Grapes Visual Segmentation for Harvesting Robots Using Local Texture Descriptors

This paper investigates the performance of Local Binary Patterns variants in grape segmentation for autonomous agricultural robots, namely Agrobots, applied to viniculture and winery. Robust fruit detection is challenging and needs to be accurate to enable the Agrobot to execute demanding tasks of p...

Full description

Saved in:
Bibliographic Details
Published inComputer Vision Systems Vol. 11754; pp. 98 - 109
Main Authors Badeka, Eftichia, Kalabokas, Theofanis, Tziridis, Konstantinos, Nicolaou, Alexander, Vrochidou, Eleni, Mavridou, Efthimia, Papakostas, George A., Pachidis, Theodore
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper investigates the performance of Local Binary Patterns variants in grape segmentation for autonomous agricultural robots, namely Agrobots, applied to viniculture and winery. Robust fruit detection is challenging and needs to be accurate to enable the Agrobot to execute demanding tasks of precise farming. Segmentation task is handled by classification with the supervised machine learning model k-Nearest Neighbor ( $$ k $$ -NN), including extracted features from Local Binary Patterns (LBP) and their variants in combination of color components. LBP variants are tested for both varieties of red and white grapes, subject to performance measures of accuracy, recall and precision. The results for red grapes indicate an approximate intended accuracy of 94% of detection, while the results relating to white grapes confirm the concerns of complex indiscreet visual cues providing accuracies of 83%.
AbstractList This paper investigates the performance of Local Binary Patterns variants in grape segmentation for autonomous agricultural robots, namely Agrobots, applied to viniculture and winery. Robust fruit detection is challenging and needs to be accurate to enable the Agrobot to execute demanding tasks of precise farming. Segmentation task is handled by classification with the supervised machine learning model k-Nearest Neighbor ( $$ k $$ -NN), including extracted features from Local Binary Patterns (LBP) and their variants in combination of color components. LBP variants are tested for both varieties of red and white grapes, subject to performance measures of accuracy, recall and precision. The results for red grapes indicate an approximate intended accuracy of 94% of detection, while the results relating to white grapes confirm the concerns of complex indiscreet visual cues providing accuracies of 83%.
Author Badeka, Eftichia
Kalabokas, Theofanis
Tziridis, Konstantinos
Papakostas, George A.
Pachidis, Theodore
Vrochidou, Eleni
Nicolaou, Alexander
Mavridou, Efthimia
Author_xml – sequence: 1
  givenname: Eftichia
  surname: Badeka
  fullname: Badeka, Eftichia
– sequence: 2
  givenname: Theofanis
  surname: Kalabokas
  fullname: Kalabokas, Theofanis
– sequence: 3
  givenname: Konstantinos
  surname: Tziridis
  fullname: Tziridis, Konstantinos
– sequence: 4
  givenname: Alexander
  surname: Nicolaou
  fullname: Nicolaou, Alexander
– sequence: 5
  givenname: Eleni
  surname: Vrochidou
  fullname: Vrochidou, Eleni
– sequence: 6
  givenname: Efthimia
  surname: Mavridou
  fullname: Mavridou, Efthimia
– sequence: 7
  givenname: George A.
  surname: Papakostas
  fullname: Papakostas, George A.
  email: gpapak@teiemt.gr
– sequence: 8
  givenname: Theodore
  surname: Pachidis
  fullname: Pachidis, Theodore
BookMark eNo1UNtOAjEQrYpGQL7Al_2B6vSy2-2jQQUTEqOCr013KYjidm2L8XP8Fr_MAfShmc6ZOTNzTo90Gt84Qs4ZXDAAdalVSQUFAVRIrXMKRh-QAaICsR0Eh6TLCsaowPSI9P4LkndIF_-caiXFCekxxjVToHN2SgYxvgIA50UOTHbJwyjY1sXseRU3dp09ueW7a5JNK99kCx9-vsc2fLqYVs0ye_SVTzGbxW0y8TX2T91X2gSXXbtYh1WbfIhn5Hhh19EN_mKfzG5vpsMxndyP7oZXE9pyyRNlUM_x8KIoxVzVZaEKpRSvFRfWcZCyFkrbQpeVnNsSpHUV5wLlM6HyvHAg-oTt58Y24EEumMr7t2gYmK2BBnuNMOiD2bll0EDkyD2nDf5jg7KM25JqlBzsun6xbXIhmlyXuD3HOfiYEL8OP3BJ
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DBID FFUUA
DOI 10.1007/978-3-030-34995-0_9
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9783030349950
3030349950
