Time Series Forecasting with Gaussian Processes Needs Priors

Automatic forecasting is the task of receiving a time series and returning a forecast for the next time steps without any human intervention. Gaussian Processes (GPs) are a powerful tool for modeling time series, but so far there are no competitive approaches for automatic forecasting based on GPs....

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Discovery in Databases. Applied Data Science Track Vol. 12978; pp. 103 - 117
Main Authors Corani, Giorgio, Benavoli, Alessio, Zaffalon, Marco
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text
ISBN9783030865139
3030865134
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-86514-6_7

Cover

Loading…
Abstract Automatic forecasting is the task of receiving a time series and returning a forecast for the next time steps without any human intervention. Gaussian Processes (GPs) are a powerful tool for modeling time series, but so far there are no competitive approaches for automatic forecasting based on GPs. We propose practical solutions to two problems: automatic selection of the optimal kernel and reliable estimation of the hyperparameters. We propose a fixed composition of kernels, which contains the components needed to model most time series: linear trend, periodic patterns, and other flexible kernel for modeling the non-linear trend. Not all components are necessary to model each time series; during training the unnecessary components are automatically made irrelevant via automatic relevance determination (ARD). We moreover assign priors to the hyperparameters, in order to keep the inference within a plausible range; we design such priors through an empirical Bayes approach. We present results on many time series of different types; our GP model is more accurate than state-of-the-art time series models. Thanks to the priors, a single restart is enough the estimate the hyperparameters; hence the model is also fast to train.
AbstractList Automatic forecasting is the task of receiving a time series and returning a forecast for the next time steps without any human intervention. Gaussian Processes (GPs) are a powerful tool for modeling time series, but so far there are no competitive approaches for automatic forecasting based on GPs. We propose practical solutions to two problems: automatic selection of the optimal kernel and reliable estimation of the hyperparameters. We propose a fixed composition of kernels, which contains the components needed to model most time series: linear trend, periodic patterns, and other flexible kernel for modeling the non-linear trend. Not all components are necessary to model each time series; during training the unnecessary components are automatically made irrelevant via automatic relevance determination (ARD). We moreover assign priors to the hyperparameters, in order to keep the inference within a plausible range; we design such priors through an empirical Bayes approach. We present results on many time series of different types; our GP model is more accurate than state-of-the-art time series models. Thanks to the priors, a single restart is enough the estimate the hyperparameters; hence the model is also fast to train.
Author Benavoli, Alessio
Zaffalon, Marco
Corani, Giorgio
Author_xml – sequence: 1
  givenname: Giorgio
  orcidid: 0000-0002-1541-8384
  surname: Corani
  fullname: Corani, Giorgio
  email: giorgio.corani@idsia.ch
– sequence: 2
  givenname: Alessio
  orcidid: 0000-0002-2522-7178
  surname: Benavoli
