An Efficient Approach for the Detection of Brain Tumor Using Fuzzy Logic and U-NET CNN Classification

Clinical diagnosis has increased marvelous significance in current day healthcare systems. This article proposes a brain tumor detection method using edge detection based fuzzy logic and U-NET Convolutional Neural Network (CNN) classification method. The proposed tumor segmentation system is based o...

Full description

Saved in:
Bibliographic Details
Published inComputational Science and Its Applications - ICCSA 2021 Vol. 12953; pp. 105 - 118
Main Authors Maqsood, Sarmad, Damasevicius, Robertas, Shah, Faisal Mehmood
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN303086975X
9783030869755
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-86976-2_8

Cover

Abstract Clinical diagnosis has increased marvelous significance in current day healthcare systems. This article proposes a brain tumor detection method using edge detection based fuzzy logic and U-NET Convolutional Neural Network (CNN) classification method. The proposed tumor segmentation system is based on image enhancement, fuzzy logic based edge detection, and classification. The input images are pre-processed using the contrast enhancement and fuzzy logic-based edge detection method is applied to identify the edge in the source images and dual tree-complex wavelet transform (DTCWT) is used at different scale levels. The features are calculated from the decayed sub-band images and these features are then categorized using U-NET CNN classification which recognizes the meningioma and non-meningioma brain images. The proposed method is evaluated using accuracy, sensitivity, specificity, and dice coefficient index. Simulation study demonstrates that the proposed technique achieves better performance, both visually and quantitatively in comparison with other approaches.
AbstractList Clinical diagnosis has increased marvelous significance in current day healthcare systems. This article proposes a brain tumor detection method using edge detection based fuzzy logic and U-NET Convolutional Neural Network (CNN) classification method. The proposed tumor segmentation system is based on image enhancement, fuzzy logic based edge detection, and classification. The input images are pre-processed using the contrast enhancement and fuzzy logic-based edge detection method is applied to identify the edge in the source images and dual tree-complex wavelet transform (DTCWT) is used at different scale levels. The features are calculated from the decayed sub-band images and these features are then categorized using U-NET CNN classification which recognizes the meningioma and non-meningioma brain images. The proposed method is evaluated using accuracy, sensitivity, specificity, and dice coefficient index. Simulation study demonstrates that the proposed technique achieves better performance, both visually and quantitatively in comparison with other approaches.
Author Damasevicius, Robertas
Maqsood, Sarmad
Shah, Faisal Mehmood
Author_xml – sequence: 1
  givenname: Sarmad
  orcidid: 0000-0002-1775-2589
  surname: Maqsood
  fullname: Maqsood, Sarmad
– sequence: 2
  givenname: Robertas
  orcidid: 0000-0001-9990-1084
  surname: Damasevicius
  fullname: Damasevicius, Robertas
  email: robertas.damasevicius@ktu.lt
– sequence: 3
  givenname: Faisal Mehmood
  orcidid: 0000-0002-6588-8106
  surname: Shah
  fullname: Shah, Faisal Mehmood
BookMark eNpFkMtOAjEUQKuiEZAvcNMfqPYxfcwSEdSE4GZI3DWdmRZGsR2nw0K-3oImru4r5-beMwIDH7wF4JbgO4KxvM-lQgxhhpESuRSIanUGRiw1TrU6B0MiCEGMZfnF_4C_DcAw5RTlMmNXYESoUFRIzrNrMInxHWNMJcWCiSGwUw_nzjVVY30Pp23bBVNtoQsd7LcWPtreVn0TPAwOPnSm8bDYf6bhOjZ-Axf7w-EbLsOmqaDxNVyj1byAs9UKznYmxibtNUf6Blw6s4t28hfHoFjMi9kzWr4-vcymS9TSjPRI1FTlpiy5cs7VvOSpkLmiVpa4FkSamlGCmaMqM5mtKZOlqmprsrpkmBs2BuR3bWy7dJ7tdBnCR9QE66NQnYRqppMafRKok9DEsF8mff61t7HX9ghVSUdndtXWtL3tohaScpxwyTXJKPsB8g915A
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DEWEY 004
