Consistent Segmentation of Longitudinal Brain MR Images with Spatio-Temporal Constrained Networks

Accurate and consistent segmentation of longitudinal brain magnetic resonance (MR) images is of great importance in studying brain morphological and functional changes over time. However, current available brain segmentation methods, especially deep learning methods, are mostly trained with cross-se...

Full description

Saved in:
Bibliographic Details
Published inMedical Image Computing and Computer Assisted Intervention - MICCAI 2021 Vol. 12901; pp. 89 - 98
Main Authors Wei, Jie, Shi, Feng, Cui, Zhiming, Pan, Yongsheng, Xia, Yong, Shen, Dinggang
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate and consistent segmentation of longitudinal brain magnetic resonance (MR) images is of great importance in studying brain morphological and functional changes over time. However, current available brain segmentation methods, especially deep learning methods, are mostly trained with cross-sectional brain images that might generate inconsistent results in longitudinal studies. To overcome this limitation, we present a novel coarse-to-fine spatio-temporal constrained deep learning model for consistent longitudinal segmentation based on limited labeled cross-sectional data with semi-supervised learning. Specifically, both segmentation smoothness and temporal consistency are imposed in the loss function. Moreover, brain structural changes over time are summarized as age constraint, to make the model better reflect the trends of longitudinal aging changes. We validate our proposed method on 53 sets of longitudinal T1-weighted brain MR images from ADNI, with an average of 4.5 time-points per subject. Both quantitative and qualitative comparisons with comparison methods demonstrate the superior performance of our proposed method.
AbstractList Accurate and consistent segmentation of longitudinal brain magnetic resonance (MR) images is of great importance in studying brain morphological and functional changes over time. However, current available brain segmentation methods, especially deep learning methods, are mostly trained with cross-sectional brain images that might generate inconsistent results in longitudinal studies. To overcome this limitation, we present a novel coarse-to-fine spatio-temporal constrained deep learning model for consistent longitudinal segmentation based on limited labeled cross-sectional data with semi-supervised learning. Specifically, both segmentation smoothness and temporal consistency are imposed in the loss function. Moreover, brain structural changes over time are summarized as age constraint, to make the model better reflect the trends of longitudinal aging changes. We validate our proposed method on 53 sets of longitudinal T1-weighted brain MR images from ADNI, with an average of 4.5 time-points per subject. Both quantitative and qualitative comparisons with comparison methods demonstrate the superior performance of our proposed method.
Author Pan, Yongsheng
Shen, Dinggang
Shi, Feng
Cui, Zhiming
Wei, Jie
Xia, Yong
Author_xml – sequence: 1
  givenname: Jie
  surname: Wei
  fullname: Wei, Jie
– sequence: 2
  givenname: Feng
  surname: Shi
  fullname: Shi, Feng
– sequence: 3
  givenname: Zhiming
  surname: Cui
  fullname: Cui, Zhiming
– sequence: 4
  givenname: Yongsheng
  surname: Pan
  fullname: Pan, Yongsheng
– sequence: 5
  givenname: Yong
  surname: Xia
  fullname: Xia, Yong
  email: yxia@nwpu.edu.cn
– sequence: 6
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@shanghaitech.edu.cn
BookMark eNpFkNlOwzAQRc0qWuALePEPGMZL7PgRKjapgMTybLnNpASoHWKj_j4OIPE0271XmjMluyEGJOSEwykHMGfW1EwykMBqw61kwtktMpVl8TOLbTLhmnMmpbI7_wehdsmk9IJZo-Q-mXJhRK2lre0BOU7pDQDKpgJjJsTPYkhdyhgyfcLVulSfuxhobOk8hlWXv5ou-A96Mfgu0LtHerv2K0x00-VX-tSPYvaM6z4ORTSG5VGIDb3HvInDezoie63_SHj8Vw_Jy9Xl8-yGzR-ub2fnc9YLxTPzBhRaDVgtUXsQSrfaQNXIRrWt1yBqUy3K4IVqeQuLZmGaxmOjtEZlbC0PCf_NTf3QhRUObhHje3Ic3EjTFZpOusLF_dBzhWbxyF9PP8TPL0zZ4WhaFgrlneWr7zMOyWlTEEPtauG4qOQ3CuB2XA
