Consistent Segmentation of Longitudinal Brain MR Images with Spatio-Temporal Constrained Networks
Accurate and consistent segmentation of longitudinal brain magnetic resonance (MR) images is of great importance in studying brain morphological and functional changes over time. However, current available brain segmentation methods, especially deep learning methods, are mostly trained with cross-se...
Saved in:
Published in | Medical Image Computing and Computer Assisted Intervention - MICCAI 2021 Vol. 12901; pp. 89 - 98 |
---|---|
Main Authors | , , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate and consistent segmentation of longitudinal brain magnetic resonance (MR) images is of great importance in studying brain morphological and functional changes over time. However, current available brain segmentation methods, especially deep learning methods, are mostly trained with cross-sectional brain images that might generate inconsistent results in longitudinal studies. To overcome this limitation, we present a novel coarse-to-fine spatio-temporal constrained deep learning model for consistent longitudinal segmentation based on limited labeled cross-sectional data with semi-supervised learning. Specifically, both segmentation smoothness and temporal consistency are imposed in the loss function. Moreover, brain structural changes over time are summarized as age constraint, to make the model better reflect the trends of longitudinal aging changes. We validate our proposed method on 53 sets of longitudinal T1-weighted brain MR images from ADNI, with an average of 4.5 time-points per subject. Both quantitative and qualitative comparisons with comparison methods demonstrate the superior performance of our proposed method. |
---|---|
AbstractList | Accurate and consistent segmentation of longitudinal brain magnetic resonance (MR) images is of great importance in studying brain morphological and functional changes over time. However, current available brain segmentation methods, especially deep learning methods, are mostly trained with cross-sectional brain images that might generate inconsistent results in longitudinal studies. To overcome this limitation, we present a novel coarse-to-fine spatio-temporal constrained deep learning model for consistent longitudinal segmentation based on limited labeled cross-sectional data with semi-supervised learning. Specifically, both segmentation smoothness and temporal consistency are imposed in the loss function. Moreover, brain structural changes over time are summarized as age constraint, to make the model better reflect the trends of longitudinal aging changes. We validate our proposed method on 53 sets of longitudinal T1-weighted brain MR images from ADNI, with an average of 4.5 time-points per subject. Both quantitative and qualitative comparisons with comparison methods demonstrate the superior performance of our proposed method. |
Author | Pan, Yongsheng Shen, Dinggang Shi, Feng Cui, Zhiming Wei, Jie Xia, Yong |
Author_xml | – sequence: 1 givenname: Jie surname: Wei fullname: Wei, Jie – sequence: 2 givenname: Feng surname: Shi fullname: Shi, Feng – sequence: 3 givenname: Zhiming surname: Cui fullname: Cui, Zhiming – sequence: 4 givenname: Yongsheng surname: Pan fullname: Pan, Yongsheng – sequence: 5 givenname: Yong surname: Xia fullname: Xia, Yong email: yxia@nwpu.edu.cn – sequence: 6 givenname: Dinggang surname: Shen fullname: Shen, Dinggang email: dgshen@shanghaitech.edu.cn |
BookMark | eNpFkNlOwzAQRc0qWuALePEPGMZL7PgRKjapgMTybLnNpASoHWKj_j4OIPE0271XmjMluyEGJOSEwykHMGfW1EwykMBqw61kwtktMpVl8TOLbTLhmnMmpbI7_wehdsmk9IJZo-Q-mXJhRK2lre0BOU7pDQDKpgJjJsTPYkhdyhgyfcLVulSfuxhobOk8hlWXv5ou-A96Mfgu0LtHerv2K0x00-VX-tSPYvaM6z4ORTSG5VGIDb3HvInDezoie63_SHj8Vw_Jy9Xl8-yGzR-ub2fnc9YLxTPzBhRaDVgtUXsQSrfaQNXIRrWt1yBqUy3K4IVqeQuLZmGaxmOjtEZlbC0PCf_NTf3QhRUObhHje3Ic3EjTFZpOusLF_dBzhWbxyF9PP8TPL0zZ4WhaFgrlneWr7zMOyWlTEEPtauG4qOQ3CuB2XA |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2021 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