  fullname: Benavoli, Alessio
– sequence: 3
  givenname: Marco
  orcidid: 0000-0001-8908-1502
  surname: Zaffalon
  fullname: Zaffalon, Marco
BookMark eNpVUMtOwzAQNFAQbekXcMkPGNbPxBIXVEFBqgCJcrYcZ0MDJQl2Kn4ft-XCaXdnd0Y7MyGjtmuRkEsGVwwgvzZ5QQUFAbTQikmqbX5EZgkVCdtD-piMmWaMCiHNyb-dMCMyTj2nJpfijEwY1wXX2mg4J7MYPwCA51zmgo_Jzar5wuwVQ4Mxu-8CeheHpn3PfpphnS3cNsbGtdlL6DzGmG6eEKuY5qYL8YKc1m4TcfZXp-Tt_m41f6DL58Xj_HZJey75QAtRK9BaIngJQiUsr3gNpfOKmVI7YC4vlfO1qb3ilQCoGaLipTG8rKpSTAk76MY-pN8w2LLrPqNlYHdx2WTeCpss2302NsWVOPLA6UP3vcU4WNyRPLZDcBu_dv2AIVqdgtBSJR1hmZDiFz7WaYs
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DOI 10.1007/978-3-030-86514-6_7
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030865146
3030865142
EISSN 1611-3349
Editor Kourtellis, Nicolas
Lozano, Jose A
Hammer, Barbara
Dong, Yuxiao
Editor_xml – sequence: 1
  fullname: Kourtellis, Nicolas
– sequence: 2
  fullname: Dong, Yuxiao
– sequence: 3
  fullname: Lozano, Jose A
– sequence: 4
  fullname: Hammer, Barbara
EndPage 117
ExternalDocumentID EBC6724645_103_134
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p242t-83f50664e0c40352427d2f0bac519b6a01a7b5acf9fc52d300f1ee52b992bddb3
ISBN 9783030865139
3030865134
ISSN 0302-9743
IngestDate Tue Jul 29 20:40:17 EDT 2025
Thu May 29 16:44:07 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p242t-83f50664e0c40352427d2f0bac519b6a01a7b5acf9fc52d300f1ee52b992bddb3
OCLC 1268266960
ORCID 0000-0002-2522-7178
0000-0002-1541-8384
0000-0001-8908-1502
PQID EBC6724645_103_134
PageCount 15
ParticipantIDs springer_books_10_1007_978_3_030_86514_6_7
proquest_ebookcentralchapters_6724645_103_134
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings, Part IV
PublicationTitle Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002724732
ssj0002792
Score 2.1841006
Snippet Automatic forecasting is the task of receiving a time series and returning a forecast for the next time steps without any human intervention. Gaussian...
SourceID springer
proquest
SourceType Publisher
StartPage 103
Title Time Series Forecasting with Gaussian Processes Needs Priors
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6724645&ppg=134
http://link.springer.com/10.1007/978-3-030-86514-6_7
Volume 12978
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2ywVx4C3KSz5wYpUqceykkeCASmlV2p5a1JtlOzbaA7uoyV74P_xPZvzIZgOXcomyUTaP-Rx7ZjzfZ0LeNbrJjdAQqTauybitTAZeEXxXMBh7OZHaq-1fXFan1_zsRtzMZr9HVUubXh-YX__klfwPqnAMcEWW7B2QHS4KB2Af8IUtIAzbifO7m2aNKwxhGaRNCqmBavg1pchQVtNgeabn9X1WvcLxqjsY3E48NHzZMGKZgbJzBK3CL_S0OFmub7-HQq3A5Vkp6M2WkRiD9bND3lk5p-IM_gV8O-udprj8YbFTgqB8gUuBGtX1Qw74RG06T-SMlAWLHa9tO_gNdw8ef-f_-_E8zndcrntfRrZIS1Kk9xinMFgxSWGkFOYkCbrNw-3EvCUq7FSiCBpIifsF_TpERqGrtKErr1CgsQyCqLF7LvJyNNIXgTX61yAyrhuBK2d4N55Vst4je_WhmJN7n47Pzr8NqTxWM16XW9Uy1GQMk1fhoZBSlB46aFGOXmJQwgpix5M77sQ9k6l67wFdPSIPkBVDka4C1ntMZnb1hDxMANAIwFPyAcGmAWw6Apsi2DSBTQewqQebBrCfkesvx1dHp1lcoSP7Ca5dnx2WToDPym1uOArrcla3zOVaGQgMdKXyQtVaKOMaZwRryzx3hbWC6aZhum11-ZzMV-uVfUEoB89ZtEYbUSvOHMS52nKWQzQrHPjc7T7JkiWkryOIxcsmvHcnK0Ch4kICxhLsvE_eJ3NJPL2TSaAbzCxLCWaW3swSzPzyLie_Ive3jfg1mfe3G_sGPNNev40t4w_iS4aH
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases.+Applied+Data+Science+Track&rft.au=Corani%2C+Giorgio&rft.au=Benavoli%2C+Alessio&rft.au=Zaffalon%2C+Marco&rft.atitle=Time+Series+Forecasting+with+Gaussian+Processes+Needs+Priors&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030865139&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=103&rft.epage=117&rft_id=info:doi/10.1007%2F978-3-030-86514-6_7
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6724645-l.jpg