Enhancing the DISSFCM Algorithm for Data Stream Classification

Analyzing data streams has become a new challenge to meet the demands of real time analytics. Conventional mining techniques are proving inefficient to cope with challenges associated with data streams, including resources constraints like memory and running time along with single scan of the data....

Full description

Saved in:
Bibliographic Details
Published inFuzzy Logic and Applications Vol. 11291; pp. 109 - 122
Main Authors Casalino, Gabriella, Castellano, Giovanna, Fanelli, Anna Maria, Mencar, Corrado
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030125431
3030125432
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-12544-8_9

Cover

Loading…
Abstract Analyzing data streams has become a new challenge to meet the demands of real time analytics. Conventional mining techniques are proving inefficient to cope with challenges associated with data streams, including resources constraints like memory and running time along with single scan of the data. Most existing data stream classification methods require labeled samples that are more difficult and expensive to obtain than unlabeled ones. Semi-supervised learning algorithms can solve this problem by using unlabeled samples together with a few labeled ones to build classification models. Recently we proposed DISSFCM, an algorithm for data stream classification based on incremental semi-supervised fuzzy clustering. To cope with the evolution of data, DISSFCM adapts dynamically the number of clusters by splitting large-scale clusters. While splitting is effective in improving the quality of clusters, a repeated application without counter-balance may induce many small-scale clusters. To solve this problem, in this paper we enhance DISSFCM by introducing a procedure that merges small-scale clusters. Preliminary experimental results on a real-world benchmark dataset show the effectiveness of the method.
AbstractList Analyzing data streams has become a new challenge to meet the demands of real time analytics. Conventional mining techniques are proving inefficient to cope with challenges associated with data streams, including resources constraints like memory and running time along with single scan of the data. Most existing data stream classification methods require labeled samples that are more difficult and expensive to obtain than unlabeled ones. Semi-supervised learning algorithms can solve this problem by using unlabeled samples together with a few labeled ones to build classification models. Recently we proposed DISSFCM, an algorithm for data stream classification based on incremental semi-supervised fuzzy clustering. To cope with the evolution of data, DISSFCM adapts dynamically the number of clusters by splitting large-scale clusters. While splitting is effective in improving the quality of clusters, a repeated application without counter-balance may induce many small-scale clusters. To solve this problem, in this paper we enhance DISSFCM by introducing a procedure that merges small-scale clusters. Preliminary experimental results on a real-world benchmark dataset show the effectiveness of the method.
Author Castellano, Giovanna
Mencar, Corrado
Casalino, Gabriella
Fanelli, Anna Maria
Author_xml – sequence: 1
  givenname: Gabriella
  surname: Casalino
  fullname: Casalino, Gabriella
  email: gabriella.casalino@uniba.it
  organization: INdAM Research Group GNCS, Rome, Italy
– sequence: 2
  givenname: Giovanna
  surname: Castellano
  fullname: Castellano, Giovanna
  email: giovanna.castellano@uniba.it
  organization: INdAM Research Group GNCS, Rome, Italy
– sequence: 3
  givenname: Anna Maria
  surname: Fanelli
  fullname: Fanelli, Anna Maria
  email: annamaria.fanelli@uniba.it
  organization: Computer Science Department, University of Bari “Aldo Moro”, Bari, Italy
– sequence: 4
  givenname: Corrado
  surname: Mencar
  fullname: Mencar, Corrado
  email: corrado.mencar@uniba.it
  organization: INdAM Research Group GNCS, Rome, Italy
