Grapes Visual Segmentation for Harvesting Robots Using Local Texture Descriptors
This paper investigates the performance of Local Binary Patterns variants in grape segmentation for autonomous agricultural robots, namely Agrobots, applied to viniculture and winery. Robust fruit detection is challenging and needs to be accurate to enable the Agrobot to execute demanding tasks of p...
Saved in:
Published in | Computer Vision Systems Vol. 11754; pp. 98 - 109 |
---|---|
Main Authors | , , , , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper investigates the performance of Local Binary Patterns variants in grape segmentation for autonomous agricultural robots, namely Agrobots, applied to viniculture and winery. Robust fruit detection is challenging and needs to be accurate to enable the Agrobot to execute demanding tasks of precise farming. Segmentation task is handled by classification with the supervised machine learning model k-Nearest Neighbor ( $$ k $$ -NN), including extracted features from Local Binary Patterns (LBP) and their variants in combination of color components. LBP variants are tested for both varieties of red and white grapes, subject to performance measures of accuracy, recall and precision. The results for red grapes indicate an approximate intended accuracy of 94% of detection, while the results relating to white grapes confirm the concerns of complex indiscreet visual cues providing accuracies of 83%. |
---|---|
AbstractList | This paper investigates the performance of Local Binary Patterns variants in grape segmentation for autonomous agricultural robots, namely Agrobots, applied to viniculture and winery. Robust fruit detection is challenging and needs to be accurate to enable the Agrobot to execute demanding tasks of precise farming. Segmentation task is handled by classification with the supervised machine learning model k-Nearest Neighbor ( $$ k $$ -NN), including extracted features from Local Binary Patterns (LBP) and their variants in combination of color components. LBP variants are tested for both varieties of red and white grapes, subject to performance measures of accuracy, recall and precision. The results for red grapes indicate an approximate intended accuracy of 94% of detection, while the results relating to white grapes confirm the concerns of complex indiscreet visual cues providing accuracies of 83%. |
Author | Badeka, Eftichia Kalabokas, Theofanis Tziridis, Konstantinos Papakostas, George A. Pachidis, Theodore Vrochidou, Eleni Nicolaou, Alexander Mavridou, Efthimia |
Author_xml | – sequence: 1 givenname: Eftichia surname: Badeka fullname: Badeka, Eftichia – sequence: 2 givenname: Theofanis surname: Kalabokas fullname: Kalabokas, Theofanis – sequence: 3 givenname: Konstantinos surname: Tziridis fullname: Tziridis, Konstantinos – sequence: 4 givenname: Alexander surname: Nicolaou fullname: Nicolaou, Alexander – sequence: 5 givenname: Eleni surname: Vrochidou fullname: Vrochidou, Eleni – sequence: 6 givenname: Efthimia surname: Mavridou fullname: Mavridou, Efthimia – sequence: 7 givenname: George A. surname: Papakostas fullname: Papakostas, George A. email: gpapak@teiemt.gr – sequence: 8 givenname: Theodore surname: Pachidis fullname: Pachidis, Theodore |
BookMark | eNo1UNtOAjEQrYpGQL7Al_2B6vSy2-2jQQUTEqOCr013KYjidm2L8XP8Fr_MAfShmc6ZOTNzTo90Gt84Qs4ZXDAAdalVSQUFAVRIrXMKRh-QAaICsR0Eh6TLCsaowPSI9P4LkndIF_-caiXFCekxxjVToHN2SgYxvgIA50UOTHbJwyjY1sXseRU3dp09ueW7a5JNK99kCx9-vsc2fLqYVs0ye_SVTzGbxW0y8TX2T91X2gSXXbtYh1WbfIhn5Hhh19EN_mKfzG5vpsMxndyP7oZXE9pyyRNlUM_x8KIoxVzVZaEKpRSvFRfWcZCyFkrbQpeVnNsSpHUV5wLlM6HyvHAg-oTt58Y24EEumMr7t2gYmK2BBnuNMOiD2bll0EDkyD2nDf5jg7KM25JqlBzsun6xbXIhmlyXuD3HOfiYEL8OP3BJ |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 |
DBID | FFUUA |
DOI | 10.1007/978-3-030-34995-0_9 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9783030349950 3030349950 |
EISSN | 1611-3349 |
Editor | Giakoumis, Dimitrios Vincze, Markus Argyros, Antonis Tzovaras, Dimitrios |
Editor_xml | – sequence: 1 fullname: Vincze, Markus – sequence: 2 fullname: Tzovaras, Dimitrios – sequence: 3 fullname: Giakoumis, Dimitrios – sequence: 4 fullname: Argyros, Antonis |
