Enhancing the DISSFCM Algorithm for Data Stream Classification
Analyzing data streams has become a new challenge to meet the demands of real time analytics. Conventional mining techniques are proving inefficient to cope with challenges associated with data streams, including resources constraints like memory and running time along with single scan of the data....
Saved in:
Published in | Fuzzy Logic and Applications Vol. 11291; pp. 109 - 122 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783030125431 3030125432 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-12544-8_9 |
Cover
Loading…
Abstract | Analyzing data streams has become a new challenge to meet the demands of real time analytics. Conventional mining techniques are proving inefficient to cope with challenges associated with data streams, including resources constraints like memory and running time along with single scan of the data. Most existing data stream classification methods require labeled samples that are more difficult and expensive to obtain than unlabeled ones. Semi-supervised learning algorithms can solve this problem by using unlabeled samples together with a few labeled ones to build classification models. Recently we proposed DISSFCM, an algorithm for data stream classification based on incremental semi-supervised fuzzy clustering. To cope with the evolution of data, DISSFCM adapts dynamically the number of clusters by splitting large-scale clusters. While splitting is effective in improving the quality of clusters, a repeated application without counter-balance may induce many small-scale clusters. To solve this problem, in this paper we enhance DISSFCM by introducing a procedure that merges small-scale clusters. Preliminary experimental results on a real-world benchmark dataset show the effectiveness of the method. |
---|---|
AbstractList | Analyzing data streams has become a new challenge to meet the demands of real time analytics. Conventional mining techniques are proving inefficient to cope with challenges associated with data streams, including resources constraints like memory and running time along with single scan of the data. Most existing data stream classification methods require labeled samples that are more difficult and expensive to obtain than unlabeled ones. Semi-supervised learning algorithms can solve this problem by using unlabeled samples together with a few labeled ones to build classification models. Recently we proposed DISSFCM, an algorithm for data stream classification based on incremental semi-supervised fuzzy clustering. To cope with the evolution of data, DISSFCM adapts dynamically the number of clusters by splitting large-scale clusters. While splitting is effective in improving the quality of clusters, a repeated application without counter-balance may induce many small-scale clusters. To solve this problem, in this paper we enhance DISSFCM by introducing a procedure that merges small-scale clusters. Preliminary experimental results on a real-world benchmark dataset show the effectiveness of the method. |
Author | Castellano, Giovanna Mencar, Corrado Casalino, Gabriella Fanelli, Anna Maria |
Author_xml | – sequence: 1 givenname: Gabriella surname: Casalino fullname: Casalino, Gabriella email: gabriella.casalino@uniba.it organization: INdAM Research Group GNCS, Rome, Italy – sequence: 2 givenname: Giovanna surname: Castellano fullname: Castellano, Giovanna email: giovanna.castellano@uniba.it organization: INdAM Research Group GNCS, Rome, Italy – sequence: 3 givenname: Anna Maria surname: Fanelli fullname: Fanelli, Anna Maria email: annamaria.fanelli@uniba.it organization: Computer Science Department, University of Bari “Aldo Moro”, Bari, Italy – sequence: 4 givenname: Corrado surname: Mencar fullname: Mencar, Corrado email: corrado.mencar@uniba.it organization: INdAM Research Group GNCS, Rome, Italy |
BookMark | eNo1kM1SwjAUhaOiIyBP4KYvEM1N0jbZOMMUUGZwXKDrTBpSWi1tTeL7G0BX9_fcueeboFHXdxaheyAPQEj-KHOBGSaMYKAp51goeYEmLDZONblEY8gAMGNcXqFZXP-fMRihccwpljlnN2gCRAjOcgC4RTPvPwkhFCBLGRmjp2VX68403T4JtU0W6-12Vbwm83bfuybUh6TqXbLQQSfb4Kw-JEWrvW-qxujQ9N0duq506-3sL07Rx2r5Xrzgzdvzuphv8EA5BGxKsKDtzgpTEZOVMrNGailLqi2kBgSXlGRgdjtbUZHlqagoFULnXDKSGsmmCM53_eDir9apsu-_vAKijrRUtK-YiqbViY6KtKKGnTWD679_rA_KHkXGdsHp1tR6CNZ5lUoKkkglqQIQ7BfqmGh7 |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 |
