An Efficient Approach for the Detection of Brain Tumor Using Fuzzy Logic and U-NET CNN Classification
Clinical diagnosis has increased marvelous significance in current day healthcare systems. This article proposes a brain tumor detection method using edge detection based fuzzy logic and U-NET Convolutional Neural Network (CNN) classification method. The proposed tumor segmentation system is based o...
Saved in:
Published in | Computational Science and Its Applications - ICCSA 2021 Vol. 12953; pp. 105 - 118 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 303086975X 9783030869755 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-86976-2_8 |
Cover
Abstract | Clinical diagnosis has increased marvelous significance in current day healthcare systems. This article proposes a brain tumor detection method using edge detection based fuzzy logic and U-NET Convolutional Neural Network (CNN) classification method. The proposed tumor segmentation system is based on image enhancement, fuzzy logic based edge detection, and classification. The input images are pre-processed using the contrast enhancement and fuzzy logic-based edge detection method is applied to identify the edge in the source images and dual tree-complex wavelet transform (DTCWT) is used at different scale levels. The features are calculated from the decayed sub-band images and these features are then categorized using U-NET CNN classification which recognizes the meningioma and non-meningioma brain images. The proposed method is evaluated using accuracy, sensitivity, specificity, and dice coefficient index. Simulation study demonstrates that the proposed technique achieves better performance, both visually and quantitatively in comparison with other approaches. |
---|---|
AbstractList | Clinical diagnosis has increased marvelous significance in current day healthcare systems. This article proposes a brain tumor detection method using edge detection based fuzzy logic and U-NET Convolutional Neural Network (CNN) classification method. The proposed tumor segmentation system is based on image enhancement, fuzzy logic based edge detection, and classification. The input images are pre-processed using the contrast enhancement and fuzzy logic-based edge detection method is applied to identify the edge in the source images and dual tree-complex wavelet transform (DTCWT) is used at different scale levels. The features are calculated from the decayed sub-band images and these features are then categorized using U-NET CNN classification which recognizes the meningioma and non-meningioma brain images. The proposed method is evaluated using accuracy, sensitivity, specificity, and dice coefficient index. Simulation study demonstrates that the proposed technique achieves better performance, both visually and quantitatively in comparison with other approaches. |
Author | Damasevicius, Robertas Maqsood, Sarmad Shah, Faisal Mehmood |
Author_xml | – sequence: 1 givenname: Sarmad orcidid: 0000-0002-1775-2589 surname: Maqsood fullname: Maqsood, Sarmad – sequence: 2 givenname: Robertas orcidid: 0000-0001-9990-1084 surname: Damasevicius fullname: Damasevicius, Robertas email: robertas.damasevicius@ktu.lt – sequence: 3 givenname: Faisal Mehmood orcidid: 0000-0002-6588-8106 surname: Shah fullname: Shah, Faisal Mehmood |
BookMark | eNpFkMtOAjEUQKuiEZAvcNMfqPYxfcwSEdSE4GZI3DWdmRZGsR2nw0K-3oImru4r5-beMwIDH7wF4JbgO4KxvM-lQgxhhpESuRSIanUGRiw1TrU6B0MiCEGMZfnF_4C_DcAw5RTlMmNXYESoUFRIzrNrMInxHWNMJcWCiSGwUw_nzjVVY30Pp23bBVNtoQsd7LcWPtreVn0TPAwOPnSm8bDYf6bhOjZ-Axf7w-EbLsOmqaDxNVyj1byAs9UKznYmxibtNUf6Blw6s4t28hfHoFjMi9kzWr4-vcymS9TSjPRI1FTlpiy5cs7VvOSpkLmiVpa4FkSamlGCmaMqM5mtKZOlqmprsrpkmBs2BuR3bWy7dJ7tdBnCR9QE66NQnYRqppMafRKok9DEsF8mff61t7HX9ghVSUdndtXWtL3tohaScpxwyTXJKPsB8g915A |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2021 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
DBID | FFUUA |
DEWEY | 004 |
DOI | 10.1007/978-3-030-86976-2_8 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISBN | 3030869768 9783030869762 |
EISSN | 1611-3349 |