DOI 10.1007/978-3-030-86976-2_8
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3030869768
9783030869762
EISSN 1611-3349
Editor Misra, Sanjay
Apduhan, Bernady O
Murgante, Beniamino
Torre, Carmelo Maria
Gervasi, Osvaldo
Taniar, David
Tarantino, Eufemia
Blečić, Ivan
Rocha, Ana Maria A. C
Garau, Chiara
Editor_xml – sequence: 1
  fullname: Misra, Sanjay
– sequence: 2
  fullname: Murgante, Beniamino
– sequence: 3
  fullname: Apduhan, Bernady O
– sequence: 4
  fullname: Torre, Carmelo Maria
– sequence: 5
  fullname: Gervasi, Osvaldo
– sequence: 6
  fullname: Taniar, David
– sequence: 7
  fullname: Tarantino, Eufemia
– sequence: 8
  fullname: Garau, Chiara
– sequence: 9
  fullname: Blečić, Ivan
– sequence: 10
  fullname: Rocha, Ana Maria A. C
EndPage 118
ExternalDocumentID EBC6725078_75_142
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACBPT
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p241t-6d289abb58fffd5b59ab7982e7b0d617ad32103f284a4ed237b8cdea4db305a3
ISBN 303086975X
9783030869755
ISSN 0302-9743
IngestDate Tue Jul 29 20:27:14 EDT 2025
Fri Jun 06 21:47:49 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TK5105.5-5105.9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p241t-6d289abb58fffd5b59ab7982e7b0d617ad32103f284a4ed237b8cdea4db305a3
OCLC 1268267554
ORCID 0000-0002-1775-2589
0000-0002-6588-8106
0000-0001-9990-1084
PQID EBC6725078_75_142
PageCount 14
ParticipantIDs springer_books_10_1007_978_3_030_86976_2_8
proquest_ebookcentralchapters_6725078_75_142
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 21st International Conference, Cagliari, Italy, September 13-16, 2021, Proceedings, Part V
PublicationTitle Computational Science and Its Applications - ICCSA 2021
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002720636
ssj0002792
Score 2.2911923
Snippet Clinical diagnosis has increased marvelous significance in current day healthcare systems. This article proposes a brain tumor detection method using edge...
SourceID springer
proquest
SourceType Publisher
StartPage 105
SubjectTerms Brain MRI
Deep learning
Fuzzy logic
Image classification
Medical image processing
Segmentation
Title An Efficient Approach for the Detection of Brain Tumor Using Fuzzy Logic and U-NET CNN Classification
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6725078&ppg=142
http://link.springer.com/10.1007/978-3-030-86976-2_8
Volume 12953
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29ktMwENbkQnNQAAcMx9-o4BqCGUe2JaegCCGZ4-ZIkxxznUey5LkUSQA7BXkanoWWl2JXsuwk0ByNx3Y8srL7WVqtvt0l5HWYF1zjtroZGHTdMBEoxvJARyqJpZKc2wjvz1N-fhVfXCfXnc7vHdbSplLv8u0_40r-R6twD_SKUbK30GzTKNyAc9AvHEHDcDwwfvfdrC6vgK3H4H15_hu19N6qdNalZ4p7RkPU-zQazYY9FrJW0vJbWdNuZuje1q3veilx2swXm7LlYMvGBp_dSOuSmchFaQN8b5Z14XkPweEKCzcvbMgldsgFb3le40dTmdzbqx-wUkVvvlnCj47FMNlstz-worBLKHs2YmfD8CqYjue90XTqinkizalFForclO8v612R6bqyZLOeL1zhZbTr6GD9A0eHd3QeuEpbb93eyjjCPDx8IFwOYB8hBqM_rJ_cgGrcgM8xjWPk0qbWg3g_THbsgb6bH_6aanbZJdBygG_jAcvSI3Ik0rhL7gzHF5dfGocfbnhzLC5_7K8H9RaX6xQGHvlO16mh2j_R5MtyKZEP3ri3OjrY0Ld20vwBuYexMxSDWkB6D0nHrE7Ifa8AWivghNzdSYP5iBTDFW2AQj1QKACFAlBoAxS6LqgFCrVAoRYo1AKFWqBQAMqvnxYkFEBC90HymMwn4_noPKjrfwRfwa6sAq5ZOpBKJWlRFDpRCVyIQcqMUKEGy1tqDECLCrCwZGw0i4RKc21krBXMYjJ6Qrqr9co8JTSWBU9MLCTMNrHMtRTQcN7XBsxxFYfRKXnrBZhZkkLNjM6duMqMC1gqiDQTCayV2Sl544Wc4dNl5pN_g3KyKAPlZFY5GSjn2W0efk6OW-i_IN3q-8a8BKu3Uq9qPP0BrPKkvQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computational+Science+and+Its+Applications+%E2%80%93+ICCSA+2021&rft.au=Maqsood%2C+Sarmad&rft.au=Damasevicius%2C+Robertas&rft.au=Shah%2C+Faisal+Mehmood&rft.atitle=An+Efficient+Approach+for+the+Detection+of+Brain+Tumor+Using+Fuzzy+Logic+and%C2%A0U-NET+CNN+Classification&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030869755&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=105&rft.epage=118&rft_id=info:doi/10.1007%2F978-3-030-86976-2_8
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6725078-l.jpg