DBID | FFUUA |
DEWEY | 511.31299999999999 |
DOI | 10.1007/978-3-030-12544-8_9 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISBN | 3030125440 9783030125448 |
EISSN | 1611-3349 |
Editor | Giove, Silvio Fullér, Robert Masulli, Francesco |
Editor_xml | – sequence: 1 fullname: Masulli, Francesco – sequence: 2 fullname: Fullér, Robert – sequence: 3 fullname: Giove, Silvio |
EndPage | 122 |
ExternalDocumentID | EBC5921909_92_118 |
GroupedDBID | 0D6 0DA 38. AABBV AEDXK AEJLV AEKFX AEZAY AIFIR ALEXF ALMA_UNASSIGNED_HOLDINGS AYMPB BBABE CXBFT CZZ EXGDT FCSXQ FFUUA I4C IEZ MGZZY NSQWD OORQV SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p241t-cb1e1aede8cf0c6b96ec9a99b2ae15c18492061cddef286758f2288a749305c93 |
ISBN | 9783030125431 3030125432 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:03:32 EDT 2025 Mon Apr 07 21:44:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q334-342 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p241t-cb1e1aede8cf0c6b96ec9a99b2ae15c18492061cddef286758f2288a749305c93 |
OCLC | 1088437111 |
PQID | EBC5921909_92_118 |
PageCount | 14 |
ParticipantIDs | springer_books_10_1007_978_3_030_12544_8_9 proquest_ebookcentralchapters_5921909_92_118 |
PublicationCentury | 2000 |
PublicationDate | 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 12th International Workshop, WILF 2018, Genoa, Italy, September 6-7, 2018, Revised Selected Papers |
PublicationTitle | Fuzzy Logic and Applications |
PublicationYear | 2019 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, UK – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, UK – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: ETH Zurich, Zurich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford University, Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Dept Applied Math & Computer Science, Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology Madras, Chennai, India – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: TU Dortmund University, Dortmund, Germany – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA |
SSID | ssj0002116530 ssj0002792 |
Score | 1.9197513 |
Snippet | Analyzing data streams has become a new challenge to meet the demands of real time analytics. Conventional mining techniques are proving inefficient to cope... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 109 |
SubjectTerms | Data stream classification Incremental adaptive clustering Semi-supervised fuzzy clustering |
Title | Enhancing the DISSFCM Algorithm for Data Stream Classification |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5921909&ppg=118 http://link.springer.com/10.1007/978-3-030-12544-8_9 |
Volume | 11291 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05b9swFCYcdyk6JL3QpAc4dKqrQpclcWgBw7GTBnGWJEU2gqSoxkAjFbY81D-kvzfvidTldkk8CIYo6Hgf8e6DkI9auV7KROYID1hgGEfKkUzEjmCZiCX8Qh-rkRcX0el1eHYzvhkM_nayljal_KK2_60reQyqcA5wxSrZByDb3BROwH_AF46AMBx3lN--m9XMHdpst39w5K7tuDrphKLbyMIa9OxquvboREgwi82MoXoRS0iEXcas1DxvVucCE2CWJukxF1jUs2wWF0AFk5k9LVYrkRbdnTfLb7GJhy3DOv5-eTmfLkaTXz-L1bK8vasSG49FKaqIuLgzczkxY6ndJEg9vf56bgMcF0VZ5Y2N6hkUNUvq-iywTKrns6h9ljtez9bx1jNyA7Taqpr9Dm8MgJGDKWR4oza8O8KOjIHpgGr5seeyjmj3TAn0P1KjmygCd3bwaaGTcLZH9uJkPCRPJrOz8x-N787HnkVodlmJj00YTbTKvBTWENUv7ZsuT-1HNK2vTHfjnSf2DJ2d2Hyl8lwdkGdYBkOxPgWo95wMdP6C7NcAUAvAS_KtgZsC3NTCTRu4KcBNEW5q4KZ9uF-R6_nsanrq2KEczm9Q9kpHSU97Qqc6UZmrIskirZhgTPpCe2PlJSHzQUdUIDYzP0FzNPP9JBFxyEC0KBa8JsO8yPUbQgMvBVaA7Zk0A5YAth4TMnUzGaSpTJk6JJ9rWvAqdcDmKyvz5Ws-ZiBvXcaZD4Zsckg-1fTiePWa1y25gc484EBnXtGZA52PHnLxW_K03cXvyLBcbfR70EVL-cFujXuTxYH1 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Fuzzy+Logic+and+Applications&rft.au=Casalino%2C+Gabriella&rft.au=Castellano%2C+Giovanna&rft.au=Fanelli%2C+Anna+Maria&rft.au=Mencar%2C+Corrado&rft.atitle=Enhancing+the+DISSFCM+Algorithm+for+Data+Stream+Classification&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2019-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030125431&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=109&rft.epage=122&rft_id=info:doi/10.1007%2F978-3-030-12544-8_9 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5921909-l.jpg |