NucDETR: End-to-End Transformer for Nucleus Detection in Histopathology Images

Nucleus detection in histopathology images is an instrumental step for the assessment of a tumor. Nonetheless, nucleus detection is a laborious and expensive task if done manually by experienced clinicians, and is also prone to subjectivity and inconsistency. Alternatively, the advancement in comput...

Full description

Saved in:
Bibliographic Details
Published inComputational Mathematics Modeling in Cancer Analysis Vol. 13574; pp. 47 - 57
Main Authors Obeid, Ahmad, Mahbub, Taslim, Javed, Sajid, Dias, Jorge, Werghi, Naoufel
Format Book Chapter
LanguageEnglish
Published Switzerland Springer 2022
Springer Nature Switzerland
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nucleus detection in histopathology images is an instrumental step for the assessment of a tumor. Nonetheless, nucleus detection is a laborious and expensive task if done manually by experienced clinicians, and is also prone to subjectivity and inconsistency. Alternatively, the advancement in computer vision-based analysis enables the automatic detection of cancerous nuclei; however, the task poses several challenges due to the heterogeneity in the morphology and color of the nuclei, their varying chromatin distribution, and their fuzzy boundaries. In this work, we propose the usage of transformer-based detection, and dub it NucDETR, to tackle this problem, given their promising results and simple architecture on several tasks including object detection. We inspire from the recently-proposed Detection Transformer (DETR), and propose the introduction of a necessary data synthesis step; demonstrating its effectiveness and benchmarking the performance of Transformer detectors on histopathology images. Where applicable, we also propose remedies that mitigate some of the issues faced when adopting such Transformer-based detection. The proposed end-to-end architecture avoids much of the post-processing steps demanded by most current detectors, and outperforms the state-of-the-art methods on two popular datasets by 1–9% in the F-score.
AbstractList Nucleus detection in histopathology images is an instrumental step for the assessment of a tumor. Nonetheless, nucleus detection is a laborious and expensive task if done manually by experienced clinicians, and is also prone to subjectivity and inconsistency. Alternatively, the advancement in computer vision-based analysis enables the automatic detection of cancerous nuclei; however, the task poses several challenges due to the heterogeneity in the morphology and color of the nuclei, their varying chromatin distribution, and their fuzzy boundaries. In this work, we propose the usage of transformer-based detection, and dub it NucDETR, to tackle this problem, given their promising results and simple architecture on several tasks including object detection. We inspire from the recently-proposed Detection Transformer (DETR), and propose the introduction of a necessary data synthesis step; demonstrating its effectiveness and benchmarking the performance of Transformer detectors on histopathology images. Where applicable, we also propose remedies that mitigate some of the issues faced when adopting such Transformer-based detection. The proposed end-to-end architecture avoids much of the post-processing steps demanded by most current detectors, and outperforms the state-of-the-art methods on two popular datasets by 1–9% in the F-score.
Author Javed, Sajid
Dias, Jorge
Obeid, Ahmad
Mahbub, Taslim
Werghi, Naoufel
Author_xml – sequence: 1
  givenname: Ahmad
  orcidid: 0000-0002-8297-5834
  surname: Obeid
  fullname: Obeid, Ahmad
  email: ahmad.obeid@ku.ac.ae
– sequence: 2
  givenname: Taslim
  surname: Mahbub
  fullname: Mahbub, Taslim
– sequence: 3
  givenname: Sajid
  orcidid: 0000-0002-0036-2875
  surname: Javed
  fullname: Javed, Sajid
– sequence: 4
  givenname: Jorge
  orcidid: 0000-0002-2725-8867
  surname: Dias
  fullname: Dias, Jorge
– sequence: 5
  givenname: Naoufel
  orcidid: 0000-0002-5542-448X
  surname: Werghi
  fullname: Werghi, Naoufel
BookMark eNpVkMtOwzAQRQ0URFv6BWzyAwZPJn6EHSrlIVVFQmVtOa7TFtI4xO6Cv8e0bFjd0Zm5szgjMmh96wi5BnYDjMnbUiqKlCFQkLkQFDU_IZNEMbEDwlMyBAFAEYvy7N-OiwEZMmQ5LWWBF2QEWAjghRL5JZmE8MEYyyUCk2xIFou9fZgt3-6yWbui0dMU2bI3bah9v3N9liJLN43bh-zBRWfj1rfZts2etyH6zsSNb_z6O3vZmbULV-S8Nk1wk78ck_fH2XL6TOevTy_T-znt8oJFampYWRTWMlnXFVfcVMpa4DUiV6U0ZWFy7kRdgeJKYoVCVSuFtauklMYAjgkc_4au37Zr1-vK-8-ggelfgTrp0KiTEH2wlWaeOvmx0_X-a-9C1O63ZF0be9PYjemi64OWwHKQpeZSc4U_syRvcA
