessary components are automatically made irrelevant via automatic relevance determination (ARD). We moreover assign priors to the hyperparameters, in order to keep the inference within a plausible range; we design such priors through an empirical Bayes approach. We present results on many time series of different types; our GP model is more accurate than state-of-the-art time series models. Thanks to the priors, a single restart is enough the estimate the hyperparameters; hence the model is also fast to train. |
---|---|
AbstractList | Automatic forecasting is the task of receiving a time series and returning a forecast for the next time steps without any human intervention. Gaussian Processes (GPs) are a powerful tool for modeling time series, but so far there are no competitive approaches for automatic forecasting based on GPs. We propose practical solutions to two problems: automatic selection of the optimal kernel and reliable estimation of the hyperparameters. We propose a fixed composition of kernels, which contains the components needed to model most time series: linear trend, periodic patterns, and other flexible kernel for modeling the non-linear trend. Not all components are necessary to model each time series; during training the unnecessary components are automatically made irrelevant via automatic relevance determination (ARD). We moreover assign priors to the hyperparameters, in order to keep the inference within a plausible range; we design such priors through an empirical Bayes approach. We present results on many time series of different types; our GP model is more accurate than state-of-the-art time series models. Thanks to the priors, a single restart is enough the estimate the hyperparameters; hence the model is also fast to train. |
Author | Benavoli, Alessio Zaffalon, Marco Corani, Giorgio |
Author_xml | – sequence: 1 givenname: Giorgio orcidid: 0000-0002-1541-8384 surname: Corani fullname: Corani, Giorgio email: giorgio.corani@idsia.ch – sequence: 2 givenname: Alessio orcidid: 0000-0002-2522-7178 surname: Benavoli fullname: Benavoli, Alessio – sequence: 3 givenname: Marco orcidid: 0000-0001-8908-1502 surname: Zaffalon fullname: Zaffalon, Marco |
BookMark | eNpVUMtOwzAQNFAQbekXcMkPGNbPxBIXVEFBqgCJcrYcZ0MDJQl2Kn4ft-XCaXdnd0Y7MyGjtmuRkEsGVwwgvzZ5QQUFAbTQikmqbX5EZgkVCdtD-piMmWaMCiHNyb-dMCMyTj2nJpfijEwY1wXX2mg4J7MYPwCA51zmgo_Jzar5wuwVQ4Mxu-8CeheHpn3PfpphnS3cNsbGtdlL6DzGmG6eEKuY5qYL8YKc1m4TcfZXp-Tt_m41f6DL58Xj_HZJey75QAtRK9BaIngJQiUsr3gNpfOKmVI7YC4vlfO1qb3ilQCoGaLipTG8rKpSTAk76MY-pN8w2LLrPqNlYHdx2WTeCpss2302NsWVOPLA6UP3vcU4WNyRPLZDcBu_dv2AIVqdgtBSJR1hmZDiFz7WaYs |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2021 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
DBID | FFUUA |
DOI | 10.1007/978-3-030-86514-6_7 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9783030865146 3030865142 |
EISSN | 1611-3349 |
Editor | Kourtellis, Nicolas Lozano, Jose A Hammer, Barbara Dong, Yuxiao |
Editor_xml | – sequence: 1 fullname: Kourtellis, Nicolas – sequence: 2 fullname: Dong, Yuxiao – sequence: 3 fullname: Lozano, Jose A – sequence: 4 fullname: Hammer, Barbara |
EndPage | 117 |
ExternalDocumentID | EBC6724645_103_134 |
GroupedDBID | 38. AABBV AABLV ABNDO ACWLQ AEDXK AEJLV AEKFX AELOD ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY FFUUA I4C IEZ OCUHQ ORHYB SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p242t-83f50664e0c40352427d2f0bac519b6a01a7b5acf9fc52d300f1ee52b992bddb3 |
ISBN | 9783030865139 3030865134 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:40:17 EDT 2025 Thu May 29 16:44:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q334-342 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p242t-83f50664e0c40352427d2f0bac519b6a01a7b5acf9fc52d300f1ee52b992bddb3 |
OCLC | 1268266960 |
ORCID | 0000-0002-2522-7178 0000-0002-1541-8384 0000-0001-8908-1502 |
PQID | EBC6724645_103_134 |
PageCount | 15 |
ParticipantIDs | springer_books_10_1007_978_3_030_86514_6_7 proquest_ebookcentralchapters_6724645_103_134 |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings, Part IV |
PublicationTitle | Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track |
PublicationYear | 2021 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
SSID | ssj0002724732 ssj0002792 |
Score | 2.1841006 |
Snippet | Automatic forecasting is the task of receiving a time series and returning a forecast for the next time steps without any human intervention. Gaussian... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 103 |
Title | Time Series Forecasting with Gaussian Processes Needs Priors |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6724645&ppg=134 http://link.springer.com/10.1007/978-3-030-86514-6_7 |
Volume | 12978 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2ywVx4C3KSz5wYpUqceykkeCASmlV2p5a1JtlOzbaA7uoyV74P_xPZvzIZgOXcomyUTaP-Rx7ZjzfZ0LeNbrJjdAQqTauybitTAZeEXxXMBh7OZHaq-1fXFan1_zsRtzMZr9HVUubXh-YX__klfwPqnAMcEWW7B2QHS4KB2Af8IUtIAzbifO7m2aNKwxhGaRNCqmBavg1pchQVtNgeabn9X1WvcLxqjsY3E48NHzZMGKZgbJzBK3CL_S0OFmub7-HQq3A5Vkp6M2WkRiD9bND3lk5p-IM_gV8O-udprj8YbFTgqB8gUuBGtX1Qw74RG06T-SMlAWLHa9tO_gNdw8ef-f_-_E8zndcrntfRrZIS1Kk9xinMFgxSWGkFOYkCbrNw-3EvCUq7FSiCBpIifsF_TpERqGrtKErr1CgsQyCqLF7LvJyNNIXgTX61yAyrhuBK2d4N55Vst4je_WhmJN7n47Pzr8NqTxWM16XW9Uy1GQMk1fhoZBSlB46aFGOXmJQwgpix5M77sQ9k6l67wFdPSIPkBVDka4C1ntMZnb1hDxMANAIwFPyAcGmAWw6Apsi2DSBTQewqQebBrCfkesvx1dHp1lcoSP7Ca5dnx2WToDPym1uOArrcla3zOVaGQgMdKXyQtVaKOMaZwRryzx3hbWC6aZhum11-ZzMV-uVfUEoB89ZtEYbUSvOHMS52nKWQzQrHPjc7T7JkiWkryOIxcsmvHcnK0Ch4kICxhLsvE_eJ3NJPL2TSaAbzCxLCWaW3swSzPzyLie_Ive3jfg1mfe3G_sGPNNev40t4w_iS4aH |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases.+Applied+Data+Science+Track&rft.au=Corani%2C+Giorgio&rft.au=Benavoli%2C+Alessio&rft.au=Zaffalon%2C+Marco&rft.atitle=Time+Series+Forecasting+with+Gaussian+Processes+Needs+Priors&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030865139&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=103&rft.epage=117&rft_id=info:doi/10.1007%2F978-3-030-86514-6_7 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6724645-l.jpg |