DBID | FFUUA |
DEWEY | 616.0754 |
DOI | 10.1007/978-3-030-87193-2_9 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Applied Sciences Computer Science |
EISBN | 3030871932 9783030871932 |
EISSN | 1611-3349 |
Editor | Cotin, Stéphane Essert, Caroline de Bruijne, Marleen Cattin, Philippe C Speidel, Stefanie Padoy, Nicolas Zheng, Yefeng |
Editor_xml | – sequence: 1 fullname: Cotin, Stéphane – sequence: 2 fullname: Essert, Caroline – sequence: 3 fullname: Cattin, Philippe C – sequence: 4 fullname: de Bruijne, Marleen – sequence: 5 fullname: Speidel, Stefanie – sequence: 6 fullname: Padoy, Nicolas – sequence: 7 fullname: Zheng, Yefeng |
EndPage | 98 |
ExternalDocumentID | EBC6733408_82_125 |
GroupedDBID | 38. AABBV AABLV ABLLD ABNDO ACBPT ACWLQ AEDXK AEJLV AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY FFUUA I4C IEZ OCUHQ ORHYB SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p241t-a704e960e5ce6a0246f6705d3d4ffa602875b3d4a24f1f0bdb7ddaed466e47983 |
ISBN | 3030871924 9783030871925 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:27:48 EDT 2025 Thu Apr 17 08:09:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | TA1634 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p241t-a704e960e5ce6a0246f6705d3d4ffa602875b3d4a24f1f0bdb7ddaed466e47983 |
OCLC | 1272863989 |
PQID | EBC6733408_82_125 |
PageCount | 10 |
ParticipantIDs | springer_books_10_1007_978_3_030_87193_2_9 proquest_ebookcentralchapters_6733408_82_125 |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part I |
PublicationTitle | Medical Image Computing and Computer Assisted Intervention - MICCAI 2021 |
PublicationYear | 2021 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
SSID | ssj0002725077 ssj0002792 |
Score | 2.0651877 |
Snippet | Accurate and consistent segmentation of longitudinal brain magnetic resonance (MR) images is of great importance in studying brain morphological and functional... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 89 |
SubjectTerms | Brain MR images Consistent longitudinal segmentation Semi-supervised learning |
Title | Consistent Segmentation of Longitudinal Brain MR Images with Spatio-Temporal Constrained Networks |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6733408&ppg=125 http://link.springer.com/10.1007/978-3-030-87193-2_9 |
Volume | 12901 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l4YI48BblpT1wIhg59j7sA4dSFbVREqE2hcJlZXvXaaXWRti58B_5T8y-HMdwKRcrHjn27nyj3ZnZeSD0JuNTlVNWBGleJgFh0zxIUkmCPI3KMI1g0zLlGBZLdnxOZhf0YjT63Yta2rT5--LXP_NK_gdVoAGuOkv2Fsh2LwUC_AZ84QoIw3Wg_O66Wa98mVrN4JMbHXZjuzP4jEPfq0FzX-MorefPxzb6CId4AiAcHpxMojDqWP9VmQP-2VUH-Zlp_DuBqa-7I4uNIX2_1E3BOupn6039Vlfr5rJ72pVB0JG4MJSqhfVpfeNSnoyyOq9106SNNA26PuqeFZPFqZ2XS747M3HfwcrW0bo2bUZNcwuY2dIGslvbQLNdNR_m7mRkWbcm4GzLELeW9Z0d0XTg7PDOzoG7dOux27GOY1PuEFRY2ltUY9gBwIayi6qyiz7TpRxjWzrVLeS2r5FTCWyf7L82m358Cbw30N-Kg0ike2iPJ3SM7hwczeZfOpdfxEHf5J0_INS1G-0hlx2STj3yQ7Y1K3tT6Cpm2aLIgy_u2EeDI32jKa0eoHs6ewbrtBbg3UM0UtUjdN_ZOthxvwGSR8TTHqNsKyK4LyK4LnFfRLAREbw4xVZEsBYRPBAR3BMR7EXkCTr_dLQ6PA5cB5DgB2iWbZDxkCiwsRUtFMtAnWQl4yGVsSRlmTHQjTnN4SaLSDktw1zmXMpMScKYIjxN4qdoXNWVeoawhI2GRqAPE7AAilTCv5Ow4ExSmsAN3UfvPAeFiVNwwdGF5VejAyBjEiYiiQQYBfvoreey0E83wtf_BnRELAAdYdARgM7z2zz8At3dSv5LNG5_btQrUHzb_LUTqD-Fmab9 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Medical+Image+Computing+and+Computer+Assisted+Intervention+%E2%80%93+MICCAI+2021&rft.au=Wei%2C+Jie&rft.au=Shi%2C+Feng&rft.au=Cui%2C+Zhiming&rft.au=Pan%2C+Yongsheng&rft.atitle=Consistent+Segmentation+of+Longitudinal+Brain+MR+Images+with+Spatio-Temporal+Constrained+Networks&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030871925&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=89&rft.epage=98&rft_id=info:doi/10.1007%2F978-3-030-87193-2_9 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6733408-l.jpg |