ContentType Book Chapter
Copyright The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Copyright_xml – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
DBID FFUUA
DEWEY 616.99400113
DOI 10.1007/978-3-031-17266-3_5
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Applied Sciences
Computer Science
EISBN 9783031172663
3031172663
EISSN 1611-3349
Editor Wu, Jia
Zhang, Fa
Zaki, Nazar
Qin, Wenjian
Yang, Fan
Editor_xml – sequence: 1
  fullname: Wu, Jia
– sequence: 2
  fullname: Zhang, Fa
– sequence: 3
  fullname: Qin, Wenjian
– sequence: 4
  fullname: Yang, Fan
– sequence: 5
  fullname: Zaki, Nazar
EndPage 57
ExternalDocumentID EBC7102179_57_58
GroupedDBID 38.
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEDXK
AEJLV
AEKFX
AHVRR
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
IEZ
SBO
TPJZQ
TSXQS
Z7R
Z7U
Z7X
Z81
Z82
Z83
Z84
Z87
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-p240t-af1dc36cc07ffb585ab8cc15f335897a94a25e6fb185873b368bd83feb777aa13
ISBN 9783031172656
3031172655
ISSN 0302-9743
IngestDate Tue Jul 29 20:15:29 EDT 2025
Tue Jul 22 07:50:38 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TA1501-1820
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p240t-af1dc36cc07ffb585ab8cc15f335897a94a25e6fb185873b368bd83feb777aa13
Notes This work is supported by research grant from ASPIRE Ref:AARE20-279.
OCLC 1346154862
ORCID 0000-0002-2725-8867
0000-0002-8297-5834
0000-0002-0036-2875
0000-0002-5542-448X
PQID EBC7102179_57_58
PageCount 11
ParticipantIDs springer_books_10_1007_978_3_031_17266_3_5
proquest_ebookcentralchapters_7102179_57_58
PublicationCentury 2000
PublicationDate 2022
20220922
PublicationDateYYYYMMDD 2022-01-01
2022-09-22
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle First International Workshop, CMMCA 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings
PublicationTitle Computational Mathematics Modeling in Cancer Analysis
PublicationYear 2022
Publisher Springer
Springer Nature Switzerland
Publisher_xml – name: Springer
– name: Springer Nature Switzerland
RelatedPersons Hartmanis, Juris
Gao, Wen
Steffen, Bernhard
Bertino, Elisa
Goos, Gerhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002731070
ssj0002792
Score 2.1133745
Snippet Nucleus detection in histopathology images is an instrumental step for the assessment of a tumor. Nonetheless, nucleus detection is a laborious and expensive...
SourceID springer
proquest
SourceType Publisher
StartPage 47
SubjectTerms Computational histopathology
Nucleus detection
Transformer-based detection
Title NucDETR: End-to-End Transformer for Nucleus Detection in Histopathology Images
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7102179&ppg=58&c=UERG
http://link.springer.com/10.1007/978-3-031-17266-3_5
Volume 13574
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtswDBbS7DLs0P1i3R98WC8rPMSRZcsDdijSDF3RBsOWDr0ZkiyhKZakqJ0N6NP0vrfok420JNvJdukulqEIlkISFEmRnwh5G2kuIspQ-2UihP06DiUf0FAIk2WMS5nWKf8nk-TwND46Y2e93u9O1tKqku_V9T_rSv6Hq9AHfMUq2TtwtvkodMA78BeewGF4bhi_62FWiytQ38fgY3knDfxqWd9v9sPVqoyQq1cN9kgTU5V6ZiPK53NRtGHpc7mqD2imAuzPeZNeI35qFz--mDWjD2auGAyj6l3Rm6zUwXj6FYMN40URVssQGgujjiYyLAea3dFwd38wQTjlVQlqr9LK5V3aX2r8Erwv2YJEfZ6D4rPLR9Lq8uOxO_2YLKs6qWzPX1Dh9VU3oAG-MJ7xtO6vD2hitjZ-5duvWXVtK5_XfF_YeyOwvhKLS-5rwEC_g4dkVaa2Kj1BoEZqgVGdmrYgn27DtwDZf20l3ewRmCrEuZKQ5myLbKWc9cm9_fHR8fcmoAd2ILjSg8YMQGRGe4Rll4SFRX7JzEI_tX-hwcOykMcbM655PxsH9rUdNH1IHmBtTIBFK0DoR6SnF4_JtvNkAkf3Ero8L3zfE_LFScWHoJWJoCMTATS3N04egkYegtni9mZdFgIrC0_J6afxdHQYuus8wkswG6tQmKhQNFFqkBojwU0VkisVMUMp41kqslgMmU6MBBOSp1TShMuCU6NRXwjQKM9If7Fc6OckMLxQQ6MGPItlDA6yiBJWGKFEKuUwlmaH7HmC5XXSgct0VpY8ZY52NWxFOUtzxnfIO0_THAeXucfyBl7kNAde5DUv4J29uMvgl-R-K-GvSL-6WunXYMRW8o0Tnz8xZpXY
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computational+Mathematics+Modeling+in+Cancer+Analysis&rft.au=Obeid%2C+Ahmad&rft.au=Mahbub%2C+Taslim&rft.au=Javed%2C+Sajid&rft.au=Dias%2C+Jorge&rft.atitle=NucDETR%3A+End-to-End+Transformer+for%C2%A0Nucleus+Detection+in%C2%A0Histopathology+Images&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2022-09-22&rft.pub=Springer+Nature+Switzerland&rft.isbn=9783031172656&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=47&rft.epage=57&rft_id=info:doi/10.1007%2F978-3-031-17266-3_5
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7102179-l.jpg