Editor | Misra, Sanjay Apduhan, Bernady O Murgante, Beniamino Torre, Carmelo Maria Gervasi, Osvaldo Taniar, David Tarantino, Eufemia Blečić, Ivan Rocha, Ana Maria A. C Garau, Chiara |
Editor_xml | – sequence: 1 fullname: Misra, Sanjay – sequence: 2 fullname: Murgante, Beniamino – sequence: 3 fullname: Apduhan, Bernady O – sequence: 4 fullname: Torre, Carmelo Maria – sequence: 5 fullname: Gervasi, Osvaldo – sequence: 6 fullname: Taniar, David – sequence: 7 fullname: Tarantino, Eufemia – sequence: 8 fullname: Garau, Chiara – sequence: 9 fullname: Blečić, Ivan – sequence: 10 fullname: Rocha, Ana Maria A. C |
EndPage | 118 |
ExternalDocumentID | EBC6725078_75_142 |
GroupedDBID | 38. AABBV AABLV ABNDO ACBPT ACWLQ AEDXK AEJLV AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE DBWEY FFUUA I4C IEZ OCUHQ ORHYB SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p241t-6d289abb58fffd5b59ab7982e7b0d617ad32103f284a4ed237b8cdea4db305a3 |
ISBN | 303086975X 9783030869755 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:27:14 EDT 2025 Fri Jun 06 21:47:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | TK5105.5-5105.9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p241t-6d289abb58fffd5b59ab7982e7b0d617ad32103f284a4ed237b8cdea4db305a3 |
OCLC | 1268267554 |
ORCID | 0000-0002-1775-2589 0000-0002-6588-8106 0000-0001-9990-1084 |
PQID | EBC6725078_75_142 |
PageCount | 14 |
ParticipantIDs | springer_books_10_1007_978_3_030_86976_2_8 proquest_ebookcentralchapters_6725078_75_142 |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Theoretical Computer Science and General Issues |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 21st International Conference, Cagliari, Italy, September 13-16, 2021, Proceedings, Part V |
PublicationTitle | Computational Science and Its Applications - ICCSA 2021 |
PublicationYear | 2021 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
SSID | ssj0002720636 ssj0002792 |
Score | 2.2911923 |
Snippet | Clinical diagnosis has increased marvelous significance in current day healthcare systems. This article proposes a brain tumor detection method using edge... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 105 |
SubjectTerms | Brain MRI Deep learning Fuzzy logic Image classification Medical image processing Segmentation |
Title | An Efficient Approach for the Detection of Brain Tumor Using Fuzzy Logic and U-NET CNN Classification |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6725078&ppg=142 http://link.springer.com/10.1007/978-3-030-86976-2_8 |
Volume | 12953 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29ktMwENbkQnNQAAcMx9-o4BqCGUe2JaegCCGZ4-ZIkxxznUey5LkUSQA7BXkanoWWl2JXsuwk0ByNx3Y8srL7WVqtvt0l5HWYF1zjtroZGHTdMBEoxvJARyqJpZKc2wjvz1N-fhVfXCfXnc7vHdbSplLv8u0_40r-R6twD_SKUbK30GzTKNyAc9AvHEHDcDwwfvfdrC6vgK3H4H15_hu19N6qdNalZ4p7RkPU-zQazYY9FrJW0vJbWdNuZuje1q3veilx2swXm7LlYMvGBp_dSOuSmchFaQN8b5Z14XkPweEKCzcvbMgldsgFb3le40dTmdzbqx-wUkVvvlnCj47FMNlstz-worBLKHs2YmfD8CqYjue90XTqinkizalFForclO8v612R6bqyZLOeL1zhZbTr6GD9A0eHd3QeuEpbb93eyjjCPDx8IFwOYB8hBqM_rJ_cgGrcgM8xjWPk0qbWg3g_THbsgb6bH_6aanbZJdBygG_jAcvSI3Ik0rhL7gzHF5dfGocfbnhzLC5_7K8H9RaX6xQGHvlO16mh2j_R5MtyKZEP3ri3OjrY0Ld20vwBuYexMxSDWkB6D0nHrE7Ifa8AWivghNzdSYP5iBTDFW2AQj1QKACFAlBoAxS6LqgFCrVAoRYo1AKFWqBQAMqvnxYkFEBC90HymMwn4_noPKjrfwRfwa6sAq5ZOpBKJWlRFDpRCVyIQcqMUKEGy1tqDECLCrCwZGw0i4RKc21krBXMYjJ6Qrqr9co8JTSWBU9MLCTMNrHMtRTQcN7XBsxxFYfRKXnrBZhZkkLNjM6duMqMC1gqiDQTCayV2Sl544Wc4dNl5pN_g3KyKAPlZFY5GSjn2W0efk6OW-i_IN3q-8a8BKu3Uq9qPP0BrPKkvQ |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computational+Science+and+Its+Applications+%E2%80%93+ICCSA+2021&rft.au=Maqsood%2C+Sarmad&rft.au=Damasevicius%2C+Robertas&rft.au=Shah%2C+Faisal+Mehmood&rft.atitle=An+Efficient+Approach+for+the+Detection+of+Brain+Tumor+Using+Fuzzy+Logic+and%C2%A0U-NET+CNN+Classification&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030869755&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=105&rft.epage=118&rft_id=info:doi/10.1007%2F978-3-030-86976-2_8 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6725078-l.jpg |