EISSN 1611-3349
Editor Giakoumis, Dimitrios
Vincze, Markus
Argyros, Antonis
Tzovaras, Dimitrios
Editor_xml – sequence: 1
  fullname: Vincze, Markus
– sequence: 2
  fullname: Tzovaras, Dimitrios
– sequence: 3
  fullname: Giakoumis, Dimitrios
– sequence: 4
  fullname: Argyros, Antonis
EndPage 109
ExternalDocumentID EBC5983795_105_113
GroupedDBID 38.
AABBV
AEDXK
AEJLV
AEKFX
AIFIR
ALMA_UNASSIGNED_HOLDINGS
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
FFUUA
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p242t-10cd3346683d7c86767772c723ae2044c379a698b4da804aeb223978137556e03
ISBN 3030349942
9783030349943
ISSN 0302-9743
IngestDate Tue Jul 29 20:09:53 EDT 2025
Thu Apr 10 07:36:05 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TA1634
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p242t-10cd3346683d7c86767772c723ae2044c379a698b4da804aeb223978137556e03
Notes Original Abstract: This paper investigates the performance of Local Binary Patterns variants in grape segmentation for autonomous agricultural robots, namely Agrobots, applied to viniculture and winery. Robust fruit detection is challenging and needs to be accurate to enable the Agrobot to execute demanding tasks of precise farming. Segmentation task is handled by classification with the supervised machine learning model k-Nearest Neighbor (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k $$\end{document}-NN), including extracted features from Local Binary Patterns (LBP) and their variants in combination of color components. LBP variants are tested for both varieties of red and white grapes, subject to performance measures of accuracy, recall and precision. The results for red grapes indicate an approximate intended accuracy of 94% of detection, while the results relating to white grapes confirm the concerns of complex indiscreet visual cues providing accuracies of 83%.
OCLC 1129170951
PQID EBC5983795_105_113
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_030_34995_0_9
proquest_ebookcentralchapters_5983795_105_113
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 12th International Conference, ICVS 2019, Thessaloniki, Greece, September 23-25, 2019, Proceedings
PublicationTitle Computer Vision Systems
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002265014
ssj0002792
Score 1.9992031
Snippet This paper investigates the performance of Local Binary Patterns variants in grape segmentation for autonomous agricultural robots, namely Agrobots, applied to...
SourceID springer
proquest
SourceType Publisher
StartPage 98
SubjectTerms Computer vision
Grapes detection
Image segmentation
Local binary patterns
Visual computing
Title Grapes Visual Segmentation for Harvesting Robots Using Local Texture Descriptors
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5983795&ppg=113
http://link.springer.com/10.1007/978-3-030-34995-0_9
Volume 11754
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELXKcql6KNCiUj7kA1xYpcrasRMfl9WyK0QrVSyIm5UPhxO7FUkv_Bp-S39ZZ2xns4m4wCVaRUnWmmeNZ8Z-bwg5HZmsFIaHgZLMYAszEWRCsYAxg4LfopAlkpN__pLz2-jqXty3vfksu6TOfuTPr_JK3oMq3ANckSX7BmTXH4Ub8BvwhSsgDNde8NstszpdAd-PYXhn6eEd7XE_B2ZIrarwASSJ3JiHR880sqcLzybsbBxicyBU2sBTeKtsVVdDd4rgGhe54QJ8N24xQHpq3cvqqVMnQGpSp07Q1Al7lcaNYtd41sktYW1D7RrlVJTWzhLCjehV17t52gJeDfBdEYRatStNs7s-cvTTntD19GIiFOTLSmgI-iA14VtkK07EgGyPp1fXd-vSGUSMuBuKTJ1mjMxpKbVjXgtMOQ3h3pA66URvB9wGFosd8gnJJhRZIDDIXfLBLPfIZ58aUO94qy_kt4OSOijpJpQUoPz30sJIHYzUwkgtjNTDSDdg_EpuL6eLyTzw3TCCPxBG1bBe5gXnkZQJL-I8QaE9yIzymPHUsDCKcrBcKlWSRUWahFFqMoj8UNGMx0JIE_J9MliuluYboSoqJS9GachKMF0slIC40qi4iEsphSgPSNCYR9s9e39QOHfGqHQPpwNy3thQ4-OVbsSw4f8112B7bW2vwfbf3_jxQ_Kxnc5HZFA__TXHEAjW2YmfGP8BnixY7g
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Vision+Systems&rft.atitle=Grapes+Visual+Segmentation+for%C2%A0Harvesting+Robots+Using+Local+Texture+Descriptors&rft.date=2019-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030349943&rft.volume=11754&rft_id=info:doi/10.1007%2F978-3-030-34995-0_9&rft.externalDBID=113&rft.externalDocID=EBC5983795_105_113
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5983795-l.jpg