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DEWEY 616.0754
DOI 10.1007/978-3-030-87193-2_9
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Applied Sciences
Computer Science
EISBN 3030871932
9783030871932
EISSN 1611-3349
Editor Cotin, Stéphane
Essert, Caroline
de Bruijne, Marleen
Cattin, Philippe C
Speidel, Stefanie
Padoy, Nicolas
Zheng, Yefeng
Editor_xml – sequence: 1
  fullname: Cotin, Stéphane
– sequence: 2
  fullname: Essert, Caroline
– sequence: 3
  fullname: Cattin, Philippe C
– sequence: 4
  fullname: de Bruijne, Marleen
– sequence: 5
  fullname: Speidel, Stefanie
– sequence: 6
  fullname: Padoy, Nicolas
– sequence: 7
  fullname: Zheng, Yefeng
EndPage 98
ExternalDocumentID EBC6733408_82_125
GroupedDBID 38.
AABBV
AABLV
ABLLD
ABNDO
ACBPT
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p241t-a704e960e5ce6a0246f6705d3d4ffa602875b3d4a24f1f0bdb7ddaed466e47983
ISBN 3030871924
9783030871925
ISSN 0302-9743
IngestDate Tue Jul 29 20:27:48 EDT 2025
Thu Apr 17 08:09:00 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TA1634
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p241t-a704e960e5ce6a0246f6705d3d4ffa602875b3d4a24f1f0bdb7ddaed466e47983
OCLC 1272863989
PQID EBC6733408_82_125
PageCount 10
ParticipantIDs springer_books_10_1007_978_3_030_87193_2_9
proquest_ebookcentralchapters_6733408_82_125
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part I
PublicationTitle Medical Image Computing and Computer Assisted Intervention - MICCAI 2021
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002725077
ssj0002792
Score 2.0651877
Snippet Accurate and consistent segmentation of longitudinal brain magnetic resonance (MR) images is of great importance in studying brain morphological and functional...
SourceID springer
proquest
SourceType Publisher
StartPage 89
SubjectTerms Brain MR images
Consistent longitudinal segmentation
Semi-supervised learning
Title Consistent Segmentation of Longitudinal Brain MR Images with Spatio-Temporal Constrained Networks
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6733408&ppg=125
http://link.springer.com/10.1007/978-3-030-87193-2_9
Volume 12901
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l4YI48BblpT1wIhg59j7sA4dSFbVREqE2hcJlZXvXaaXWRti58B_5T8y-HMdwKRcrHjn27nyj3ZnZeSD0JuNTlVNWBGleJgFh0zxIUkmCPI3KMI1g0zLlGBZLdnxOZhf0YjT63Yta2rT5--LXP_NK_gdVoAGuOkv2Fsh2LwUC_AZ84QoIw3Wg_O66Wa98mVrN4JMbHXZjuzP4jEPfq0FzX-MorefPxzb6CId4AiAcHpxMojDqWP9VmQP-2VUH-Zlp_DuBqa-7I4uNIX2_1E3BOupn6039Vlfr5rJ72pVB0JG4MJSqhfVpfeNSnoyyOq9106SNNA26PuqeFZPFqZ2XS747M3HfwcrW0bo2bUZNcwuY2dIGslvbQLNdNR_m7mRkWbcm4GzLELeW9Z0d0XTg7PDOzoG7dOux27GOY1PuEFRY2ltUY9gBwIayi6qyiz7TpRxjWzrVLeS2r5FTCWyf7L82m358Cbw30N-Kg0ike2iPJ3SM7hwczeZfOpdfxEHf5J0_INS1G-0hlx2STj3yQ7Y1K3tT6Cpm2aLIgy_u2EeDI32jKa0eoHs6ewbrtBbg3UM0UtUjdN_ZOthxvwGSR8TTHqNsKyK4LyK4LnFfRLAREbw4xVZEsBYRPBAR3BMR7EXkCTr_dLQ6PA5cB5DgB2iWbZDxkCiwsRUtFMtAnWQl4yGVsSRlmTHQjTnN4SaLSDktw1zmXMpMScKYIjxN4qdoXNWVeoawhI2GRqAPE7AAilTCv5Ow4ExSmsAN3UfvPAeFiVNwwdGF5VejAyBjEiYiiQQYBfvoreey0E83wtf_BnRELAAdYdARgM7z2zz8At3dSv5LNG5_btQrUHzb_LUTqD-Fmab9
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Medical+Image+Computing+and+Computer+Assisted+Intervention+%E2%80%93+MICCAI+2021&rft.au=Wei%2C+Jie&rft.au=Shi%2C+Feng&rft.au=Cui%2C+Zhiming&rft.au=Pan%2C+Yongsheng&rft.atitle=Consistent+Segmentation+of+Longitudinal+Brain+MR+Images+with+Spatio-Temporal+Constrained+Networks&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030871925&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=89&rft.epage=98&rft_id=info:doi/10.1007%2F978-3-030-87193-2_9
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6733408-l.jpg