BookMark eNo1kM1SwjAUhaOiIyBP4KYvEM1N0jbZOMMUUGZwXKDrTBpSWi1tTeL7G0BX9_fcueeboFHXdxaheyAPQEj-KHOBGSaMYKAp51goeYEmLDZONblEY8gAMGNcXqFZXP-fMRihccwpljlnN2gCRAjOcgC4RTPvPwkhFCBLGRmjp2VX68403T4JtU0W6-12Vbwm83bfuybUh6TqXbLQQSfb4Kw-JEWrvW-qxujQ9N0duq506-3sL07Rx2r5Xrzgzdvzuphv8EA5BGxKsKDtzgpTEZOVMrNGailLqi2kBgSXlGRgdjtbUZHlqagoFULnXDKSGsmmCM53_eDir9apsu-_vAKijrRUtK-YiqbViY6KtKKGnTWD679_rA_KHkXGdsHp1tR6CNZ5lUoKkkglqQIQ7BfqmGh7
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DBID FFUUA
DEWEY 511.31299999999999
DOI 10.1007/978-3-030-12544-8_9
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 3030125440
9783030125448
EISSN 1611-3349
Editor Giove, Silvio
Fullér, Robert
Masulli, Francesco
Editor_xml – sequence: 1
  fullname: Masulli, Francesco
– sequence: 2
  fullname: Fullér, Robert
– sequence: 3
  fullname: Giove, Silvio
EndPage 122
ExternalDocumentID EBC5921909_92_118
GroupedDBID 0D6
0DA
38.
AABBV
AEDXK
AEJLV
AEKFX
AEZAY
AIFIR
ALEXF
ALMA_UNASSIGNED_HOLDINGS
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
FFUUA
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p241t-cb1e1aede8cf0c6b96ec9a99b2ae15c18492061cddef286758f2288a749305c93
ISBN 9783030125431
3030125432
ISSN 0302-9743
IngestDate Tue Jul 29 20:03:32 EDT 2025
Mon Apr 07 21:44:10 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p241t-cb1e1aede8cf0c6b96ec9a99b2ae15c18492061cddef286758f2288a749305c93
OCLC 1088437111
PQID EBC5921909_92_118
PageCount 14
ParticipantIDs springer_books_10_1007_978_3_030_12544_8_9
proquest_ebookcentralchapters_5921909_92_118
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 12th International Workshop, WILF 2018, Genoa, Italy, September 6-7, 2018, Revised Selected Papers
PublicationTitle Fuzzy Logic and Applications
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Dept Applied Math & Computer Science, Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology Madras, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: TU Dortmund University, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
SSID ssj0002116530
ssj0002792
Score 1.9197513
Snippet Analyzing data streams has become a new challenge to meet the demands of real time analytics. Conventional mining techniques are proving inefficient to cope...
SourceID springer
proquest
SourceType Publisher
StartPage 109
SubjectTerms Data stream classification
Incremental adaptive clustering
Semi-supervised fuzzy clustering
Title Enhancing the DISSFCM Algorithm for Data Stream Classification
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5921909&ppg=118
http://link.springer.com/10.1007/978-3-030-12544-8_9
Volume 11291
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05b9swFCYcdyk6JL3QpAc4dKqrQpclcWgBw7GTBnGWJEU2gqSoxkAjFbY81D-kvzfvidTldkk8CIYo6Hgf8e6DkI9auV7KROYID1hgGEfKkUzEjmCZiCX8Qh-rkRcX0el1eHYzvhkM_nayljal_KK2_60reQyqcA5wxSrZByDb3BROwH_AF46AMBx3lN--m9XMHdpst39w5K7tuDrphKLbyMIa9OxquvboREgwi82MoXoRS0iEXcas1DxvVucCE2CWJukxF1jUs2wWF0AFk5k9LVYrkRbdnTfLb7GJhy3DOv5-eTmfLkaTXz-L1bK8vasSG49FKaqIuLgzczkxY6ndJEg9vf56bgMcF0VZ5Y2N6hkUNUvq-iywTKrns6h9ljtez9bx1jNyA7Taqpr9Dm8MgJGDKWR4oza8O8KOjIHpgGr5seeyjmj3TAn0P1KjmygCd3bwaaGTcLZH9uJkPCRPJrOz8x-N787HnkVodlmJj00YTbTKvBTWENUv7ZsuT-1HNK2vTHfjnSf2DJ2d2Hyl8lwdkGdYBkOxPgWo95wMdP6C7NcAUAvAS_KtgZsC3NTCTRu4KcBNEW5q4KZ9uF-R6_nsanrq2KEczm9Q9kpHSU97Qqc6UZmrIskirZhgTPpCe2PlJSHzQUdUIDYzP0FzNPP9JBFxyEC0KBa8JsO8yPUbQgMvBVaA7Zk0A5YAth4TMnUzGaSpTJk6JJ9rWvAqdcDmKyvz5Ws-ZiBvXcaZD4Zsckg-1fTiePWa1y25gc484EBnXtGZA52PHnLxW_K03cXvyLBcbfR70EVL-cFujXuTxYH1
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Fuzzy+Logic+and+Applications&rft.au=Casalino%2C+Gabriella&rft.au=Castellano%2C+Giovanna&rft.au=Fanelli%2C+Anna+Maria&rft.au=Mencar%2C+Corrado&rft.atitle=Enhancing+the+DISSFCM+Algorithm+for+Data+Stream+Classification&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2019-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030125431&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=109&rft.epage=122&rft_id=info:doi/10.1007%2F978-3-030-12544-8_9
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5921909-l.jpg