EndPage | 109 |
ExternalDocumentID | EBC5983795_105_113 |
GroupedDBID | 38. AABBV AEDXK AEJLV AEKFX AIFIR ALMA_UNASSIGNED_HOLDINGS AYMPB BBABE CXBFT CZZ EXGDT FCSXQ FFUUA I4C IEZ MGZZY NSQWD OORQV SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p242t-10cd3346683d7c86767772c723ae2044c379a698b4da804aeb223978137556e03 |
ISBN | 3030349942 9783030349943 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:09:53 EDT 2025 Thu Apr 10 07:36:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | TA1634 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p242t-10cd3346683d7c86767772c723ae2044c379a698b4da804aeb223978137556e03 |
Notes | Original Abstract: This paper investigates the performance of Local Binary Patterns variants in grape segmentation for autonomous agricultural robots, namely Agrobots, applied to viniculture and winery. Robust fruit detection is challenging and needs to be accurate to enable the Agrobot to execute demanding tasks of precise farming. Segmentation task is handled by classification with the supervised machine learning model k-Nearest Neighbor (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k $$\end{document}-NN), including extracted features from Local Binary Patterns (LBP) and their variants in combination of color components. LBP variants are tested for both varieties of red and white grapes, subject to performance measures of accuracy, recall and precision. The results for red grapes indicate an approximate intended accuracy of 94% of detection, while the results relating to white grapes confirm the concerns of complex indiscreet visual cues providing accuracies of 83%. |
OCLC | 1129170951 |
PQID | EBC5983795_105_113 |
PageCount | 12 |
ParticipantIDs | springer_books_10_1007_978_3_030_34995_0_9 proquest_ebookcentralchapters_5983795_105_113 |
PublicationCentury | 2000 |
PublicationDate | 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Theoretical Computer Science and General Issues |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 12th International Conference, ICVS 2019, Thessaloniki, Greece, September 23-25, 2019, Proceedings |
PublicationTitle | Computer Vision Systems |
PublicationYear | 2019 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti surname: Yung fullname: Yung, Moti |
SSID | ssj0002265014 ssj0002792 |
Score | 1.9992031 |
Snippet | This paper investigates the performance of Local Binary Patterns variants in grape segmentation for autonomous agricultural robots, namely Agrobots, applied to... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 98 |
SubjectTerms | Computer vision Grapes detection Image segmentation Local binary patterns Visual computing |
Title | Grapes Visual Segmentation for Harvesting Robots Using Local Texture Descriptors |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5983795&ppg=113 http://link.springer.com/10.1007/978-3-030-34995-0_9 |
Volume | 11754 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELXKcql6KNCiUj7kA1xYpcrasRMfl9WyK0QrVSyIm5UPhxO7FUkv_Bp-S39ZZ2xns4m4wCVaRUnWmmeNZ8Z-bwg5HZmsFIaHgZLMYAszEWRCsYAxg4LfopAlkpN__pLz2-jqXty3vfksu6TOfuTPr_JK3oMq3ANckSX7BmTXH4Ub8BvwhSsgDNde8NstszpdAd-PYXhn6eEd7XE_B2ZIrarwASSJ3JiHR880sqcLzybsbBxicyBU2sBTeKtsVVdDd4rgGhe54QJ8N24xQHpq3cvqqVMnQGpSp07Q1Al7lcaNYtd41sktYW1D7RrlVJTWzhLCjehV17t52gJeDfBdEYRatStNs7s-cvTTntD19GIiFOTLSmgI-iA14VtkK07EgGyPp1fXd-vSGUSMuBuKTJ1mjMxpKbVjXgtMOQ3h3pA66URvB9wGFosd8gnJJhRZIDDIXfLBLPfIZ58aUO94qy_kt4OSOijpJpQUoPz30sJIHYzUwkgtjNTDSDdg_EpuL6eLyTzw3TCCPxBG1bBe5gXnkZQJL-I8QaE9yIzymPHUsDCKcrBcKlWSRUWahFFqMoj8UNGMx0JIE_J9MliuluYboSoqJS9GachKMF0slIC40qi4iEsphSgPSNCYR9s9e39QOHfGqHQPpwNy3thQ4-OVbsSw4f8112B7bW2vwfbf3_jxQ_Kxnc5HZFA__TXHEAjW2YmfGP8BnixY7g |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Vision+Systems&rft.atitle=Grapes+Visual+Segmentation+for%C2%A0Harvesting+Robots+Using+Local+Texture+Descriptors&rft.date=2019-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030349943&rft.volume=11754&rft_id=info:doi/10.1007%2F978-3-030-34995-0_9&rft.externalDBID=113&rft.externalDocID=EBC5983795_105_113 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5983795-l.jpg |